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Abstract

A large number of very popular team sports involve the

act of one team trying to score a goal against the other.

During this game play, defending players constantly try to

predict the next move of the attackers to prevent them from

scoring, whereas attackers constantly try to predict the next

move of the defenders in order to defy them and score. Such

behavior is a prime example of the general human faculty to

make predictions about the future and is an important facet

of human intelligence. An algorithmic solution to learning

a model of the external world from sensory inputs in order

to make forecasts is an important unsolved problem. In this

work we develop a generic framework for forecasting future

events in team sports videos directly from visual inputs. We

introduce water polo and basketball datasets towards this

end and compare the predictions of the proposed methods

against expert and non-expert humans.

1. Introduction

In 2002, Billy Beane defied conventional wisdom by per-

forming meticulous statistical evaluations of undervalued

players to assemble the Oakland Athletics baseball team on

a negligible budget. His team made history with a record-

setting 20-game win streak, and this tremendous feat is doc-

umented in the academy award nominated film Moneyball.

Their success made an unprecedented case for competitive

advantages gained by new analyses of individual players’

game play. Now imagine if, in addition to knowing the shot

success rate of Stephen Curry, the best basketball shooter, it

is also possible to forecast that he is more likely to attempt

a shot within zero, one, and two seconds of a pass when his

teammates are in a diamond, ring, and triangle formation,

respectively. Such forecasts are invaluable to the defending

team in planning strategy. Billy Beane’s analysis revolu-

tionized strategic thinking in baseball, and similarly, we be-

lieve statistical methods for forecasting player moves have

the potential to impact how teams plan their play strategies.

Predicting player moves in sports videos is an instance of

a much grander research agenda to develop algorithms that

can forecast future events directly from visual inputs. The

ability to forecast is a key aspect of human intelligence, and

as Kenneth Craik famously wrote in 1943, “If the organism

carries a ‘small scale model of external reality and its own

possible actions within its head, it is able try out various

alternatives, conclude which is the best of them, react to fu-

ture situations before they arise and in every way react in

much fuller, safer and more competent manner to emergen-

cies which face it.” While there has been a lot of interest in

this problem [14, 28, 35, 12, 24, 36, 1, 16, 8, 26, 44, 38,

37, 2], we lack a good benchmark for comparing different

forecasting algorithms.

For multiple reasons, it appears to us that team sports

videos are a very good benchmark for evaluating forecast-

ing algorithms. Firstly, many human activities are social

and team sports provide an opportunity to study forecasting

in an adversarial multi-agent environment. Secondly, team

sports are composed of a large and diverse set of discrete

events, such as passing, shooting, dribbling, etc. The se-

quence of events reflects the game play strategies of the two

teams, and thus forecasting requires game specific knowl-

edge combined with other visual cues, such as player pose

and game state. This implies that for any system to make ac-

curate predictions directly from visual imagery, it must dis-

till game specific knowledge by crunching large amounts of

data. Representing such knowledge is a central problem in

forecasting, which is put to test in this setup. Expert players

and coaches gain such knowledge via experience gathered

over long periods of time. An additional benefit of predict-

ing discrete events is crisp and straightforward evaluation

of the information of interest that avoids the problems asso-

ciated with evaluating pixel-level predictions.

In this work, we present a generic framework for pre-

dicting future events in team sports directly from visual in-

puts, and we introduce water polo and basketball datasets

for evaluation. These datasets contain game stream accom-

panied by annotations of player tracks and seventeen differ-

ent events. The task of interest is, given a history of obser-
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vations, predict what event will happen immediately, after

1s, or after 2s. The seventeen events are answers to ques-

tions that are of great interest in team sports such as - where

will the ball go next? will the player score? will there be

a “screen” event? will there be a block? will there be a

turnover? will there be a dribble? among many others.

We construct two set of models - ones that forecast from

the raw video stream without any pre-processing and other

that transform the raw video stream into an “overhead” rep-

resentation where the players and balls are represented as

dots on the playing field prior to forecasting. Using the wa-

ter polo dataset as a case study, we present the entire system

to convert images captured from a single moving camera

into the overhead representation which is then fed into the

predictor. We find that the overhead representation leads to

more accurate predictions than raw image based representa-

tion. The performance of our system is close to humans but

worse than water polo experts. We then apply the same set

of forecasting techniques on a dataset of basketball games

and show that our system outperforms humans on forecast-

ing events in basketball games. While we present results on

water polo and basketball, we make no game specific as-

sumptions. The techniques developed in this work apply to

a wide number of other team sports such as hockey, Ameri-

can football, soccer, handball, lacrosse and rugby.

Our main contributions in this work are: (1) Provid-

ing water polo and basketball datasets along with detailed

annotations and human performance metrics as a bench-

mark for prediction tasks in adversarial multi-agent envi-

ronments. (2) Putting forward a framework and machinery

for converting images into overhead views and making pre-

dictions using both the image space and the overhead view

representation. (3) We find that random forests outperform

neural networks on our datasets. We suspect that this is due

to the fact that neural networks are extremely data hungry.

This raises a very interesting question - what auxiliary tasks

can we pretrain on to improve prediction performance.

2. Related Work

Video analysis is an active research area. A large body

of work has focused on action recognition [5, 42, 20, 31, 6,

30], people and object tracking [33, 41, 43]. In contrast to

these works we are interested in the problem of forecasting.

Predicting pedestrian trajectories [15, 17, 13, 14, 29] and

anticipating future human activities [14, 16, 35, 45, 19, 10]

has seen considerable interest over the past few years. How-

ever, these works mostly consider predicting events related

to a single human, while we attempt to forecast events

in multi-agent environments involving adversarial human-

human interaction. Other works have explored predicting

future world states from single images [7, 38, 25, 8], but

have been limited to simulation environments or involve a

single agent. Predicting pixel values in future frames has

also drawn considerable interest [24, 28] but is limited to

very short term predictions.

Sport Video Analysis: Traditional work in computer vision

analyzing sports videos [3] has focused on either tracking

players [11] or balls [23]. Another body of work assumes

the annotations of ball or player tracks to analyze game for-

mations or skill level of individual players. For instance,

[39] use tracks of ball trajectories in tennis games to predict

where the ball would be hit, [4] analyze soccer matches us-

ing player tracks. [22] discover team formation and plays

using player role representation instead of player identity.

More recently techniques such as [27] have looked at the

problem of identifying the key players and events in basket-

ball game videos. Closest to our work is the work of [40]

that proposes the use of hidden conditional random fields

for predicting which player will receive the ball next in soc-

cer games. They assume the knowledge of game state such

as attack, defense, counter attack, free kick etc. and assume

that identity of players is known. In contrast, we present a

forecasting system that works directly from visual inputs.

It either uses images directly or converts them it into an

overhead view representation using computer vision tech-

niques. We do not require any external annotations of the

game state.

3. Team Sports Datasets

We have focused our efforts on the most popular style of

sport, team goal sports. We select water polo and basket-

ball as two canonical examples because together they cap-

ture many diverse aspects of team goal sports: basketball

is fast-moving and high-scoring like hurling and handball,

while water polo is low-scoring like soccer and has man-

up situations like hockey and lacrosse. Despite the differ-

ent nuances of each team goal sport, they all share many

common “events” during game play. For example, players

advance the ball toward the goal themselves in a drive, and

sometimes this results in a goal and other times in a block

or a missed shot. Players pass the ball to their teammates,

and sometimes the defense intercepts the pass.

3.1. Water polo

A water polo game naturally partitions into a sequence

of alternating team possessions. During a possession, the

attacking team’s field players primarily spend time in their

front court, which accounts for most of the interesting game

play. The attacking team is required to take a shot within

30s, and failure to do so results in a turnover. Players of

the two teams wear dark colored (typically blue/black) and

light colored (typically white) caps. In the remainder of the

paper we use dark-cap and light-cap to refer to two teams.

We collected a dataset of front court team possessions

from video recordings of 5 water polo games between Di-
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Figure 1: From single-camera video recordings of 5 water

polo games, we collected bounding box track annotations

of dark, light, and red-cap player heads. We also collected

annotations of pool points marking the field of play: the 2m

and 5m lines, the corner of the field, and the points where

the cage and lane line meet.

vision I National Collegiate Athletic Association varsity

teams. Similar to the NBA for basketball, this represents

the highest level of water polo play in the United States.

We chose to focus only on front court possessions, as most

interesting events happen during this period. The time in-

tervals of the front court possessions were hand-marked by

an expert water polo coach. All the games, four of which

are men’s games and the other a women’s game, are played

at the same outdoor pool on different days at times ranging

from morning until night; the dataset exhibits a large range

of lighting conditions. The games were recorded with a sin-

gle freely moving camera that pans between each side of the

pool with resolution 720p at 25-30fps. Often the camera is

adjusted for a new front court possession, resulting in varied

camera motions and zooms.

Player and Pool Track Annotations: Bounding box track

annotations (Figure 1) of dark and light-cap player heads,

goalkeepers, and the head of the player in possession of

the ball were collected using the VATIC toolbox [34] and

Amazon Mechanical Turk. Player possession is defined to

begin at the moment a player grasps the ball and ends at

the moment that same player passes/shoots the ball or an-

other player steals the ball. Additional annotations of spe-

cific points marking the field of play: the 5m line, the 2m

line, the pool corner, and the cage posts were obtained.

These field markings provide necessary point correspon-

dences between the image view and overhead view of the

game, which enable the computation of the player trajecto-

ries in the overhead space from the player locations in the

image view. For increased data diversity, annotations were

collected for 11 quarters of play from 20 quarters available

in the 5 games.

Train/Test Splits: The splits were as follows - train: 7

quarters, randomly sampled from the first 4 games; vali-

dation: light-capped team front court possessions in all 4

quarters of the fifth game; and test: dark-capped team front

court possessions in all 4 quarters of the fifth game. In to-

tal, each split has 232, 134, and 171 respective examples of

a player passing the ball in a team’s front court.

Human Benchmark: Human subjects were shown every

test image taken just before a player loses possession of

the ball and were required to draw a bounding box around

the head of the player which they thought would possess

the ball next. Two sets of subjects: nine non-experts and

four water polo experts were evaluated. Non-experts had

never seen or played a water polo game. In order to ac-

count for their inexperience, non-experts were shown all

examples used to train computer algorithms along with the

the ground-truth answer before being asked to make predic-

tions. The experts had all played competitive water polo

for at least four years. Expert and non-expert humans accu-

rately predicted the next ball possessor 73% and 55.3% of

the time respectively.

3.2. Basketball

The dataset is comprised of ground truth (in contrast to

water polo, where it is computed) 2D player and ball trajec-

tories, sampled at 25 Hz, in 82 regular-season NBA games

obtained using the STATS SportVU system [32], which

is a calibrated six-camera setup in every NBA arena. The

data includes labels for 16 basketball events, including free

throw, field goal, pass, dribble, (player) possession, etc. that

are detailed in the supplementary materials.

Train/Test Splits: A total of roughly 300k labeled events

were randomly split into 180k, 30k, and 90k for train, vali-

dation, and test examples.

Human Benchmark: A set of 18 subjects familiar with

basketball were shown a series of fifteen 5-second clips of

basketball data, ending with a labeled event. The ball and

player trajectories were removed from the final n seconds

of the clip, and the subjects were asked to predict the event

at the end of the blanked portion. For each n ∈ {0.4, 1, 2},

each subject was shown 5 examples randomly sampled from

a pool of 80 examples (5 examples of each of the 16 events).

Humans were correct 13.5%, 20.6%, and 24.4% for n = 2,

1, and 0.4, respectively.

4. Methods: From Images to Overhead View

2D overhead view of the game where players are repre-

sented as dots at their (x, y) coordinate locations is often

used by coaches because it provides immediate insight into

player spacing, and distills player movement into a canon-

ical, simple representation that is easy to compare across
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image view overhead view

Figure 2: The image is converted into the overhead view by

first estimating the homography between the image a canon-

ical model of the playing field using field markings such as

2m/5m lines etc. The players are then detected and their

locations are transformed using the estimated homography.

many game plays. We construct the overhead representa-

tion by first detecting players and ball. Using knowledge of

playing field dimensions and locations of few landmarks,

we estimate a homography to transform these detections

into a canonical frame. We then link players across frames

using tracking. Each step of this process is detailed below.

Player Detection: We finetune VGG-16 network pre-

trained on Imagenet for detecting light and dark cap play-

ers using Fast R-CNN and the annotations we collected de-

scribed in section 3.1. The performance of dark and light

color cap person detectors was 73.4% and 60.4%, respec-

tively. We attribute the worse performance of the light-color

cap detector to a few confounding factors: 1) many light-

color caps were annotated, by one turker, with loose bound-

ing boxes, 2) overhead lights produce specularities and wa-

ter splashes can appear visually similar to light-color caps.

Player Tracking: We track by detection. The Hungarian

matching algorithm [18] is used to link Fast-RCNN player

detections to form player tracks. The pairwise affinity be-

tween detections in two sequential frames is a linear com-

bination of Euclidean distance and bounding box overlap.

Overhead Projection: In the case of water polo (Figure 2)

we used the annotations of 2m and 5m lines, the pool cor-

ner, and the cage posts to estimate the homography between

the current image captured by the camera and a canonical

2D coordinate system representing the field of play using

the normalized direct linear transformation (DLT) algorithm

[9]. Next, we transform the midpoint of bottom edge of the

player bounding box into a (x, y) location in the canonical

frame. We use the bottom edge because that is the point

of the player that is closest to the field of play, which in

turn is mapped to the canonical frame by the homography

transformation.

5. Forecasting Future Ball Position

The movement of the ball determines the game outcome,

and therefore, it is the most important object in play at any

moment of the game. We focus directly on the most impor-

tant question during the game: where will the ball go next?

We study two slightly different variants of this question: In

the water polo dataset, we only consider the frame before

which the ball possessor is about to lose of the possession

of the ball, and we try to forecast which player will be in

possession of ball next. In the basketball domain, we have

access to much more data, and we additionally attempt the

more general problem: where will the ball be in one or two

seconds in the future?

5.1. Water polo: Who will possess the ball next?

In the typical front court water polo scene, there are 6

field players on the attack, defended by 1 goalkeeper and 6

field players on the opposing team. For example, in Figure

2, the dark-cap players are on the attack and the light-cap

players are on defense. By definition, one of the attacking

team players is in possession of the ball. Our system takes

as input the frame just before the player loses ball posses-

sion by either making a pass to a teammate, shooting the

ball, or committing a turnover. The task is to predict which

player will possess the ball next.

A random choice of player from either team would be

correct roughly 1
12 ≈ 8.3% of the time. As a player is more

likely to pass the ball to his teammate, a random choice of

player from the same team would be correct approximately

20% of the time (empirically validated on the test set). Such

random guesses are very naive. Players often tend to pass

the ball to nearer teammates, as shorter passes are easier to

execute and minimize turnover risk. Predicting the nearest

teammate as the next possessor is correct 28.1% of the time.

Players also tend to pass the ball to open teammates, those

who are not closely guarded by defenders. Predicting a pass

to a teammate who is furthest from his nearest defender (i.e.

most open) has accuracy of 36.7%. These baselines are con-

siderably worse than an average human with no water polo

expertise, who is correct 55.3% of the time.

In the next two sections, we describe how performance

can be improved: (1) using additional player features esti-

mated from the overhead representation, and (2) automati-

cally learning feature representations directly from the input

image. We operationalize these approaches in the following

way: Let there be K players each with feature vector F i(i ∈
{1, 2..,K}), let b ∈ {1, 2..,K} be a discrete random vari-

able that encodes the player in possession of the ball after

a pass is made. The goal is to find the player who is most

likley to receive the ball, i.e. argmaxi P (b = i|F 1..FK).

5.1.1 Hand designed features from overhead view

When deciding where to pass the ball, players consider

which teammates are in good position to: score, advance

the ball, and receive a pass. We formalize these insights

and characterize each player using a 9-D feature vector ex-

tracted from the overhead representation: the (x, y) player

coordinates, the (x, y) coordinates of the nearest player on
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(F1, F2)

F8

F9

(F3, F4)
(F5, F6)

F[1,2]: (x,y) of player with ball

F[3,4]: (x,y) of player

F[5,6]: (x,y) of nearest defender

F7: same-team flag

F8: ||F[3,4] − F[1,2]||2

F9: ||F[3,4] − F[5,6]||2

Figure 3: The features F[1···9] extracted from the 2D over-

head view are used to train a random forest to classify play-

ers as either receiving the ball next or not.

the opposite team, the (x, y) coordinates of the player in

possession of the ball, an indicator flag for whether the

player is on the same team as the player in possession of

the ball, and the Euclidean distances of the player to the

player with the ball and to his nearest defender. This player-

centric feature vector is illustrated in Figure 3. We assume

that features F 1..F k are mutually independent, and there-

fore computing P (b = i|F 1..FK) reduces to estimating

P (b = i|F i).
We train a system to infer which player will possess the

ball next in the following way: we used the pipeline de-

scribed in section 4 to convert the raw image into it’s cor-

responding overhead representation. Next, feature vector of

each player was computed from the overhead representa-

tion. Finally, a random forest classifier was trained on these

features using the training data to estimate P (b = i|F i).
Five-fold cross-validation was performed to chose the op-

timal depth and number of trees. This system achieved a

performance of 45.5% (see Table 1) and outperformed the

baseline methods on the testing set. Analysis of the results

revealed that this method is biased towards predicting the

most open perimeter player as the one receiving the ball.

A common failure mode is predicting an open perimeter

player, when he is not even facing the player in possession

of the ball. These mistakes are not surprising as the over-

head view has no access to visual appearance cues. Another

possible reason for failures is that the pipeline for convert-

ing image data into overhead representation is inaccurate.

To tease this apart, we re-ran the analysis using ground truth

(instead of estimated) detections. As reported in Table 1, the

accuracy gap with and without using ground truth detection

is within the error bar of the performance on the testing set.

This suggests that the pipeline for obtaining overhead repre-

sentation is accurate and further performance improvements

will be gained by building better forecasting models.

5.1.2 Forecasting directly from image space

While the overhead view provides a good representation for

analyzing game play, it loses subtle visual cues, such as the

Method Ground Truth Heads Detected Heads

Random, either team 9.5 ± 2.2 9.2 ± 2.2

Random teammate 19.1 ± 3.1 17.0 ± 2.8

Nearest neighbor teammate 28.1 ± 3.4 22.2 ± 3.2

Most open teammate 36.7 ± 3.7 28.7 ± 3.4

F [8 . . . 9] 42.5 ± 3.8 35.2 ± 3.6

F [7 . . . 9] 45.4 ± 3.4 38.4 ± 4.0

F [3 . . . 9] 48.8 ± 4.3 44.1 ± 3.7

F [1 . . . 9] 47.1 ± 3.8 45.5 ± 3.5

FCN, teammate 38.1 ± 3.5 35.2 ± 3.6

Human, Non-Expert 55.3 ± 7.9 -

Human, Expert 73.1 ± 2.0 -

Table 1: Each row reports accuracy of a different method for

predicting which player will possess the ball next. The first

four methods are baselines. The intermediate rows provide

an ablation study of using various features defined above.

The FCN is a deep learning based method and the last two

rows report human performance. Performance metrics are

reported for two circumstances: using ground truth player

locations (column 1) and when detected instead of ground-

truth locations (column 2) are used.

pose of the player and direction they are facing, that might

be very relevant for forecasting. Instead of hand-designing

such features, is it possible to automatically discover fea-

tures that are useful for forecasting next ball possession?

The set of features F 1..F k is represented by image It
and we compute P (b = i|It) in the following manner: Let

lb, pk be random variables denoting the future location of

the ball and the kth player respectively after the passed ball

is received. Since only one player can receive the ball, we

assume that if the ball is at location lb it will be received by

the player who has highest probability of presence at lb (i.e.

argmaxk P (pk = lb). Let li
b

denote the set of all locations

at which i = argmaxk P (pk = lb). With this,

P (b = i|It) =

∫
lb∈li

b

P (pk = lb, lb|It) (1)

assuming conditional independence,

=

∫
lb∈li

b

P (pk = lb|It)P (lb|It) (2)

We model P (lb|It) using a Fully convolutional neural

network (FCN; [21]), that takes It as input and predicts a

confidence mask of the same size as the image encoding

P (lb|It). The ground truth value of mask is set to 1 in pixel

locations corresponding to bounding box of the player who

receives the ball and zero otherwise. The player bounding

box is a proxy for future ball location. We finetuned Ima-

genet pre-trained VGG-16 network for this task.

As we only have 232 training examples, this vanilla sys-

tem unsurprisingly did not perform well and overfit very

easily even with standard data augmentation techniques

such as image cropping and dropout regularization. One of
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Figure 4: The FCN method (section 5.1.2) takes the left

image as input and predicts a heatmap (shown overlaid

on right) encoding probable ball locations after the ball is

passed. The yellow, cyan and red squares indicate the player

with the ball, the ground truth player who actually receive

the ball next, and the player predicted to receive the ball by

the FCN method respectively.

Non-expert Humans

Correct Incorrect

Random Forest
Correct 32.8 15.8

Incorrect 22.8 28.6

Table 2: Comparing agreement between the predictions of

next ball possessor made by humans and our best algorithm

on the water polo data. Humans and the algorithm both

make correct and incorrect predictions on the same exam-

ples more often than not.

our contributions is in showing that the performance can be

significantly improved (from 10% to 38.1%) by requiring

the FCN system to output the location of players in addition

to which player will possess the ball next. Our hypothe-

sis about why this modifications helps is that forcing the

CNN to predict player locations results in representations

that capture the important feature of player configurations

and are thus more likely to generalize than other nuisance

factors that the CNN can latch onto given the small size of

the training set. This finding is interesting because it sug-

gests that it might be possible to learn even better features

by forecasting future player locations for which no addi-

tional annotation data is required once the detection and

tracking pipeline described in the previous sections is setup.

To estimate P (pk = lb|It) we first detect all the players

in image It using the method described in section 4. We as-

sume that players will be at the same location after the pass

is made. In order to make the ball assignment among play-

ers to be mutually exclusive, we use the player locations

to perform a Voronoi decomposition of the playing field.

Let ck be the voronoi cell corresponding to the kth player.

P (pk = lb) is then to set to 1
|ck|

if lb ∈ ck and zero other-

wise. We then use equation (2) to compute P (b = i|It).

This method performs comparably to the baseline that

predicts the most open teammate. Visualization in Figure

4 shows a dominant pattern with FCN predictions: it con-

Figure 5: Sample predictions of our algorithm (black) and

of water polo laymen (blue). The player in possession of

the ball is marked in yellow, and in cases where both our

algorithm and the humans made incorrect predictions, the

player who actually received the ball is marked in red. A

solid line indicates a correct prediction, whereas a dashed

line indicates an incorrect prediction. Row 1 shows exam-

ples where both made the correct prediction. Row 2 shows

examples where the algorithm is correct, but humans are in-

correct. Row 3 shows examples where humans are correct,

but our algorithm is incorrect. Finally, row 4 shows exam-

ples where both our algorithm and humans were incorrect.

sistently places higher likelihood around the perimeter of

team in possession of the ball. This is a very sensible strat-

egy to learn because players around the perimeter are of-

ten more open and statistical analysis reveals that there are

more passes between perimeter players. Given the limited

amount of data, the FCN based approach is unable to cap-

ture more nuanced aspects of player configurations or more

fine grained visual cues such as the player pose.

5.1.3 Comparison to Human Performance

Figure 5 compares the predictions of human non-experts

against our best performing system. Some common trends

are: Non-experts are more likely to incorrectly predict play-

ers near the cage. Table 2 reports agreement statistics be-

tween the predictions of our systems and non-expert hu-

mans. These numbers suggest that humans and our system
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Figure 6: Examples of the basketball event prediction task:

forecast an event n seconds in the future, provided a k-

second history of the player and ball trajectories.

have similar biases and are accurate/prone to errors on sim-

ilar examples.

5.2. Basketball: Where will the ball go?

As more data was available for basketball, we attacked

the more general problem of predicting where the ball will

go next after one and two second respectively. We rep-

resented the overhead view as 64x64x3 images where the

three channels corresponded to location of players of team

1, players of team 2 and the ball respectively. For captur-

ing temporal context, we included 5 images from the past

taken at times {t, t − 1, ...t − 4}s respectively. The task

was to predict the ball location at times {t + 1, t + 2}s re-

spectively. To account for multimodality in the output, we

formulate this as a classification problem with the xy plane

discretized into 256 bins.

We experiment with two different CNN training strate-

gies: (a) early fusion of the temporal information by con-

catenating 5 images into a 15 channel image that was fed

into a CNN or, (b) late fusion by using a LSTM on the out-

put of CNN feature representation of the 5 images. The

CNN architecture comprised of 4 convolutional layers con-

taining 32 filters each of size 3x3, stride 2 and ReLU non-

linearity. In case of early fusion, the output of the last con-

volutional layer was fed into a 512-D fully connected layer

which in turn fed into the prediction layer. In case of late

fusion, the output of the last convolutional layer was fed

into a 512-D LSTM layer which in turn fed into a predic-

tion layer. The performance of these networks and some

baseline methods is reported in Table 3.

We consider two baselines - one which predicts that the

ball at time t+1, t+2 will remain at the same location as at

time t (i.e. Last position). This is a reasonable baseline be-

cause in many frames the player is in possession of the ball

and he does not move. The second baseline estimates the

ball velocity at time t and uses it to forecast the future loca-

tion. We report mean and median errors in the distance and

the angle of prediction. The distance between the ground

Method Error (1s in Future) Error (2s in Future)

Distance (%) Angle (o) Distance (%) Angle (o)

Mean Median Mean Median Mean Median Mean Median

Last Position 11.7 10.4 - - 20.0 18.3 - -

Ball Velocity 100 100 89.3 88.7 100 100 88.8 85.9

CNN + LSTM 11.4 8.6 61.8 46.6 17.1 14.1 53.1 38.1

CNN (Early Fusion) 10.8 8.3 60.2 44.1 16.8 13.8 54.3 38.3

Table 3: The early fusion CNN outperforms Last Position

and Ball Velocity baseline methods and a late fusion CNN

based approach in predicting (basket)ball position 1s and

2s in the future. We report mean and median errors in the

distance and angle of predicted ball positions.

truth and predicted location is reported as the percentage

of the length of the basketball court. The angular error is

the angle between the vector 1 pointing from current po-

sition to ground truth position in the future and vector 2

pointing from current to predicted position. We find that

the proposed methods outperform the baseline and the early

fusion method performs slightly better than the late fusion

method. As expected, the prediction errors in distance are

larger when predicting for 2s as compared to 1s. However,

the errors in angle follow the reverse trend. One explanation

is that in a shorter period, the ball moves by small distances

and therefore angle measures are not robust.

5.3. Transferring from Basketball to Water polo

Basketball and water polo are both team sports that re-

quire scoring baskets/goals. This suggests that there maybe

general game play strategies, e.g., pass to the most open

player, that are shared between these two games. If this is

indeed the case then a model trained on one of these sports

should perform reasonably well on forecasting events in the

other sport. In order to test this hypothesis we trained a ran-

dom forest model on the basketball data (the larger dataset)

for predicting which player will get the ball next using the

same features as described in 5.1.1 and then tested it on the

water polo testing set.

The accuracy of this model on basketball itself was

69.9% and 36.8% on water polo. The performance on water

polo is worse than a model trained directly on water polo

(which achieves 45.5%) but same as the most open team-

mate baseline with 36.7% accuracy (Table 1). One expla-

nation of these results is that differences in game strategies

arise from the differences in game rules, number of players,

and field size. Therefore the basketball model is outper-

formed by a model trained on water polo itself. However,

the transfer performance is significantly better than chance

performance and nearest teammate baseline, suggesting that

our method is capable of learning game-independent ball

passing strategies. A more detailed analysis of the error

modes is provided in the supplementary materials.
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Method Dataset ∆ T FT made FT miss FG made FG miss Off. Rebound Def. Rebound Turnover Foul Time Out Dribble Pass Possession Block Assist Drive Screen mAP

Avg. Human H 1s 100.0 0 60.0 12.5 11.1 16.7 0 0 33.3 66.7 0 0 0 0 0 28.6 20.6

Random Forest H 1s 100.0 0 20.0 0 20.0 40.0 0 0 0 100.0 20.0 40.0 0 0 0 0 21.3

Image CNN A 1s 46.0 20.3 3.9 4.8 2.0 5.5 0.9 1.6 0 61.7 16.5 22.9 0.9 1.8 1.6 3.7 11.9

Overhead CNN A 1s 62.2 22.7 38.6 16.4 9.4 43.9 1.8 5.2 3.5 76.1 25.5 37.6 0.8 3.4 1.6 13.1 22.6

Random Forest A 1s 75.5 41.4 41.3 15.7 11.8 61.2 2.3 5.6 4.5 80.5 26.7 40.9 1.0 3.5 1.2 8.5 26.4

Avg. Human H 2s 33.3 20.0 14.3 0 0 0 0 0 37.5 75.0 0 0 0 0 16.7 20.0 13.5

Random Forest H 2s 100.0 0 0 0 20.0 40.0 0 0 0 100.0 0 20.0 0 0 0 0 17.5

Image CNN A 2s 32.5 7.8 1.9 2.5 0.9 2.7 0.5 0.8 0.2 53.8 14.7 19.9 0 0.6 0.6 2.9 8.8

Overhead CNN A 2s 39.8 19.0 7.3 6.9 3.8 12.9 1.5 2.2 1.6 71.0 18.3 25.3 0.4 2.7 1.1 5.8 13.7

Random Forest A 2s 66.9 29.7 11.8 7.3 5.0 35.4 1.5 2.6 2.7 76.4 21.4 30.2 0.3 2.5 0.9 5.0 18.7

Avg. Human H 40ms 28.6 28.6 83.3 0 50.0 0 0 0 0 25.0 57.1 14.3 0 0 20.0 83.3 24.4

Random Forest H 40ms 100.0 0 40.0 80.0 40.0 100.0 0 20.0 0 100.0 60.0 100.0 0 0 0 80.0 45.0

Random Forest A 40ms 68.8 24.5 69.5 54.7 62.7 85.2 6.1 31.8 16.7 93.2 76.2 92.6 3.3 8.1 5.0 57.7 47.3

Table 4: Prediction accuracy ∆T seconds in the future of 16 basketball events: free throw (FT) made and missed, field goal

(FG) made and missed, offensive (off) and defensive (def) rebound, etc. Methods were evaluated on the full (A) test split of

90k events, as well as a smaller, 80-example subset (H) for human performance evaluation and comparison.

6. Forecasting Events in Basketball

Predicting the ball location is just one out of many events

of interest. For example, whether a teammate would screen

or whether dribble or a break would take place are of great

interest in basketball. In a manner similar to predicting

where the ball will be at times {t + 1, t + 2}s, we predict

which out 16 events of interest will happen in the future.

We evaluate random forest and neural network based ap-

proaches for this task. The input to the random forest are

the following hand designed features, extracted from the

last visible frame: player and ball coordinates and veloci-

ties, distances between each player and the ball, angles be-

tween each player and the ball, the time remaining on the

shot clock, the remaining game time in the period, and the

time since the most recent event for each event occurring

in the visible history. In total, we used 92 features. We

tested two different neural networks - (a) Overhead CNN

that took as inputs the image representation of the overhead

view (see Section 5.2) along with the hand designed features

described above and (b) Image CNN that took as input raw

RGB images. The neural network architectures and training

procedure are detailed in the supplementary materials.

Table 4 reports the performance of humans and various

methods described above at predicting player moves 1s, 2s

and 40ms in advance. The two test splits,“H” and “A” corre-

spond to 80 examples on which human subjects were tested

and a set 90K examples on which the algorithm was evalu-

ated. The purpose of reporting the accuracy when predict-

ing 40ms in advance is to obtain an upper bound on perfor-

mance. The results reveal that random forest outperforms

CNN based approaches and both these approaches perform

better than an average human. The Overhead CNN outper-

forms the Image CNN suggesting that extracting features

relevant for forecasting from raw visuals is a hard problem.

It is also noteworthy that humans are significantly better at

identifying Field Goals (i.e. FG made), but worse at identi-

fying other events.

7. Conclusion

In this work we present predicting next players’ moves

in basketball and water polo as benchmark tasks for mea-

suring performance of forecasting algorithms. Instead of

forecasting activities of a single human, sports require fore-

casting in adversarial multi-agent environments that are a

better reflection of the real world. As the events we predict

are discrete, our benchmark allows for a crisp and meaning-

ful evaluation metric that is critical for measuring progress.

We compare the performance of two general systems for

forecasting player moves: 1) a hand-engineered system that

takes raw visuals as inputs, then transforms them into an

overhead view for feature extraction, and 2) an end-to-end

neural network system. We find the hand-engineered sys-

tem is close to (non-expert) human performance in water

polo and outperforms humans in basketball. In both cases it

outperforms the neural network system, which raises a very

interesting question - what auxiliary tasks/unsupervised fea-

ture learning mechanisms can be used to improve prediction

performance. We find that a system trained on basketball

data generalizes to water polo data, showing that our tech-

niques are capable of extracting generic game strategies.

8. Acknowledgements

We thank James Graham, of the University of Pacific,

for providing the water polo game film. We thank Saurabh

Gupta and Shubham Tulsiani for helpful discussions. This

research was supported, in part, by Berkeley Deep Drive

sponsors, and ONR MURI N00014-14-1-0671.

References

[1] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-

itive physics. arXiv preprint arXiv:1606.07419, 2016. 1

3349



[2] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social lstm: Human trajectory prediction in

crowded spaces. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 961–971,

2016. 1

[3] M. Beetz, N. von Hoyningen-Huene, B. Kirchlechner,

S. Gedikli, F. Siles, M. Durus, and M. Lames. Aspogamo:

Automated sports game analysis models. International Jour-

nal of Computer Science in Sport, 8(1):1–21, 2009. 2

[4] A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, and

I. Matthews. Large-scale analysis of soccer matches using

spatiotemporal tracking data. In Data Mining (ICDM), 2014

IEEE International Conference on, pages 725–730. IEEE,

2014. 2

[5] P. V. K. Borges, N. Conci, and A. Cavallaro. Video-based hu-

man behavior understanding: a survey. Circuits and Systems

for Video Technology, IEEE Transactions on, 23(11):1993–

2008, 2013. 2

[6] M. Brand, N. Oliver, and A. Pentland. Coupled hidden

markov models for complex action recognition. In Com-

puter Vision and Pattern Recognition, 1997. Proceedings.,

1997 IEEE Computer Society Conference on, pages 994–

999. IEEE, 1997. 2

[7] D. Fouhey and C. Zitnick. Predicting object dynamics in

scenes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2019–2026, 2014. 2

[8] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learn-

ing visual predictive models of physics for playing billiards.

arXiv preprint arXiv:1511.07404, 2015. 1, 2

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, ISBN:

0521540518, second edition, 2004. 4

[10] D.-A. Huang and K. M. Kitani. Action-reaction: Forecasting

the dynamics of human interaction. In Computer Vision–

ECCV 2014, pages 489–504. Springer, 2014. 2

[11] IEEE. Tracking multiple people under global appearance

constraints, 2011. 2

[12] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Sax-

ena. Car that knows before you do: Anticipating maneuvers

via learning temporal driving models. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3182–3190, 2015. 1

[13] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto. Intent-

aware long-term prediction of pedestrian motion. 2

[14] K. Kitani, B. Ziebart, J. Bagnell, and M. Hebert. Activity

forecasting. Computer Vision–ECCV 2012, pages 201–214,

2012. 1, 2

[15] J. F. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila.

Context-based pedestrian path prediction. In Computer

Vision–ECCV 2014, pages 618–633. Springer, 2014. 2

[16] H. S. Koppula and A. Saxena. Anticipating human activities

using object affordances for reactive robotic response. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions

on, 38(1):14–29, 2016. 1, 2

[17] H. Kretzschmar, M. Kuderer, and W. Burgard. Learning to

predict trajectories of cooperatively navigating agents. In

Robotics and Automation (ICRA), 2014 IEEE International

Conference on, pages 4015–4020. IEEE, 2014. 2

[18] H. W. Kuhn. The hungarian method for the assignment prob-

lem. Naval Research Logistics Quarterly, 2:83–97, 1955. 4

[19] T. Lan, T.-C. Chen, and S. Savarese. A hierarchical repre-

sentation for future action prediction. In Computer Vision–

ECCV 2014, pages 689–704. Springer, 2014. 2

[20] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on, pages 1–8. IEEE, 2008. 2

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015. 5

[22] P. Lucey, A. Bialkowski, P. Carr, S. Morgan, I. Matthews,

and Y. Sheikh. Representing and discovering adversarial

team behaviors using player roles. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 2706–2713, 2013. 2

[23] A. Maksai, X. Wang, and P. Fua. What players do with the

ball: A physically constrained interaction modeling. arXiv

preprint arXiv:1511.06181, 2015. 2

[24] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. arXiv preprint

arXiv:1511.05440, 2015. 1, 2

[25] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and

A. Farhadi. Newtonian image understanding: Unfolding

the dynamics of objects in static images. arXiv preprint

arXiv:1511.04048, 2015. 2

[26] J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh. Action-

conditional video prediction using deep networks in atari

games. NIPS, 2015. 1

[27] V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban,

K. Murphy, and L. Fei-Fei. Detecting events and key actors

in multi-person videos. arXiv preprint arXiv:1511.02917,

2015. 2

[28] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert,

and S. Chopra. Video (language) modeling: a baseline

for generative models of natural videos. arXiv preprint

arXiv:1412.6604, 2014. 1, 2

[29] E. Rehder and H. Kloeden. Goal-directed pedestrian predic-

tion. In Proceedings of the IEEE International Conference

on Computer Vision Workshops, pages 50–58, 2015. 2

[30] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances

in Neural Information Processing Systems, pages 568–576,

2014. 2

[31] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012. 2

[32] STATS. https://www.stats.com/sportvu-basketball/. 3

[33] R. Urtasun, D. J. Fleet, and P. Fua. 3d people tracking with

gaussian process dynamical models. In Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Confer-

ence on, volume 1, pages 238–245. IEEE, 2006. 2

[34] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scal-

ing up crowdsourced video annotation. International Journal

of Computer Vision, pages 1–21. 10.1007/s11263-012-0564-

1. 3

3350



[35] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipat-

ing the future by watching unlabeled video. arXiv preprint

arXiv:1504.08023, 2015. 1, 2

[36] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating

videos with scene dynamics. In Advances In Neural Infor-

mation Processing Systems, pages 613–621, 2016. 1

[37] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncer-

tain future: Forecasting from static images using variational

autoencoders. In European Conference on Computer Vision,

pages 835–851. Springer, 2016. 1

[38] J. Walker, A. Gupta, and M. Hebert. Patch to the future: Un-

supervised visual prediction. In Computer Vision and Pat-

tern Recognition (CVPR), 2014 IEEE Conference on, pages

3302–3309. IEEE, 2014. 1, 2

[39] X. Wei, P. Lucey, S. Morgan, and S. Sridharan. Predicting

shot locations in tennis using spatiotemporal data. In Digital

Image Computing: Techniques and Applications (DICTA),

2013 International Conference on, pages 1–8. IEEE, 2013.

2

[40] X. Wei, P. Lucey, S. Vidas, S. Morgan, and S. Sridharan.

Forecasting events using an augmented hidden conditional

random field. In Computer Vision–ACCV 2014, pages 569–

582. Springer, 2014. 2

[41] S.-K. Weng, C.-M. Kuo, and S.-K. Tu. Video object tracking

using adaptive kalman filter. Journal of Visual Communica-

tion and Image Representation, 17(6):1190–1208, 2006. 2

[42] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori,

and L. Fei-Fei. Every moment counts: Dense detailed

labeling of actions in complex videos. arXiv preprint

arXiv:1507.05738, 2015. 2

[43] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-

vey. Acm computing surveys (CSUR), 38(4):13, 2006. 2

[44] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View

synthesis by appearance flow. In European Conference on

Computer Vision, pages 286–301. Springer, 2016. 1

[45] Y. Zhou and T. L. Berg. Temporal perception and predic-

tion in ego-centric video. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4498–4506,

2015. 2

3351


