
Semantic Video CNNs through Representation Warping

Raghudeep Gadde1,3, Varun Jampani1,4 and Peter V. Gehler1,2,3

1MPI for Intelligent Systems, 2University of Würzburg
3Bernstein Center for Computational Neuroscience, 4NVIDIA

{raghudeep.gadde,varun.jampani,peter.gehler}@tuebingen.mpg.de

Abstract

In this work, we propose a technique to convert CNN

models for semantic segmentation of static images into

CNNs for video data. We describe a warping method that

can be used to augment existing architectures with very lit-

tle extra computational cost. This module is called Net-

Warp and we demonstrate its use for a range of network

architectures. The main design principle is to use opti-

cal flow of adjacent frames for warping internal network

representations across time. A key insight of this work is

that fast optical flow methods can be combined with many

different CNN architectures for improved performance and

end-to-end training. Experiments validate that the proposed

approach incurs only little extra computational cost, while

improving performance, when video streams are available.

We achieve new state-of-the-art results on the CamVid and

Cityscapes benchmark datasets and show consistent im-

provements over different baseline networks. Our code and

models are available at http://segmentation.is.

tue.mpg.de

1. Introduction

It is fair to say that the empirical performance of seman-

tic image segmentation techniques has seen dramatic im-

provement in the recent years with the onset of Convolu-

tional Neural Network (CNN) methods. The driver of this

development have been large image segmentation datasets

and the natural next challenge is to develop fast and accurate

video segmentation methods.

The number of proposed CNN models for semantic im-

age segmentation by far outnumbers those for video data. A

naive way to use a single image CNN for video is to apply it

frame-by-frame, effectively ignoring the temporal informa-

tion altogether. However, frame-by-frame application often

yields to jittering across frames, especially at object bound-

aries. Alternative approaches include the use of conditional

random field (CRF) models on video data to fuse the pre-

dicted label information across frames or the development

of tailored CNN architectures for videos. A separate CRF

applied to the CNN predictions has the limitation, that it

has no access to internal representations of the CNNs. Thus

the CRF operates on a representations (the labels) that has

already been condensed. Furthermore, existing CRFs for

video data are often too slow for practical purposes.

We aim to develop a video segmentation technique that

makes use of temporal coherence in video frames and re-

use strong single image segmentation CNNs. For this, we

propose a conceptually simple approach to convert existing

image CNNs into video CNNs that uses only very little ex-

tra computational resources. We achieve this by ‘NetWarp’,

a neural network module that warps the intermediate CNN

representations of the previous frame to the corresponding

representations of the current frame. Specifically, the Net-

Warp module uses the optical flow between two adjacent

frames and then learns to transform the intermediate CNN

representations through an extra set of operations. Multi-

ple NetWarp modules can be used at different layers of the

CNN hierarchies to warp deep intermediate representations

across time, as depicted in Fig. 1.

Our implementation of NetWarp takes only about 2.5

milliseconds to process an intermediate CNN representa-

tion of 128 × 128 with 1024 feature channels. It is fully

differentiable and can be learned using standard back prop-

agation techniques during training of the entire CNN net-

work. In addition, the resulting video CNN model with

NetWarp modules processes the frames in an online fash-

ion, i.e., the system has access only to the present and previ-

ous frames when predicting the segmentation of the present

frame.

We augmented several existing state-of-the-art image

segmentation CNNs using NetWarp. On the current stan-

dard video segmentation benchmarks of CamVid [2] and

Cityscapes [7], we consistently observe performance im-

provements in comparison to base network that is applied

in a frame-by-frame mode. Our video CNNs also out-

performed other recently proposed (CRF-)architectures and

video propagation techniques setting up a new state-of-the-

art on both CamVid and Cityscapes datasets.

In Section 2, we discuss the related works on video seg-

mentation. In Section 3, we describe the NetWarp module

and how it is used to convert image CNNs into video CNNs.

In Section 4, experiments on CamVid and Cityscapes are

presented. We conclude with a discussion in Section 5.
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Figure 1. Schematic of the proposed video CNN with NetWarp modules. This illustration depicts the use of NetWarp modules in three

different layers of a image CNN. The video CNN is applied in an online fashion, looking back only one frame. The CNN filter activations

for the current frame are modified by the corresponding representations of the previous frame via NetWarp modules.

2. Related Works

We limit our discussion of the literature on semantic

segmentation to those works concerning the video data.

Most semantic video segmentation approaches implement

the strategy to first obtain a single frame predictions using a

classifier such as random forest or CNN, and then propagate

this information using CRFs or filtering techniques to make

the result temporally more consistent.

One possibility to address semantic video segmentation

is by means of the 3D scene structure. Some works [3, 12,

41] build models that use 3D point clouds that have been

obtained with structure from motion. Based on these geo-

metrical and/or motion features, semantic segmentation is

improved. More recent works [27, 38] propose the joint

estimation of 2D semantics and 3D reconstruction of the

scenes from the video data. While 3D information is very

informative, it is also costly to obtain and comes with pre-

diction errors that are hard to recover from.

A more popular route [10, 4, 8, 34, 42, 28, 32] is to con-

struct large graphical models that connect different video

pixels to achieve temporal consistency across frames. The

work of [8] proposes a Perturb-and-MAP random field

model with spatio-temporal energy terms based on Potts

model. [4] used dynamic temporal links between the frames

but optimizes for a 2D CRF with temporal energy terms. A

3D dense CRF across video frames is constructed in [42]

and optimized using mean-field approximate inference. The

work of [32] proposed a joint model for predicting seman-

tic labels for supervoxels, object tracking and geometric re-

lationship between the objects. Recently, [28] proposed a

technique for optimizing the feature spaces for 3D dense

CRF across video pixels. The resulting CRF model is ap-

plied on top of the unary predictions obtained with CNN

or some other techniques. In [16], a joint model to es-

timate both optical flow and semantic segmentation is de-

signed. [29] proposed a CRF model and an effiecient infer-

ence technique to fuse CNN unaries with long range spatio-

temporal cues estimated by recurrent temporal restricted

Boltzmann machine. We avoid the CRF construction and

filter the intermediate CNN representations directly. This

results in fast runtime and a natural way to train any aug-

mented model by means of gradient descent.

More related to our technique are fast filtering tech-

niques. For example, [34] learns a similarity function be-

tween pixels of consecutive frames to propagate predictions

across time. The approach of [18] implements a neural net-

work that uses learnable bilateral filters [19] for long-range

propagation of information across video frames. These fil-

tering techniques propagate information after the semantic

labels are computed for each frame, whereas in contrast, our

approach does filtering based propagation across interme-

diate CNN representations making it more integrated into

CNN training.

The use of CNNs (e.g., [33, 5]) resulted in a surge of per-

formance in semantic segmentation. But, most CNN tech-

niques work on single images. The authors of [39] observed

that the semantics change slowly across time and re-use

some intermediate representations from the previous frames

while computing segmentation for the present frame. This

results in faster runtime but a loss in accuracy. In contrast,

our approach uses adjacent frame deep representations for

consistent predictions across frames resulting in improved

prediction accuracy.

Although several works proposed neural network ap-

proaches for processing several video frames together, they

are mostly confined to video level tasks such as classifica-
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Figure 2. Illustration of computations in a NetWarp module. First, optical flow Ft is computed between two video frames at time steps t

and t−1. Then the NetWarp module transforms the flow Λ(Ft) with few convolutional layers; warps the activations zk(t−1) of the previous

frame and and combines the warped representations with those of the present frame zkt . The resulting representation z̃
k

t is then passed onto

the remaining CNN layers for semantic segmentation.

tion or captioning. The works of [20, 22] use 3D convolu-

tions across frames for action recognition. In [9], LSTMs

are used in a recurrent network for recognition and caption-

ing. Two stream optical flow and image CNNs [40, 44, 32]

are among the state-of-the-art approaches for visual action

recognition. Unlike video level tasks, pixel-level seman-

tic video segmentation requires filtering at pixel-level. This

work proposes a way of doing local information propaga-

tion across video frames.

A related task to semantic video segmentation is video

object segmentation. Like in semantic video segmenta-

tion literature, several works [36, 30, 35, 43, 17] aim to

reduce the complexity of graphical model structure with

spatio-temporal superpixels. Some other works use nearest

neighbor fields [11] or optical flow [6] for estimating cor-

respondence between different frame pixels. These works

use pixel correspondences across frames to refine or prop-

agate labels, whereas the proposed approach refines the in-

termediate CNN representations with a module that is easy

to integrate into current CNN frameworks.

3. Warping Image CNNs to Video CNNs

Our aim is to convert a given CNN network architec-

ture, designed to work on single images into a segmentation

CNN for video data. Formally, given a sequence of n video

frames denoted as I1, I2, · · · , In, the task is to predict se-

mantic segmentation for every video frame. Our aim is to

process the video frames online, i.e., the system has access

only to previous frames when predicting the segmentation

of the present frame.

The main building block will be the NetWarp module

that warps the intermediate (kth layer) CNN representations

zkt−1 of the previous frame and then combines with those

of the present frame zkt , where z1t , z
2
t , · · · , z

m
t denote the

intermediate representations of a given image CNN with m
layers.

Motivation The design of the NetWarp module is based

on two specific insights from the recent semantic segmenta-

tion literature. The authors of [39] showed that intermedi-

ate CNN representations change only slowly over adjacent

frames, especially for deeper CNN layers. This inspired the

design of the clockwork convnet architecture [39]. In [13],

a bilateral inception module is constructed to average inter-

mediate CNN representations for locations across the image

that are spatially and photometrically close. There, the au-

thors use super-pixels based on runtime considerations and

demonstrated improved segmentation results when applied

to different CNN architectures. Given these findings, in this

work, we ask the question: Does the combination of tem-

porally close representations also leads to more stable and

consistent semantic predictions?

We find a positive answer to this question. Using pixel

correspondences, provided by optical flow, to combine in-

termediate CNN representations of adjacent frames consis-

tently improves semantic predictions for a number of CNN

architectures. Especially at object boundaries and thin ob-

ject structures, we observe a solid improvement. Further,

this warping can be performed at different layers in CNN

architectures, as illustrated in Fig. 1 and incurs only a tiny

extra computation cost to the entire pipeline.

3.1. NetWarp

The NetWarp module consists of multiple separate steps,

a flowchart overview is depicted in Fig. 2. It takes as input,

an estimate of dense optical flow field and then performs

1. flow transformation, 2. representation warping, and 3.

combination of representations. In the following, we will

first discuss the optical flow computation followed by the
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description of each of the three separate steps.

Flow Computation We use existing optical flow algo-

rithms to obtain dense pixel correspondences (denoted as

Ft) across frames. We chose a particular fast optical flow

method to keep the runtime small. We found that DIS-

Flow [26], which takes only about 5ms to compute flow

per image pair (with size 640 × 480) on a CPU, works well

for our purpose. Additionally, we experimented with the

more accurate but slower FlowFields [1] method that re-

quires several seconds per image pair to compute flow. For-

mally, given an image pair, It and I(t−1), the optical flow

algorithm computes the pixel displacement (u, v) for every

pixel location (x, y) in It to the spatial locations (x′, y′) in

I(t−1). That is, (x′, y′) = (x + u, y + v). u and v are

floating point numbers and represent pixel displacements

in horizontal and vertical directions respectively. Note that

we compute the reverse flow mapping the present frame lo-

cations to locations in previous frame as we want to warp

previous frame representations.

Flow Transformation Correspondences obtained with

traditional optical flow methods might not be optimal for

propagating representations across video frames. So, we

use a small CNN to transform the pre-computed optical

flow, which we will refer to as FlowCNN and denote the

transformation as Λ(Ft). We concatenate the original two

channel flow, the previous and present frame images, and

the difference of the two frames. This results in a 11 chan-

nel tensor as an input to the FlowCNN. The network itself

is composed of 4 convolution layers interleaved with ReLU

nonlinearities. All the convolution layers are made up of 3

× 3 filters and the number of output channels for the first 3

layers are 16, 32 and 2 respectively. The output of the third

layer is then concatenated (skip connection) with the origi-

nal pre-computed flow which is then passed on to the last 3

× 3 convolution layer to obtain final transformed flow. This

network architecture is loosely inspired from the residual

blocks in ResNet [15] architectures. Other network archi-

tectures are conceivable. All parameters of FlowCNN are

learned via standard back-propagation. Learning is done on

semantic segmentation only and we do not include any su-

pervised flow data as we are mainly interested in semantic

video segmentation. Figure 5 in the experimental section

shows how the flow transforms with the FlowCNN. We ob-

serve significant transformations in the original flow with

the FlowCNN and we will discuss more about these changes

in the experimental section.

Warping Representations The FlowCNN transforms a

dense correspondence field from frame It to the previous

frame I(t−1). Let us assume that we want to apply the Net-

Warp module on the kth layer of the image CNN and the

filter activations for the adjacent frames are zkt and zk(t−1)

(as in Fig 2). For notational convenience, we drop k and

refer to these as zt and z(t−1) respectively. The representa-

tions of the previous frame z(t−1) are warped to align with

the corresponding present frame representations:

ẑ(t−1) = Warp(z(t−1),Λ(Ft)), (1)

where ẑ(t−1) denotes the warped representations, Ft is

the dense correspondence field and Λ(·) represents the

FlowCNN described above. Lets say we want to compute

the warped representations ẑ(t−1) at a present frame’s pixel

location (x, y) which is mapped to the location (x′, y′) in

the previous frame by the transformed flow. We imple-

ment Warp as a bilinear interpolation of z(t−1) at the de-

sired points (x′, y′). Let (x1, y1), (x1, y2), (x2, y1) and

(x2, y2) be the corner points of the previous frame’s grid

cell where (x′, y′) falls. Then the warping of z(t−1) to ob-

tain ẑ(t−1)(x, y) is given as standard bilinear interpolation:

ẑ(t−1)(x, y) = z(t−1)(x
′, y′)

=
1

η

[
x2 − x′

x′ − x1

]⊤ [
z(t−1)(x1, y1) z(t−1)(x1, y2)
z(t−1)(x2, y1) z(t−1)(x2, y2)

] [
y2 − y′

y′ − y1

]

(2)

where η = 1/(x2 − x1)(y2 − y1). In case (x′, y′) lies out-

side the spatial domain of z(t−1), we back-project (x′, y′)
to the nearest border in z(t−1). The above warping func-

tion is differentiable at all the points except when the flow

values are integer numbers. Intuitively, this is because the

the corner points used for the interpolation suddenly change

when (x′, y′) moves across from one grid cell to another. To

avoid the non-differentiable case, we add a small ǫ of 0.0001

to the transformed flow. This makes the warping module

differentiable with respect to both the previous frame repre-

sentations and the transformed flow. We implement gradi-

ents using standard matrix calculus. Due to strided pooling,

deeper CNN representations are typically of smaller reso-

lution in comparison to the image signal. The same strides

are used for the transformed optical flow to obtain the pixel

correspondences at the desired resolution.

Combination of Representations Once the warped ac-

tivations of the previous frame ẑk(t−1) are computed with

the above mentioned procedure, they are linearly combined

with the present frame representations zkt

z̃kt = w1 ⊙ zkt +w2 ⊙ ẑk(t−1), (3)

where w1 and w2 are weight vectors with the same length

as the number of channels in zk; and ⊙ represents per-

channel scalar multiplication. In other words, each channel

of the frame t and the corresponding channel of the warped

representations in the previous frame t−1 are linearly com-

bined. The parameters w1,w2 are learned via standard

back-propagation. The result z̃kt is then passed on to the

remaining image CNN layers. Different computations in

the NetWarp module are illustrated in Fig. 2.
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PlayData-CNN (IoU: 68.9) Conv1 2 Conv2 2 Conv3 3 Conv4 3 Conv5 3 FC6 FC7 FC8 FC6 + FC7

+ NetWarp (without FlowCNN) 69.3 69.5 69.5 69.4 69.5 69.6 69.4 69.3 69.8

+ NetWarp (with FlowCNN) 69.6 69.6 69.6 69.5 69.7 69.8 69.7 69.5 70.2

Table 1. The effect of where NetWarp modules are inserted. Shown are test IoU scores on CamVid for augmented versions of the

PlayData-CNN. We observe an improvement (frame-by-frame results 68.9) independent of where a NetWarp is included. Refining the flow

estimate typically leads to slightly better results.

Usage and Training The inclusion of NetWarp modules

still allows end-to-end training. It can be easily integrated

in different deep learning architectures. Note that back-

propagating a loss from frame t will affect image CNN lay-

ers (those preceding NetWarp modules) for the present and

also previous frames. We use shared filter weights for the

image CNN across the frames. Training is possible also

when ground truth label information is available for only

some and not all frames, which is generally the case.

Due to GPU memory constraints, we make an approxi-

mation and only use two frames at a time. Filter activations

from frame t − 1 would receive updates from t − 2 when

unrolling the architecture in time, but we ignore this ef-

fect because of the hardware memory limitations. The Net-

Warp module can be included at different depths and mul-

tiple NetWarp modules can be used to form a video CNN.

In our experiments, we used the same flow transformation

Λ(·) when multiple NetWarp modules are used. We used

the Adam [23] stochastic gradient descent method for op-

timizing the network parameters. Combination weights are

initialized with w1 = 1 and w2 = 0, so the initial video

network is identical to the single image CNN. Other Net-

Warp parameters are initialized randomly with a Gaussian

noise. All our experiments and runtime analysis were per-

formed using a Nvidia TitanX GPU and a 6 core Intel i7-

5820K CPU clocked at 3.30GHz machine. Our implemen-

tation that builds on the Caffe [21] framework is available

at http://segmentation.is.tue.mpg.de.

4. Experiments

We evaluated the NetWarp modules using the two chal-

lenging semantic video segmentation benchmarks for which

video frames and/or annotations are available: CamVid [2]

and Cityscapes [7]. Both datasets contain real world video

sequences of street scenes. We choose different popular

CNN architectures of [47, 37, 48] and augmented them

with the NetWarp modules at different places across the

network. We follow standard protocols and report the stan-

dard Intersection over Union (IoU) score which is defined in

terms of true-positives (TP), false-positives (FP) and false-

negatives (FP): “TP / (TP + FP + FN)” and additionally

the instance-level iIoU for Cityscapes [7]. We are par-

ticularly interested in the segmentation effects around the

boundaries. Methods like the influential DenseCRFs [25]

are particularly good in segmentation of the object bound-

aries. Therefore, we adopt the methodologies from [24, 25]

and measure the IoU performance only in a narrow band

around the ground truth label changes (see Fig.17 in [24]).

We vary the width of this band and refer to this measure as

trimap-IoU (tIoU). In all the experiments, unless specified,

we use a default trimap band of 2 pixels.

4.1. CamVid Dataset

The CamVid dataset contains 4 videos with ground-truth

labelling available for every 30th frame. Overall, the dataset

has 701 frames with ground-truth. For direct comparisons

with previous works, we used the same train, validation and

test splits as in [47, 28, 37]. In all our models, we use only

the train split for training and report the performance on the

test split. We introduced NetWarp modules in two popular

segmentation CNNs for this dataset: One is PlayData-CNN

from [37] and another is Dilation-CNN from [47]. Unless

otherwise mentioned, we used DIS-Flow [26] for the exper-

iments on this dataset.

With PlayData-CNN [37] as the base network, we first

study how the NetWarp module performs when introduced

at different stages of the network. The network architec-

ture of PlayData-CNN is made of five convolutional blocks,

each with 2 or 3 convolutional layers, followed by three

1×1 convolution layers (FC layers). We add the Net-

Warp module to the following layers at various depths of

the network: Conv1 2, Conv2 2, Conv3 3, Conv4 3, Conv5 3,

FC6, FC7 and FC8 layers. The corresponding IoU scores

are reported in Tab. 1. We find a consistent improvement

over the PlayData-CNN performance of 68.9% irrespec-

tive of the NetWarp locations in the network. Since Net-

Warp modules at FC6 and FC7 performed slightly better,

we chose to insert NetWarp at both the locations in our final

model with this base network. We also observe consistent

increase in IoU with the use of flow transformation across

different NetWarp locations. Our best model with two Net-

Warp modules yields an IoU score of 70.2% which is a new

state-of-the-art on this dataset.

Adding NetWarp modules to CNN introduces very few

additional parameters. For example, two NetWarp mod-

ules at FC6 and FC7 in the PlayData-CNN have about

16K parameters, a mere 0.012% of all 134.3M parameters.

The experiments in Tab. 1 indicate that improvements can

be contributed to the temporal information propagation at

multiple-depths. As a baseline, concatenating correspond-

ing FC6 and FC7 features resulted in only 0.1% IoU im-

provement compared to 1.3% using NetWarp modules.

4457

http://segmentation.is.tue.mpg.de


Input Frame Ground Truth PlayData-CNN NetWarp-CNN

Figure 3. Qualitative results from the CamVid dataset. Notice

how NetWarp-CNN recovers some thin structures in the top row

and corrects some regions (on cyclist) in the second row.

IoU tIoU

PlayData-CNN [37] 68.9 39.0

+ NetWarp (with DIS-Flow [26]) 70.2 39.9

+ NetWarp (with FlowFields [1]) 70.3 40.1

+ VPN [18] 69.5 -

Table 2. CamVid Results using PlayData-CNN. Shown are the

IoU and tIoU scores from different methods using a fast flow from

DIS[26] and an accurate flow from [1] for NetWarp augmented

PlayData-CNN.

IoU tIoU Runtime (ms)

Dilation-CNN [47] 65.3 34.7 380

+ NetWarp(Ours) 67.1 36.6 395

+ FSO-CRF [28] 66.1 - > 10k

+ VPN [18] 66.7 36.1 680

Table 3. CamVid Results using Dilation-CNN. IoU, tIoU scores

and runtimes (in milliseconds) for different methods.

In Tab. 2, we show the effect of using the more accu-

rate but slower optical flow method of Flowfields [1]. Re-

sults indicate that there is only a 0.1% improvement in IoU

with Flowfields but this incurs a much higher runtime for

flow computation. Results also indicate that our approach

outperformed the current state-of-the-art approach of VPN

from [18] by a significant margin of 0.8% IoU, while being

faster.

As a second network, we choose the dilation CNN

from [47]. This network consists of a standard CNN fol-

lowed by a context module with 8 dilated convolutional

layers. For this network, we apply the NetWarp module

on the output of each of these 8 dilated convolutions. Ta-

ble 3 shows the performance and runtime comparisons with

the dilation CNN and other related techniques. With a run-

time increase of 15 milliseconds, we observe significant im-

provements in the order of 1.8% IoU. The runtime increase

assumes that the result of the previous frame is already com-

puted, which is the case for video segmentation.

4.2. Cityscapes Dataset

The Cityscapes dataset [7] comes with a total of 5000

video sequences of high-quality images (2048×1024 res-

olution), partitioned into 2975 train, 500 validation and

1525 test sequences. The videos are captured in different

weather conditions across 50 different cities in Germany

and Switzerland. In addition to the IoU and tIoU per-

formance metrics, we report the instance-level IoU score.

Since IoU score is dominated by large objects/regions (such

as road) in the scene, the makers of this dataset proposed the

iIoU score that takes into account the relative size of differ-

ent objects/regions. The iIoU score is given as iTP/(iTP +

FP + iFN), where iTP and iFN are the modified true-positive

and false-negative scores which are computed by weighting

the contribution of each pixel by the ratio of the average

class instance size to the size of the respective ground truth

instance. This measures how well the semantic labelling

represents the individual instances in the scene. For more

details on this metric, please refer to the original dataset

paper [7]. For this dataset, we used DIS-Flow [26] for all

networks augmented with NetWarp modules.

We choose the recently proposed Pyramid Scene Parsing

Network (PSPNet) from [48]. Because of high-resolution

images in Cityscapes and GPU memory limitations, PSP-

Net is applied in a sliding window fashion with a window

size of 713×713. To achieve higher segmentation perfor-

mance, the authors of [48] also evaluated a multi-scale ver-

sion. Applying the same PSPNet on 6 different scales of an

input image results to an improvement of 1.4% IoU over the

single-scale variant. This increased performance comes at

the cost of increased runtime. In the single-scale setting, the

network is evaluated on 8 different windows to get a full im-

age result, whereas in the multi-scale setting, the network is

evaluated 81 times leading to 10 times increase in runtime.

We refer to the single-scale and multi-scale evaluations as

PSPNet-SSc and PSPNet-MSc respectively.

The architecture of PSPNet is a ResNet101 [15] network

variant with pyramid style pooling layers. We insert Net-

Warp modules before and after the pyramid pooling lay-

ers. More precisely, NetWarp modules are added on both

the Conv4 23 and Conv5 4 representations. The network is

then fine-tuned with 2975 train video sequences without any

data augmentation. We evaluate both the single-scale and

multi-scale variants. Table 4 summarizes the quantitative

results with and without NetWarp modules, on validation

data scenes of Cityscapes. We find an improvement of the

IoU (by 1.2), tIoU (by 2.4) and iIoU (by 1.4) respectively

over the single image PSPNet-SSc variant. These improve-

ments come with a low runtime overhead of 24 millisec-

onds. Also the augmented multi-scale network improves all

measures: IoU by 0.7, tIoU by 1.8, and iIoU by 1.4%.

We chose to submit the results of the best perform-

ing method from the validation set to the Cityscapes test

server. Results are shown in Tab. 5. We find that the Net-

Warp augmented PSP multi-scale variant is on par with the

current top performing method [46] (80.5 vs. 80.6) and

out-performs current top models in terms of iIoU by a sig-
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IoU iIoU tIoU Runtime (s)

PSPNet-SSc [48] 79.4 60.7 39.7 3.00

+NetWarp 80.6 62.1 42.1 3.04

PSPNet-MSc [48] 80.8 62.2 41.5 30.3

+NetWarp 81.5 63.6 43.3 30.5

Table 4. Performance of PSPNet with NetWarp modules on the

Cityscapes validation dataset. We observe consistent improve-

ments with NetWarp modules across all three performance mea-

sures in both the single-scale (SSc) and multi-scale (MSc) settings,

while only adding little time overhead.

nificant margin of 1.4%. In summary, at submission time,

our result is best performing method in iIoU and second on

IoU1. Surprisingly, it is the only approach that uses video

data. A closer look into class IoU score in Tab. 5 shows

that our approach works particularly well for parsing thin

structures like poles, traffic lights, traffic signs etc. The im-

provement is around 4% IoU for the pole class. Another ob-

servation is that adding NetWarp modules resulted in slight

IoU performance decrease for few broad object classes such

as car, truck etc. However, we find consistent improvements

across most of the classes in other performance measures.

The classwise iIoU scores that are computed on broad ob-

ject classes like car, bus etc show better performance on 7

out of 8 classes for NetWarp. Further, analysing the class-

wise tIoU scores on the validation set, we find that Net-

Warpperforms better on 17 out of 19 classes. Visual re-

sults in Fig. 6 also indicate that the thin structures are better

parsed with the introduction of NetWarp modules. Qualita-

tively, we find improved performance near boundaries com-

pared to baseline CNN (see supplementary video). Visual

results in Fig. 6 also indicate that NetWarp helps in rectify-

ing the segmentation of big regions as well.

In Fig. 4, we show the relative improvement of the Net-

Warp augmented PSPNet for different widths in the trimap-

IoU. From this analysis we can conclude that the IoU im-

provement is especially due to better performance near ob-

ject boundary. This is true for both the single and the multi-

scale version of the network. Image CNNs, in general, are

very good at segmenting large regions or objects like road or

cars. However, thin and fine structures are difficult to parse

as information is lost due to strided operations inside CNN.

In part this is recovered by NetWarp CNNs that use the tem-

poral context to recover thin structures. In Fig. 6, some

qualitative results with static image CNN and our video

CNN are shown. We observe that the NetWarp module cor-

rect for thin structures but also frequently correct larger re-

gions of wrong segmentations. This is possible since repre-

sentations for the same regions are combined over different

frames leading to a more robust classification.

Next, we analyze how the DIS-Flow is transformed by

the FlowCNN. Figure 5 shows some visualizations of the

1https://www.cityscapes-dataset.com/benchmarks/
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Figure 4. tIoU improvement. Relative improvements of IoU

within trimaps as a function of trimap width. Most improvement

is in regions close to object boundaries.
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Figure 5. Effect of flow transformation. Example results of in-

put and transformed flow, after training for semantic segmentation.

There is a qualitative difference between CamVid and CityScapes.

Best viewed on screen.

transformed flow along with the original DIS Flow fields.

We can clearly observe that, in both CamVid and Cityscapes

images, the structure of the scene is much more pronounced

in the transformed flow indicating that the traditionally

computed flow might not be optimal to find pixel correspon-

dences for semantic segmentation.

5. Conclusions and Outlook

We presented NetWarp, an efficient and conceptually

easy way to transform image CNNs into video CNNs. The

main concept is to transfer intermediate CNN filter activ-
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Input Frame Ground Truth PSPNet-MSc NetWarp-PSPNet

Figure 6. Qualitative results from the Cityscapes dataset. Observe how NetWarp-PSPNet is able to correct larger parts of wrong

segmentation (top two rows) by warping activations across frames. The bottom row shows an example of improved segmentation of a thin

structure. All results shown are obtained with the multi-scale versions.
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PSPNet-MSc [48] 58.1 80.2 98.6 86.6 93.2 58.1 63.0 64.5 75.2 79.2 93.4 72.1 95.1 86.3 71.4 96.0 73.6 90.4 80.4 69.9 76.9

+NetWarp(Ours) 59.5 80.5 98.6 86.7 93.4 60.6 62.6 68.6 75.9 80.0 93.5 72.0 95.3 86.5 72.1 95.9 72.9 90.0 77.4 70.5 76.4

ResNet-38 [46] 57.8 80.6 98.7 87.0 93.3 60.4 62.9 67.6 75.0 78.7 93.7 73.7 95.5 86.8 71.1 96.1 75.2 87.6 81.9 69.8 76.7

TuSimple [45] 56.9 80.1 98.6 85.9 93.2 57.7 61.2 67.2 73.7 78.0 93.4 72.3 95.4 85.9 70.5 95.9 76.1 90.6 83.7 67.4 75.7

LRR-4X [14] 47.9 71.9 98.0 81.5 91.4 50.5 52.7 59.4 66.8 72.7 92.5 70.1 95.0 81.3 60.1 94.3 51.2 67.7 54.6 55.6 69.6

RefineNet [31] 47.2 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70.0

Table 5. Results on the Cityscapes test dataset. Average iIoU, IoU and class IoU scores of base PSPNet, with NetWarp modules and

also other top performing methods taken from the Cityscapes benchmark website at the time of submission. The NetWarp augmented

PSPNet-MSc version achieves highest iIoU and is about on par with [46] on IoU. Our video methods performs particularly well on small

classes such as poles, traffic lights etc.

ities of adjacent frames based on transformed optical flow

estimate. The resulting video CNN is end-to-end trainable,

runs in an online fashion and has only a small computation

overhead in comparison to the frame-by-frame application.

Experiments on the current standard benchmark datasets

CityScapes and CamVid show improved performance for

several strong baseline methods. The final model sets a

new state-of-the-art performance on both CityScapes and

CamVid.

Extensive experimental analysis provide insights into the

workings of the NetWarp module. First, we demonstrate

consistent performance improvements across different im-

age CNN hierarchies. Second, we find more temporally

consistent semantic predictions and better coverage of thin

structures such as poles and traffic signs. Third, we ob-

served that the flow changed radically after the transforma-

tion (FlowCNN) trained with the segmentation loss. From

the qualitative results, it seems that the optical flow at the

object boundaries is important for semantic segmentation.

An interesting future work is to systematically study what

properties of optical flow estimation are necessary for se-

mantic segmentation and the impact of different types of

interpolation in a NetWarp module.

Another future direction is to scale the video CNNs to

use multiple frames. Due to GPU memory limitations and

to keep training easier, here, we trained with only two ad-

jacent frames at a time. In part this is due to the memory

demanding base models like ResNet101. Memory optimiz-

ing the CNN training would alleviate some of the problems

and enables training with many frames together. We also

envision that the findings of this paper are interesting for

the design of video CNNs for different tasks other than se-

mantic segmentation.
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