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Abstract

Significant progress has been recently made in Non-

Rigid Structure-from-Motion (NRSfM). However, existing

methods do not handle poorly-textured surfaces that de-

form non-smoothly. These are nonetheless common occur-

rence in real-world applications. An important unanswered

question is whether shading can be used to robustly han-

dle these cases. Shading is complementary to motion be-

cause it constrains reconstruction densely at textureless re-

gions, and has been used in several other reconstruction

problems. The challenge we face is to simultaneously and

densely estimate non-smooth, non-rigid shape from each

image together with non-smooth, spatially-varying surface

albedo (which is required to use shading). We tackle this

using an energy-based formulation that combines a phys-

ical, discontinuity-preserving deformation prior with mo-

tion, shading and contour information. This is a large-

scale, highly non-convex optimization problem, and we pro-

pose a cascaded optimization that converges well without

an initial estimate. Our approach works on both unorga-

nized and organized small-sized image sets, and has been

empirically validated on four real-world datasets for which

all state-of-the-art approaches fail.

1. Introduction

NRSfM aims to recover the 3D shapes of an object un-

der deformation from apparant motion in a set of 2D im-

ages, and is a fundamental and open computer vision prob-

lem. NRSfM is challenging because we do not assume any

knowledge of the object’s 3D shape a priori. We also do not

assume the object is rigid in some of the images, which pre-

vents initializing the reconstruction using rigid Structure-

from-Motion (SfM). NRSfM differs from the related and

easier problem of template-based 3D reconstruction (also

called Shape-from-Template (SfT)), where the object’s 3D

shape is known in a fixed reference pose. NRSfM is often

called template-free reconstruction to make a clear distinc-

tion, with all input data coming from 2D images.

NRSfM methods have progressed significantly [30, 32,

21, 33, 7, 26], however none of these can handle poorly-

textured surfaces and non-smooth deformations such as

folds or creases. Firstly, most methods use motion from

feature correspondences, which work well only for densely-

textured objects with many discriminative features. This is

not common in most real practical applications, particularly

with man-made objects that usually have very weak tex-

ture. These feature-based methods can be divided into two

types: those which reconstruct only the features (usually

called sparse reconstructions) [30, 32, 21, 33, 7, 8, 26], and

those which reconstruct the object’s surface densely (usu-

ally called dense reconstructions) [19]. In most applica-

tions a dense reconstruction is required. However it is diffi-

cult to achieve high-accuracy using feature-based matching,

because they only give sparse motion information. Typi-

cally non-smooth deformations such as creases and folds

can never be accurately reconstructed. For this reason,

most of NRSfM methods that densely reconstruct surfaces

from feature matches have only been demonstrated on very

smooth and well-textured objects such as bending sheets of

paper. A direct approach to NRSfM has been recently pro-

posed [34], where dense reconstruction is performed using

motion information directly at the pixel level. This works

by jointly reconstructing the surface and registering it to

each image through intensity-based matching. It was only

shown to work on weakly textured surfaces that deform

very smoothly. Similarly to feature-based reconstruction,

the reason is because motion information is fundamentally

insufficient to reconstruct textureless surface regions under-

going non-smooth deformations.

Our goal is to solve NRSfM densely by combining mo-

tion, shading and a generic physical deformation model that

can accurately represent non-smooth deformations. We re-

fer to this problem as NRSfMS (Non-Rigid Structure-from-

Motion and Shading). We are specifically interested in solv-

ing this problem for objects with unknown spatially-varying

albedo, which is the situation in most practical cases. This

is because albedos cannot be inferred directly from 2D im-

ages of a deforming object. However we must know albedos
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in order to apply shading constraints. Therefore our prob-

lem is to simultaneously and densely estimate non-smooth,

non-rigid shape from each image together with non-smooth,

spatially-varying surface albedo. This problem has not

been tackled before, and is a crucial missing component for

densely reconstructing images in unconstrained settings.

This is very challenging to solve for three main rea-

sons. Firstly, we deal with very high-dimensional defor-

mation spaces, which are needed to model non-smooth de-

formations such as surface creases that can form in arbi-

trary places. One cannot therefore approximate the problem

using a globally smooth surface representation (as is com-

mon in previous dense NRSfM methods), which both in-

creases the search space dramatically, and leads to a highly

non-convex energy landscape. Secondly, we cannot apply

shading to constrain non-rigid shape without knowing sur-

face albedo. Similarly, through shading surface albedo con-

strains non-rigid shape. We must therefore simultaneously

and densely estimate both, which is a highly non-convex

problem. Thirdly, the fact that albedo is spatially varying

significantly complicates the problem. Fundamentally, it re-

quires us to densely register the image data, which is chal-

lenging, particularly at weakly-textured regions.

We use a dense triangulated mesh model to represent the

object’s surface, and the objective is to estimate the mesh’s

vertex positions in camera coordinates for all input images,

together with surface albedos. We approach the problem

with an energy-based formulation that combines the phys-

ical, discontinuity-preserving deformation prior with mo-

tion, shading and contour information. This is a large-scale,

highly non-convex optimization problem, and we propose a

cascaded optimization that converges well without an ini-

tial estimate. Because this is the first approach to solve

NRSfMS, we also include an empirical analysis of the prob-

lem’s stability using perturbation analysis. We provide

real experiments with ground truth data and show that our

method can accurately reconstruct dense shape where exist-

ing state-of-the-art NRSfM methods fail.

2. State-of-the-Art

2.1. Non­Rigid Structure­from­Motion

There is a substantial number of approaches to NRSfM

and we do not attempt a detailed review here. The meth-

ods can be broken down along a number of different di-

mensions, and the main ones are as follows: (i) the type of

camera model used, such as perspective or affine; (ii) if the

approach uses features or direct pixel-level matching; (iii)

if it operates on a batch of images or sequentially on video

frames; (iv) what surface representation is used, such as a

pointcloud, a spline surface or a mesh surface; (v) if the

problem formulation is convex or non-convex; (vi) what de-

formation prior is used. There is no general consensus on

the best way to formulate NRSfM according to the above

dimensions. The current trend focuses on handling videos

(because temporal continuity can be exploited), perspective

cameras (because these are generally the most accurate) and

mesh surface representations (because they are simple and

can model arbitrary topology).

Feature-based approaches are the most common way

to tackle NRSfM. These are popular because the prob-

lem of motion estimation (through feature matching) can

be strongly decoupled from 3D reconstruction. Recently,

some featureless NRSfM methods have been proposed [19,

34]. These either decouple motion estimation from 3D re-

construction, by estimating motion with multi-view optic

flow [19], or by jointly reconstructing the surface and mo-

tion estimation [34]. The advantage of decoupling motion

estimation is to simplify the reconstruction problem. How-

ever, the disadvantage is that the results can be sub-optimal

and mistakes in the estimated motion cannot be corrected.

To overcome measurement noise and ambiguities in

NRSfM, two classes of deformation priors have emerged:

statistical [11, 30, 15, 21, 1] and physics-based [7, 26, 34,

32, 33, 8] priors. The first class is based on the assump-

tion that the space of object shapes or object deformations

lies on a low-dimensional manifold which can be learned

jointly with reconstruction. In all such approaches, the man-

ifold is modeled by a linear combination of shape bases [5],

which must be estimated during reconstruction. These ap-

proaches give good results for objects with a strong rigid

component, such as human faces. However, they often re-

quire a large number of images and are not suitable for ob-

jects with high deformation spaces such as deforming fab-

ric, or objects that can crease or fold in unexpected ways.

Physics-based deformation models operate very differently

to statistical models, and restrict the space of possible defor-

mations according to physical properties of the object’s ma-

terial. The most common physics-based model is isometry

or quasi-isometry [7, 26, 34, 32, 33, 8]. These assume the

object’s surface does not stretch or shrink significantly as it

deforms. Quasi-isometry means that there is non-negligible

stretching or shearing, but the model prefers solutions that

minimize stretching or shrinking. These models have been

used extensively because they dramatically restrict the solu-

tion space, and are applicable for many object classes such

as those made of thick rubber, tightly-woven fabrics, pa-

per, cardboard and plastics. It appears that NRSfM with the

isometric model is well-posed if motion can be estimated

densely across the object’s surface [32, 7, 26].

2.2. Shading in Other 3D Reconstruction Problems

Shading has been used previously in several other 3D re-

construction problems. These include Shape-from-Shading

(SfS) [28, 13, 14] and photometric stereo [3, 35, 6], rigid

SfS [22, 23, 24] and SfT [20, 25, 24, 18]. In SfS, shading is
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used to reconstruct a depth-map from a single image. How-

ever, it has had very limited success because it is a weakly

constrained problem with one constraint at each pixel, and

is only solvable if accurate models of surface reflectance

(including albedos) and scene illumination are known a pri-

ori. SfS also has tremendous difficulty with external and

self-occlusions. If albedos are unknown, the problem is ill-

posed. Thus, SfS cannot be used to reconstruct the datasets

in this paper. The usual way forward is to assume that

albedo is constant, which makes the problem solvable up to

scale and the bas relief ambiguity. Photometric stereo is the

extension of SfS using multiple light sources and has shown

great success for reconstructing high-accuracy surface de-

tails with unknown albedo e.g. [3, 35]. However requires

a special hardware setup where the scene is illuminated by

a sequence of lights placed at different points in the scene,

during which time the scene is assumed to be rigid. This

setup is not applicable in many situations. Shading has also

been used in rigid SfM to achieve high-accuracy at both tex-

tured and textureless regions. Unlike SfS, this works using

multiple images and combines motion with shading infor-

mation. However deformable objects are not handled.

In SfT, the problem is to register a deformable 3D model

(also called an object template) in 3D camera coordinates

using visual information present in a 2D image. In practice

the object template can be built from a CAD model or built

from images of object in an undeformed state using dense

multiview SfM [10, 2, 25, 24]. Most SfT methods used only

motion information, though shading information has been

recently introduced to handle weakly-textured objects [20,

25, 24, 18]. Compared to NRSfMS, SfT is a considerably

easier problem because the object template is determined a

priori. By contrast in NRSfMS there is no a priori object

template.

3. Problem Modeling and Optimization

3.1. Modeling Assumptions and Inputs

To solve NRSfMS, modeling assumptions are required

for the following: shape deformation, albedo, surface re-

flectance, scene illumination, camera response and scene

geometry. We now list our assumptions. Shape defor-

mation: we use a quasi-isometric prior and discontinuity-

preserving smoother that favours piecewise-smooth defor-

mations. This has been shown previously to be a good

model for handling non-smooth, creasing surfaces [18].

We assume the surface does not tear over time. Albedo:

we assume albedo is constant over time, and piecewise-

constant over the surface. This is applicable for many

objects and particularly man-made ones. The piecewise-

constant assumption is used to reduce ambiguity between

smooth intensity variation caused by albedo variation ver-

sus surface gradient variation. We do not assume albedo is

pre-segmented. Surface reflectance: we use a Lambertian

model, which gives a good approximation of many surfaces,

and we handle modeling errors due to e.g. specular reflec-

tions with robustification (see §3.3). Illumination: we as-

sume it is constant, pre-calibrated and defined in camera co-

ordinates. In practice this can be done if we have a camera-

light rig setup such as an endoscope or camera with flash,

or a non-rig where the light and camera are not physically

connected but do not move relative to each other during im-

age acquisition. The model we use in our experiments is

the second-order spherical harmonic model, which are very

common in SfS with 9 parameters. Camera response func-

tion: we assume it is known a priori, or linear and constant

over time. Scene geometry: we assume no self or exter-

nal occlusions, which is a typical assumption in state-of-

the-art dense NRSfM and there can be background clutter.

Our model and algorithm may in principle use a reference

view where the object’s surface may be smooth or creased.

In practice however, we have obtained better reconstruction

accuracy for a smooth reference view. Our investigation of

why it happens so has not revealed a clear reason so far and

we chose to leave this point for future research.

We use t = 1, . . . , N as the image index. Our in-

puts are as follows. (i) a set of N RGB images {It},

It : R2 → [0, 255]3 and the corresponding luminance im-

ages {Lt}, Lt : R2 → R
+. The luminance image stores

the light intensity striking the image plane at each pixel co-

ordinate, and if the camera response function is known it

can be built from It. If it is unknown, camera response is

assumed to be constant and linear. In this case we set Lt

as the pixel intensity, which gives luminance up to a global

scale factor. This global scale factor can be absorbed into

the surface albedos and has no effect on the reconstruction

problem. (ii) the camera intrinsics, denoted by the functions

πt : R3 → R
2 which project from 3D camera coordinates

to pixel coordinates. (iii) a segmentation of the object of

interest in one of the images, which we call the reference

image, denoted by the region Ω ⊂ R
2. Without loss of

generality let this be the first image. (iv) the scene illumi-

nation coefficients which we denote by l ∈ R
4 or 9. (v) a set

of putative 2D correspondences from Ω to all other images.

These are assumed to be mostly correct with some outliers,

and can be computed using existing methods such as SURF

or SIFT. We denote this by the sets {St}.

3.2. Shape and Albedo Modeling

We use a regular triangular 3D mesh to model the ob-

ject’s 3D surface, which we build by meshing Ω using a reg-

ular 2D triangular mesh, with M vertices (we use a default

mesh grid of 100×100 vertices that encloses Ω). We denote

E as the mesh’s edges, where NE is the number of edges.

Because we assume the surface does not tear the mesh edges

are fixed over time. Our task is to determine, for each mesh
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vertex i, its position vi
t ∈ R

3 in 3D camera coordinates for

each image t ∈ [1, N ]. We use Vt = {vi
t}i∈[1,M ] to denote

the vertices in 3D camera coordinates for image t.

We parameterize V1 along lines-of-sight. Specifically,

let ui ∈ R
2 denote the 2D position of the ith vertex in

the first image, defined in normalized pixel coordinates. Its

corresponding position in 3D camera coordinates at t = 1 is

v1
i = di[u

⊤
i , 1]

⊤, where di is its unknown depth. We collect

these unknown depths into the set D = {d1, . . . , dN}. The

full set of unknowns that specify the object’s shape in all

images is therefore {D,V2, . . . ,VN}, which corresponds to

3M(N − 1) +M real-valued unknowns. We use the mesh

to transform any 2D point u ∈ Ω to 3D camera coordinates

using Vt, which is done using a barycentric interpolation

(a linear interpolation of the positions of the three vertices

surrounding u). We denote this by f(u;Vt) : Ω → R
3.

The surface normal at u is computed from the enclosing

triangle, denoted by n(u;Vt) : Ω → S3. Unlike f , n is non-

linear. We define an albedo-map A(u) : Ω → R
+ as the

function that gives the unknown albedo for a pixel u ∈ Ω.

From the piecewise-constant assumption we can write this

as A(u) : Ω → A where A = {α1, . . . αK} denotes a

discrete set of K unknown albedos with αk ∈ R
+. We

discuss how A is built in §3.4.

3.3. The Energy­based Objective Function

We construct the energy-based objective function by

combining physical priors with shading, point correspon-

dence and boundary contour information extracted from all

images. The objective function C has the following form:

C(V1, . . . ,VN ,A) ,
N
∑

t=1

Cshade(Vt,A;Lt, l)+ (1)

λcorrespCcorresp(Vt;St) + λcontourCcontour(Vt; It)+

λisoCiso(V1,Vt) + λsmoothCsmooth(Vt).

The terms Cshade, Ccorresp and Cbound are shading, motion

and boundary data terms respectively. The terms Csmooth

and Ciso are physical deformation prior terms. The terms

λcorresp, λbound, λiso and λsmooth are positive weights and

are the method’s tuning parameters.

The shading term. The shading term robustly encodes

the Lambertian relationship between albedo, surface irra-

dience and pixel luminance. We evaluate it as:

Cshade (Vt,A;Lt, l) , (2)

1

|Ω|

∑

u∈Ω

ρ (A(u) r (n(u;Vt); l)− Lt (πt ◦ f(u;Vt))) .

The function r(n; l) evaluates the Lambertian irradiance

for a normal vector n according to the spherical harmonics

model with light coefficients l. The function ρ : R → R is

an M-estimator which is used to enforce similarity between

the modeled and measured luminance, while also allowing

for some points to violate the model (caused by specular re-

flection, small shadows and other unmodeled factors). We

use the Huber M-estimator with free parameter set to 0.005.

The correspondence term. Recall that the set St holds

putative correspondences between Ω and image t ∈ [2, N ].

We denote this by St = {(uj ,qj)}
s(t)
j=1, where uj denotes

the correspondence position in Ω and qj denotes the cor-

responding position in image t. The number of correspon-

dences are denoted by s(t) which varies in general between

images. The term robustly encourages each point uj to

transform to its corresponding point pj , and is given by:

Ccorresp(Vt;St) ,
∑

(uj ,pj)∈St

ρ (‖πt ◦ f(uj ;Vt)− qj‖) .

(3)

The boundary contour term. This constraint works for

surfaces with disc topology. It encourages the surface’s

boundary contour to lie close to image edges, and was

shown to significantly help register surfaces with weak tex-

ture [17, 24]. We discretize the boundary of Ω to obtain

a set of boundary pixels B , {uk∈[1,B]}. We then com-

pute a ‘boundariness map’ for each image Et : R2 → R
+

where high values of Et(p) correspond to a high likelihood

of pixel p being on the boundary contour. The term is eval-

uated as:

Cbound(Vt;Et) ,
1

|B|

∑

uk∈B

ρ (Et(πt ◦ f(uk;Vt)) . (4)

We found that Et cannot be built naively using for instance

an edge response filter, because of many false positives, par-

ticularly with background clutter and strong object texture.

Instead we build it using an edge response filter that is mod-

ulated to suppress false positives according to one or more

segmentation cues. The right cue depends on the particular

dataset, for example if the background is constant over the

image set, or if the object has a distinct color distribution to

the background. We give the exact formula for computing

Et for each tested dataset in the supplementary material.

The smoothing term. The quasi-isometry term penal-

izes within-plane stretching or shearing but not curva-

ture change. Thus it is insufficient to use as a regu-

larizer for mitigating noise. We deal with this using a

discontinuity-preserving smoother which automatically de-

activates smoothing where needed at creased regions. This
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is based on [17] where it was used in the SfT problem:

Csmooth(Vt) ,
1

|Ω|

∑

uj∈Ω

ρ

(

∂2f

∂u2
(uj ;Vt)

)

. (5)

The quasi-isometry term. We enforce quasi-isometry

using mesh edge-length constancy. Specifically, we mea-

sure constancy with respect to the mesh edges in the refer-

ence image. This is defined as follows:

Ciso(V1,Vt) ,
1

|E|

∑

(i,j)∈E

(

1− ‖vi
1 − v

j
1‖

−2
2 ‖vi

t − v
j
t‖

2
2

)2

.

(6)

This penalizes a change in edge length relative to the refer-

ence mesh, and unlike many other ways to impose isometry,

is invariant to a global scaling of the reconstruction.

3.4. Optimization strategy

Overview. Optimizing equation (1) is a non-trivial task

because it is large-scale (typically O(105) unknowns), is

highly non-convex, and the shading term requires dense,

pixel-level registration. Recall that we do not assume the

images come from an uninterrupted video sequences, which

makes dense registration much harder to achieve. Our strat-

egy is to first achieve a rough initial estimate for the shape

terms (D,V2, . . .VN ) (and hence an initial estimate for reg-

istration) using only motion constraints from the point cor-

respondences. We then introduce the contour boundary

constraints and refine these estimates by optimizing equa-

tion (1) using iterative numerical minimization. Next we

estimate albedos by fixing the shape terms, and finally op-

timize equation (1) over all unknowns using all informa-

tion (point correspondences, boundary contours and shad-

ing) using iterative numerical minimization. We propose

this strategy because point correspondences can be used to

provide a rough, smooth solution to non-rigid shape with-

out requiring an initial estimate. By contrast we find that

boundary contour and shading terms require a good ini-

tialization to prevent incorrect convergence in a local mini-

mum. Concretely, our optimization strategy is divided into

4 stages which we now describe in detail.

Stage 1: Correspondence-based template initialization.

We take the point correspondences {St} between the ref-

erence image and the other images and input them to an

existing surface-based, initialization-free NRSfM method.

The method we currently used is [7] which has publicly

available code. This provides us with a rough estimate of

the reference image’s vertex depths D. Note that all ex-

isting initialization-free surface-based methods assume the

object’s surface is smooth in all views, thus the initial esti-

mate will not normally be highly accurate.

Stage 2: Motion and contour-based Shape-from-

Template. We back-project the mesh vertices in the refer-

ence view using their initial depth estimates D. This gives

a rough estimate of the object’s 3D shape in a reference po-

sition (corresponding to the reference image). We then use

this mesh as an object template, and call an existing SfT

method to initialize, for each image, the vertex positions Vt

using the correspondence set St. The current method we use

is [17]. We then optimize equation (1) without shading by

setting λshade = 0, over the shape unknowns {V2, . . .VN}
with D kept fixed. This can be done efficiently because

the unknowns are now decoupled between images, so each

Vt can be minimized independently. Finally we optimize

equation (1) over all shape unknowns {V2, . . .VN} with

λshade = 0. To achieve good convergence we compute the

boundary distance map (equation (4)) with an image pyra-

mid, using 3 levels with one octave per level.

Stage 3: Albedo initialization. We now use our cur-

rent shape estimates to infer albedos using the shading

term. For this we segment the reference image into lo-

cal superpixel-like clusters, where within each cluster we

assume the albedo is constant. Such segmentation will

never be perfect, so to handle this we aim for an overseg-

mentation, where neighboring segments can share the same

albedo but within the same segment we want the albedo

to be constant. We achieve this by performing an intrin-

sic images decomposition [4] on the reference view’s in-

tensity image and cluster the resulting ‘reflectance image’

using [16] with a low cluster tolerance (we use a default of

10). For each cluster k, we assign a corresponding albedo

αk. This is done by taking each pixel uj in the clus-

ter, estimating its albedo by inverting the shading equation:

α ≈ Lt (πt ◦ f(u;Vt)) r (n(u;Vt); l)
−1

. We then initial-

ize αk as the median over all estimates within the cluster.

Stage 4: Full refinement. We refine our estimates by

minimizing equation (1) using all terms and over all un-

knowns, which is achieved with Gauss-Newton iterative op-

timization and backtracking line-search. Because of the

very large number of unknowns, at each iteration we solve

the normal equations using an iterative solver (diagonally-

preconditioned conjugate gradient), with a default iteration

limit of 200. Recall that there is a scale ambiguity (as in

all NRSfM problems), because we cannot differentiate a

smaller surface viewed close to the camera from a large sur-

face viewed far away. We fix the scale ambiguity by scaling

all vertices to have a mean depth of 1 after each iteration.

To achieve good convergence we blur each Lt with a Gaus-

sian blur pyramid, with a default of three octaves. For the

first two pyramid levels we run Gauss-Newton until either

convergence is reached or a fixed number of iterations have

passed (we use 20 iterations). For the final pyramid level
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we run it until convergence. Processing time is typically

several minutes for small-sized image sets (<10 images),

with a sub-optimal Matlab implementation on the CPU.

4. Experimental Validation

4.1. Overview

We divide the experimental validation into two parts. In

the first part we analyze the convergence basin of our en-

ergy function through perturbation analysis. This is to un-

derstand both how sensitive our formulation is to the initial

solution, and fundamentally, whether NRSfMS can be cast

as an energy-based minimization with a strong local mini-

mum near the true solution. In the second part we compare

performance to state-of-the-art NRSfM methods. Our eval-

uation has been performed using public datasets and a new

dataset, all with ground truth.

4.2. Method Comparison and Accuracy Metrics

We compare with the following competitive NRSfM

methods [30, 32, 29, 33, 7, 9, 26], denoted respectively with

EM08, PP09, LRG10, SI12, IP14, MDH16 and LT16.

EM08, LRG10, SI12 and MDH16 are methods which re-

construct only point correspondences, whereas PP09, IP14

and LT16 are methods which reconstruct dense surfaces.

To see the contribution of some terms of (1), we compare

with two versions of our method, NoS, where shading is not

used, and NoB, where the boundary constraint is not used in

stages 2 and 4. We have evaluated on 4 datasets (three pub-

lic and one new). Each dataset consists of a disc-topology

surface in 5 different deformed states, with one state per

image. We show these in figure 3. From top down we have

‘floral paper’ from [18], ‘paper fortune teller’ from [18],

‘creased paper’ (new) and ‘Kinect paper’ from [31]. ‘Kinect

paper’ is a video dataset and has no accompanying illumi-

nation parameters and no camera response function. We ap-

proximated camera response with a constant linear model,

and estimated the illumination parameters using the im-

age data and the accompanying depthmaps. This was per-

formed by selecting in a small rectangular region on the

surface with both constant albedo and non-saturated pixels,

then measuring the average pixel intensity within the region

and fitting a local plane to the region using the depthmap.

This was repeated using 30 images in the sequence, and we

then estimated the spherical harmonics illumination vec-

tor by inverting the Lambertian shading model using lin-

ear least squares. The 5 images we used for evaluation

were uniformly sampled from the video. We followed the

same procedure as described in [18] to make the ‘creased

paper’ dataset, with sub-millimetre accuracy depth-maps

computed by a structured light system [12]. Images were

captured with standard PointGrey RGB camera [27] with a

linear camera response. Each dataset has a set of point cor-

respondences between the first and all other images. As the

three first datasets are poorly-textured, the correspondences

are sparse. We plot them in each input image in figure 3. For

‘creased paper’, the texture is repetitive and wide-baseline

feature matches fail, so we found them manually at approx-

imately 20 corner locations. We note that manual corre-

spondences are commonly used to evaluate NRSfM meth-

ods. The tuning-parameters of all methods were manually

adjusted to obtain the most visually pleasing results.

We measure accuracy by comparing 3D distances with

respect to ground truth. Because reconstruction is up to

scale, we compute for each method the best-fitting scale

factor that aligns the predicted point correspondences with

their true locations in the L2 sense, then measure accuracy

with the scale-corrected reconstruction. This was done at

three locations: (i) at point correspondences, (ii) densely

across the ground truth surface, and (iii) densely at ‘creased

regions’, which are any points on the ground truth surfaces

that are within 5mm of a surface crease. Note that a dense

ground truth registration is not available on the datasets,

however we do have ground truth registration at the true

point correspondences. Thus we measure (i) by comparing

predicted surface normals and 3D positions at each corre-

spondence with the ground truth values. For (ii) and (iii) we

compare normals and 3D positions for each ground truth

surface point with the nearest reconstructed surface point.

For methods which only reconstruct the correspondences,

we can only measure the 3D point correspondence error.

4.3. Quantitative and Qualitative Results

We show in figure 3 the test datasets and a reconstruction

of one of the images per dataset from our method and the

best performing previous method (the one with lowest Root

Mean Squared Error (RMSE) with respect to (ii) above).

Visually we can see that considerable surface detail is ac-

curately reconstructed by our method as well as the global

shape.

In figure 2 we give the RMSE across all test datasets

and all compared methods. The first row gives from left

to right the distance RMSE at point correspondences (i),

over the whole GT surfaces (ii) and over creased regions

in the GT surfaces (ii). The second row gives the respec-

tive surface normal RMSEs. ‘Kinect paper’ has no creases

and the deformation is very smooth in all images. We ob-

serve that, for all datasets other than ‘Kinect paper’, there is

a good improvement with respect to all error metrics com-

pared to the other methods. This is strongest in the second

and third columns, which show our method successfully

exploits shading information in textureless and creased re-

gions. For ‘Kinect paper’ we see that our method does not

obtain the highest accuracy across all error metrics. The rea-

son is that it is a very smooth, densely textured surface, and

shading is not needed to achieve an accurate reconstruction.
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Figure 1. Numerical results of the convergence basin analysis.

Figure 2. Reconstruction accuracy statistics across all test datasets and all compared methods. We recall that EM08, LRG10, SI12 and

MDH16 reconstruct only point correspondences, whereas PP09, IP14 and LT16 reconstruct dense surfaces. Also, the ‘Kinect paper’

dataset does not present any crease.

However, our method still obtain competitive results on this

dataset. We observe that the use of shading improves glob-

ally the shape of the reconstructions and that the boundary

constraint allows a better use of shading.

4.4. Convergence Basin Analysis

We performed perturbation analysis as follows. We

started with an initial reconstruction close to the ground

truth, then applied a low-pass filter (to smooth out creases,

because we do not expect these to be present in the initial

solution), then randomly perturbed the vertex positions us-

ing smooth deformation functions. For each perturbation

we optimized equation (1) by performing stages 3 and 4 in

§3.4. The initial reconstruction was carefully done by hand,

using the ground truth surfaces, point correspondences, and

a quasi-isometric nonrigid ICP registration. The perturba-

tions were designed to globally deform the initial solutions,

which is more realistic than a local perturbation of each ver-

tex. This was implemented using a 4 × 4 × 4 b-spline en-

closing the reconstructed surfaces and randomly perturbing

the spline’s control points at 7 different noise levels, with

30 random perturbations per noise level. We report results

as box-plots for the ‘floral paper’, ‘paper fortune teller’ and

‘creased paper’ datasets in figure 1. The x axis gives the

average perturbation in mm for each noise level from the

initial solution. The y axis gives the dense surface RMSE

as defined in for each random sample. For small noise lev-

els (< 5%), the box-plots are very similar, which tells us

our energy landscape has a strong local minimum close to

the ground truth, which supports our claim that NRSfMS

can be cast as an energy-based minimization (via equa-

tion (1)), with a strong local minimum near the true solu-

tion. For larger noise levels (> 5%) we can see a significant

increase in error, indicating that the optimization now be-

comes trapped more frequently in local minima.

4.5. Failures Modes

The main failure mode is if a good initial solution can-

not be obtained after stages 1 and 2. Typically this oc-

curs if there are very few, poorly-distributed point corre-

spondences. In these cases it is difficult to initialize dense

shape with any current NRSfM method. For unorganized
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Figure 3. The four real-world test datasets and results visualizations. Here we show the images from each dataset, and sample reconstruc-

tions from one of the images using our method and the best performing NRSfM method. Under each reconstruction, we give the 3D RMS

and mean 3D normal errors over the whole surface mesh. In each input image, we show the correspondences with an orange cross sign.

image sets this is a difficult problem to overcome. For

video sequences, dense point correspondences can usually

be obtained by exploiting temporal continuity and dense

frame-to-frame tracking [19]. Another failure mode is

the presence of some false positive creases. They may

be caused by the robust estimator applied in the shading

term. Such artefacts can be reduced by interleaving inten-

sity edge/shape-edge aware filtering with the optimization

framework, which we let for future works.

5. Conclusion

We have studied the problem of NRSfMS with unknown,

spatially varying albedos. This is a hard and important vi-

sion problem, needed for high-accuracy dense reconstruc-

tion of weakly-textured surfaces undergoing non-smooth

deformation from 2D images. We have proposed an energy-

based solution and a cascaded numerical optimization strat-

egy, and have demonstrated encouraging results on four

real-world datasets, for which all competitive NRSfM meth-

ods fail. This marks the first time that strongly creased,

deformable, low-textured surfaces with unknown albedos

have been densely reconstructed and registered from 2D im-

age sets without a 3D template. Our work is the basis for

many future directions, including handling non-smooth ref-

erence views and unknown light, modeling occlusions and

shadows, developing an incremental version to handle large

image sets, and a theoretical study of well-posedness.
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