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Abstract

This paper focuses on temporal localization of actions

in untrimmed videos. Existing methods typically train clas-

sifiers for a pre-defined list of actions and apply them in

a sliding window fashion. However, activities in the wild

consist of a wide combination of actors, actions and ob-

jects; it is difficult to design a proper activity list that meets

users’ needs. We propose to localize activities by natural

language queries. Temporal Activity Localization via Lan-

guage (TALL) is challenging as it requires: (1) suitable de-

sign of text and video representations to allow cross-modal

matching of actions and language queries; (2) ability to lo-

cate actions accurately given features from sliding windows

of limited granularity. We propose a novel Cross-modal

Temporal Regression Localizer (CTRL) to jointly model text

query and video clips, output alignment scores and action

boundary regression results for candidate clips. For evalu-

ation, we adopt TaCoS dataset, and build a new dataset for

this task on top of Charades by adding sentence temporal

annotations, called Charades-STA. We also build complex

sentence queries in Charades-STA for test. Experimental

results show that CTRL outperforms previous methods sig-

nificantly on both datasets.

1. Introduction

Activities in the wild consist of a diverse combination

of actors, actions and objects over various periods of time.

Earlier work focused on classification of video clips that

contained a single activity, i.e. where the videos were

trimmed. Recently, there has also been significant work in

localizing activities in longer, untrimmed videos [30, 15].

One major limitation of existing action localization meth-

ods is that they are restricted to pre-defined list of actions.

Although the lists of activities can be relatively large [2],

they still face difficulty in covering complex activity ques-

tions, for example, “A person runs to the window and then

look out.” , as shown in Figure 1. Hence, it is desirable to

use natural language queries to localize activities. Use of

natural language not only allows for an open set of activi-

9.3 s 14.4 s

Language Query:
A person runs to the window and then look out

Figure 1. Temporal activity localization via language query in an

untrimmed video.

ties but also natural specification of additional constraints,

including objects and their properties as well as relations

between the involved entities. We propose the task of Tem-

poral Activity Localization via Language (TALL): given a

temporally untrimmed video and a natural language query,

the goal is to determine the start and end times for the de-

scribed activity inside the video.

For traditional temporal action localization, most current

approaches [30, 15, 26, 34, 35] apply activity classifiers

trained with optical flow-based methods [33, 28] or Con-

volutional Neural Networks (CNNs) [29, 32] in a sliding

window fashion. A direct extension to support natural lan-

guage query is to map the queries into a discrete label space.

However, it is non-trivial to design a label space which has

enough coverage for such activities without losing useful

details in users’ queries.

To go beyond discrete activity labels, one possible solu-

tion is to embed visual features and sentence features into

a common space [10, 13, 18]. However, for temporal lo-

calization of activities, it is unclear what a proper visual

model to extract visual features for retrieval is, and how

to achieve high precision of predicted start/end time. Al-

though one could densely sample sliding windows at dif-

ferent scales, doing so is not only computationally expen-

sive but also makes the alignment task more challenging,

as the search space increases. An alternative to dense sam-

pling is to adjust the temporal boundaries of proposals by

learning regression parameters; such an approach has been

successful for object localization, as in [23]. However, tem-
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poral regression has not been attempted in the past work

and is more difficult as the activities are characterized by

a spatio-temporal volume, which may lead to more back-

ground noise.

These challenges motivate us to propose a novel Cross-

modal Temporal Regression Localizer (CTRL) model to

jointly model text query, video clip candidates and their

temporal context information to solve the TALL task.

CTRL generates alignment scores along with location re-

gression results for candidate clips. It utilizes a CNN model

to extract visual features of the clips and a Long Short-

term Memory (LSTM) network to extract sentence embed-

dings. A cross-modal processing module is designed to

jointly model the text and visual features, which calculates

element-wise addition, multiplication and direct concatena-

tion. Finally, multilayer networks are trained for visual-

semantic alignment and clip location regression. We design

the non-parameterized and parameterized location offsets

for temporal coordinate regression. In parameterized set-

ting, the length and the central coordinate of the clip is first

parameterized by the ground truth length and coordinate.

In non-parameterized setting, the start and end coordinates

are used directly. We show that the non-parameterized one

works better, unlike the case for object boundary regression.

To facilitate research of TALL, we also generate sen-

tence temporal annotations for Charades [27] dataset.

We name it Charades-STA.We evaluate our methods on

TACoS and Charades-STA datasets by the metric of “R@n,

IoU=m”, which represents the percentage of at least one of

the top-n results ( start and end pairs ) having IoU with the

ground truth larger than m. Experimental results demon-

strate the effectiveness of our proposed CTRL framework.

In summary, our contributions are two-fold:

(1) We propose a novel problem formulation of Temporal

Activity Localization via natural Language (TALL) query.

(2) We introduce an effective Cross-modal Temporal

Regression Localizer (CTRL) which estimates alignment

scores and temporal action boundary by jointly modeling

language query and video clips.1

2. Related Work

Action classification and temporal localization. There

have been tremendous explorations about action classifica-

tion in videos using deep convolutional neural networks

(ConvNets). Representative methods include two-stream

ConvNets, C3D (3D ConvNets) and 2D ConvNets with

temporal LSTM or mean pooling. Specifically, Simonyan

and Zisserman [28] modeled the appearance and motion

information in two separate ConvNets and combined the

scores by late fusion. Tran et al. [32] used 3D convolu-

tional filters to capture motion information in neighboring

1Source codes are available in https://github.com/jiyanggao/TALL .

frames. [36] [10] proposed to use 2D ConvNets to extract

deep features for one frame and use temporal mean pooling

or LSTM to model temporal information.

For temporal action localization task, Shou et al. [26]

trained C3D [32] with localization loss and achieved state-

of-the-art performance on THUMOS 14. Ma et al. [15]

used a temporal LSTM to generate frame-wise prediction

scores and then merged the detection intervals based on

the predictions. Singh et al. [30] extended two-stream

[28] framework with person detection and bi-directional

LSTMs and achieved state-of-the-art performance on MPII-

Cooking dataset [24]. Gao et al. [5] proposed to use tempo-

ral coordinate regression to refine action boundary for tem-

poral localization.

Sentence-based image/video retrieval. Given a set of

candidate videos/images and a sentence query, this task re-

quires retrieving the videos/images that match the query.

Karpathy et al. [9] proposed Deep Visual-Semantic Align-

ment (DVSA) model. DVSA used bidirectional LSTMs to

encode sentence embeddings, and R-CNN object detectors

[7] to extract features from object proposals. Skip-thought

[13] learned a Sent2Vec model by applying skip-gram [19]

on sentence level and achieved top performance in sentence-

based image retrieval task. Sun et al. [31] proposed to dis-

cover visual concepts from image-sentence pairs and apply

the concept detectors for image retrieval. Gao et al. [4]

proposed to learn verb-object pairs as action concepts from

image-sentence pairs. Hu et al. [8] and Mao et al. [17]

formulated the problem of natural language object retrieval.

As for video retrieval, Lin et al. [14] parsed the sen-

tence descriptions into a semantic graph, which are then

matched to visual concepts in the videos by generalized bi-

partite matching. Bojanowski et al. [1] tackled the problem

of video-text alignment: given a video and a set of sentences

with temporal ordering, assigning a temporal interval for

each sentence. In our settings, only one sentence query is

input to the system and temporal ordering is not used.

Object detection. Our work is partly inspired by the

success of recent object detection approaches. R-CNN [7]

consists of selective search, CNN feature extraction, SVM

classification and bounding box regression. Fast-RCNN [6]

designs RoI pooling layer and the model could be trained

by end-to-end framework. One of the key element shared

in those successful object detection frameworks [21, 23, 6]

is the bounding box regression layer. We show that, un-

like object boundary regression using parameterized offsets,

non-parameterized offsets work better for action boundary

regression.

3. Methods

In this section, we describe our Cross-modal Temporal

Regression Localizer (CTRL) for Temporal Activity Local-

ization via Language (TALL) and training procedure in de-
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Figure 2. Cross-modal Temporal Regression Localizer (CTRL) architecture. CTRL contains four modules: a visual encoder to extract

features for video clips, a sentence encoder to extract embeddings, a multi-modal processing network to generate combined representations

for visual and text domain, and a temporal regression network to produce alignment scores and location offsets.

tail. CTRL contains four modules: a visual encoder to ex-

tract features for video clips, a sentence encoder to extract

embeddings, a multi-modal processing network to generate

combined representations for visual and text domain, and

a temporal regression network to produce alignment scores

and location offsets between the input sentence query and

video clips.

3.1. Problem Formulation

We denote a video as V = {ft}
T
t=1, T is the frame num-

ber of the video. Each video is associated with temporal

sentence annotations: A = {(sj , τ
s
j , τ

e
j )}

M
j=1, M is the sen-

tence annotation number of the video V , sj is a natural lan-

guage sentence of a video clip, which has τ sj and τej as start

and end time in the video. The training data are the sen-

tence and video clip pairs. The task is to predict one or more

(τ sj , τ
e
j ) for the input natural language sentence query.

3.2. CTRL Architecture

Visual Encoder. For a long untrimmed video V , we gen-

erate a set of video clips C = {(ci, t
s
i , t

e
i )}

H
i=1 by temporal

sliding windows, where H is the total number of the clips

of the video V , tsi and tei are the start and end time of video

clip ci. We define visual encoder as a function Fve(ci) that

maps a certain clip ci and its context to a feature vector fv ,

whose dimension is ds. Inside the visual encoder, a fea-

ture extractor Ev is used to extract clip-level feature vec-

tors, whose input is nf frames and output is a vector with

dimension dv . For one video clip ci, we consider itself (as

the central clip) and its surrounding clips (as context clips)

ci,q, q ∈ [−n, n], j is the clip shift, n is the shift boundary.

We uniformly sample nf frames from each clip (central and

context clips). The feature vector of central clip is denoted

as f ctl
v . For the context clips, we use a pooling layer to cal-

culate a pre-context feature fpre
v = 1

n

∑−1
q=−n Ev(ci,q) and

post-context feature fpost
v = 1

n

∑n
q=1 Ev(ci,q). Pre-context

feature and post-context feature are pooled separately, as

the end and the start of an activity can be quite different and

both could be critical for temporal localization. fpre
v , f ctl

v

and fpost
v are concatenated and then linearly transformed to

the feature vector fv with dimension ds, as the visual repre-

sentation for clip ci.

Sentence Encoder. A sentence encoder is a function

Fse(sj) that maps a sentence description sj to a embedding

space, whose dimension is ds( the same as visual feature

space ). Specifically, a sentence embedding extractor Es is

used to extract a sentence-level embedding f ′
s and is fol-

lowed by a linear transformation layer, which maps f ′
s to

fs with dimension ds, the same as visual representation fv .

We experiment two kinds of sentence embedding extractors,

one is a LSTM network which takes a word as input at each

step, and the hidden state of final step is used as sentence-

level embedding; the other is an off-the-shelf sentence en-

coder, Skip-thought [13]. More details would be discussed

in Section 4.

Multi-modal Processing Module. The inputs of the

multi-modal processing module are a visual representation

fv and a sentence embedding fs, which have the same di-

mension ds. We use vector element-wise addition (+), vec-

tor element-wise multiplication (×) and vector concatena-

tion (‖) followed by a Fully Connected (FC) layer to com-

bine the information from both modalities. Addition and

5269



multiplication operation allow additive and multiplicative

interaction between two modalities and don’t change the

feature dimension. The FC layer allows interaction among

all elements. The input dimension of the FC layer is 2 ∗ ds
and the output dimension is ds. The outputs from all three

operations are concatenated to construct a multi-modal rep-

resentation fsv = (fs × fv) ‖ (fs + fv) ‖ FC(fs ‖ fv),
which is the input for our core module, temporal localiza-

tion regression networks.

Temporal Localization Regression Networks. Tempo-

ral localization regression network takes the multi-modal

representation fsv as input, and has two sibling output lay-

ers. The first one outputs an alignment score csi,j between

the sentence sj and the video clip ci. The second one out-

puts clip location regression offsets. We design two location

offsets, the first one is parameterized offset: t = (tc, tl),
where tc and tl are parameterized central point offset and

length offset respectively. The parameterization is as fol-

lows:

tp = (p− pc)/lc, tl = log(l/lc) (1)

where p and l denote the clip’s center coordinate and clip

length respectively. Variables p, pc are for predicted clip

and test clip (like wise for l). The second offset is non-

parameterized offset: t = (ts, te), where ts and te are the

start and end point offsets.

ts = s− sc, te = e− ec (2)

where s and e denote the clip’s start and end coordinate re-

spectively. Temporal coordinate regression can be thought

as clip location regression from a test clip to a nearby

ground-truth clip, as the original clip could be either too

tight or too loose, the regression process tend to find better

locations.

3.3. CTRL Training

Multi-task Loss Function. CTRL contains two sibling

output layers, one for alignment and the other for regres-

sion. We design a multi-task loss L on a mini-batch of

training samples to jointly train for visual-semantic align-

ment and clip location regression.

L = Laln + αLreg (3)

where Laln is for visual-semantic alignment and Lreg is for

clip location regression, and α is a hyper-parameter, which

controls the balance between the two task losses. The align-

ment loss encourages aligned clip-sentence pairs to have

positive scores and misaligned pairs to have negative scores.

Laln =
1

N

N∑

i=0

[αclog(1 + exp(−csi,i))+

N∑

j=0,j 6=i

αwlog(1 + exp(csi,j))] (4)

clip c

�" �#

Intersection

Union

Non Intersection

Length

Figure 3. Intersection over Union (IoU) and non-Intersection over

Length (nIoL).

where N is the batch size, csi,j is the alignment score be-

tween sentence sj and video clip ci, αc and αw are the hy-

per parameters which control the weights between positive

( aligned ) and negative ( misaligned ) clip-sentence pairs.

The regression loss Lreg is calculated for the aligned

clip-sentence pairs. A sentence sj annotation contains start

and end time (τ sj , τ
e
j ). The aligned sliding window clip ci

has (tsi , t
e
i ). The ground truth offsets t∗ are calculated from

start and end times.

Lreg =
1

N

N∑

i=0

[R(t∗x,i − tx,i) +R(t∗y,i − ty,i)] (5)

where x and y indicate p and l for parameterized offsets, or

s and e for non-parameterized offsets. R(t) is smooth L1

function.

Sampling Training Examples. To collect training sam-

ples, we use multi-scale temporal sliding windows with

[64, 128, 256, 512] frames and 80% overlap. (Note that,

at test time, we only use coarsely sampled clips.) We

use the following strategy to collect training samples T =
{[(sh, τ

s
h, τ

e
h), (ch, t

s
h, t

e
h)]}

NT

h=0. Each training sample con-

tains a sentence description (sh, τ
s
h, τ

e
h) and a video clip

(ch, t
s
h, t

e
h). For a sliding window clip c from C with tem-

poral annotation (ts, te) and a sentence description s with

temporal annotation (τ s, τe), we align them as a pair of

training samples if they satisfy (1) Intersection over Union

(IoU) is larger than 0.5; (2) non Intersection over Length

(nIoL) is smaller than 0.2 and (3) one sliding window clip

can be aligned with only one sentence description. The rea-

son we use nIoL is that we want the the most part of the

sliding window clip to overlap with the assigned sentence,

and simply increasing IoU threshold would harm regression

layers ( regression aims to move the clip from low IoU to

high IoU). As shown in Figure 3, although the IoU between

c and s1 is about 0.5, if we assign c to s1, then it will disturb

the model ,because c contains information of s2.

4. Evaluation

In this section, we describe the evaluation settings and

discuss the experiment results
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4.1. Datasets

TACoS [22]. This dataset was built on the top of MPII-

Compositive dataset [25] and contains 127 videos. Every

video is associated with two type of annotations. The first

one is fine-grained activity labels with temporal location

(start and end time). The second set of annotations is natural

language descriptions with temporal locations. The natu-

ral language descriptions were obtained by crowd-sourcing

annotators, who were asked to describe the content of the

video clips by sentences. In total, there are 17344 pairs of

sentence and video clips. We split it in 50% for training,

25% for validation and 25% for test.

Charades-STA. Charades [27] contains around 10k

videos and each video contains temporal activity annota-

tion (from 157 activity categories) and multiple video-level

descriptions. TALL needs clip-level sentence annotation:

sentence descriptions with start and end time, which are

not provided in the original Charades dataset. We noticed

that the names of activity categories in Charades are parsed

from the video-level descriptions, so many of activity names

appear in descriptions. Another observation we make is

that most descriptions in Charades share a similar syntac-

tic structure: consisting of multiple sub-sentences, which

are connected by comma, period and conjunctions, such as

“then”, “while”, “after”, “and”. For example, “A person is

sitting down by the door. They stand up and start carefully

leaving some dishes in the sink”.

Based on these observations, we designed a semi-

automatic way to generate sentence temporal annotation.

The first step is sentence decomposition: a long sentence

is split to sub-sentences by a set of conjunctions (which are

collected by hand ), and for each sub-sentence, the subject (

parsed by Stanford CoreNLP [16] ) of the original long sen-

tence is added to start. The second step is keyword match-

ing: we extract keywords for each activity categories and

match them to sub-sentences, if they are matched, the tem-

poral annotation (start and end time) are assigned to the sub-

sentences. The third step is a human check: for each pair

of sub-sentence and temporal annotation, we (two of the

co-authors) checked whether the sentence made sense and

whether they matched the activity annotation. An example

is shown in Figure 4.

Although TACoS and Charades-STA are challenging,

their lengths of queries are limited to single sentences.

To explore the potential of CTRL framework on handling

longer and more complex sentences, we build a complex

sentence set. Inside each video, we connect consecutive

sub-sentences to make complex query, each complex query

contains at least two sub-sentences, and is checked to make

sure that the time span is less than half of the video length.

We use them for test purpose only. In total, there are 13898

clip-sentence pairs in Charades-STA training set, 4233 clip-

sentence pairs in test set and 1378 complex sentence quires.

Sit Stand Up

Video

Activity Annotation

Sentence

Sub­sentences

decomposition Sub Sub

keyword matching

A person is sitting down by the 
door. They stand up and start 

carefully leaving some dishes in 

the sink.

Sub 0:A person is sitting down by the door. 
Sub 1: They stand up.

Sub 2: They start carefully leaving some 

dishes in the sink

[2.4, 4.2]: Stand up

[1.3, 2.4]: Sit

Sentence

Activity Annotation STA

Sub­Sentences

[1.3, 2.4]: A person is sitting 

down by the door

[2.4, 4.2]: They stand up.

Figure 4. Charades-STA construction.

On average, there are 6.3 words per non-complex sentence,

and 12.4 words per complex sentence.

4.2. Experiment Settings

We will introduce evaluation metric, baseline methods

and our system variants in this part.

4.2.1 Evaluation Metric

We adopted a similar metric used by [8] to compute “R@n,

IoU=m”, which means that the percentage of at least one

of the top-n results having Intersection over Union (IoU)

larger than m. This metric itself is on sentence level, so

the overall performance is the average among all the sen-

tences. R(n,m) = 1
N

∑N
i=1 r(n,m, si), where r(n,m, si)

is the recall for a query si, N is total number of queries and

R(n,m) is the averaged overall performance.

4.2.2 Baseline Methods

We consider two sentence based image/video retrieval

baseline methods: visual-semantic alignment with LSTM

(VSA-RNN ) [9] and visual-semantic alignment with Skip-

thought vector (VSA-STV) [13]. For these two baseline

methods, we use the same training samples and test sliding

windows as those for CTRL.

VSA-RNN. This baseline method is similar to the model

in DVSA [9]. We use a regular LSTM instead of BRNN

to encode the input description. The size of hidden state

of LSTM is 1024 and the output size is 1000. Video

clips are processed by a C3D network that is pre-trained

on Sports1M [10]. The 4096 dimensional fc6 vector is

extracted and linearly transformed to 1000 dimensional,

which is used as the clip-level feature. Cosine similarity

is used to calculate the confidence score between the clip

and the sentence. Hinge loss is used to train the model.
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At test time, we compute the alignment score between in-

put sentence query and all the sliding windows in the video.

VSA-STV: Instead of using RNN to extract sentence em-

bedding, we use an off-the-shelf Skip-thought [13] sentence

embedding extractor. A skip-thought vector is 4800 dimen-

sional, we linearly transform it to 1000 dimensional. Visual

encoder is the same as for VSA-RNN.

Verb and Object Classifiers. We also implemented

baseline methods based on annotations of pre-defined ac-

tions and objects. TACoS dataset also contains pre-defined

actions and object annotations at clip-level. These ob-

jects and actions annotations are from the original MPII-

Compositive dataset [25]. 54 categories of actions and 81

categories of objects are involved in training set. We use

the same C3D feature as above to train action classifiers and

object classifiers. The classifier is based on a 2-layer fully

connected network, the size of first layer is 4094 and the

size of second layer is the number of categories. The test

sentences are parsed by Stanford CoreNLP [16], and verb-

object (VO) pairs are extracted using the sentence depen-

dencies. The VO pairs are matched with action and object

annotations based on string matching. The alignment score

between a sentence query and a clip is the score of matched

action and object classifier responses. Verb means that we

only use action classifier; Verb+Obj means that both action

classifiers and object classifiers are used.

4.2.3 System Variants

We experimented with variants of our system to test the ef-

fectiveness of our method. CTRL(aln): we don’t use re-

gression, train the CTRL with only alignment loss Laln.

CTRL(reg-p): train the CTRL with alignment loss Laln

and parameterized regression loss Lreg−p. CTRL(reg-np):

context information is considered and CTRL is trained with

alignment loss Laln and non-parameterized regression loss

Lreg−np. CTRL(loc): SCNN [26] proposed to use overlap

loss to improve activity localization performance. Based on

our pure alignment(without regression), we implemented a

similar loss function considering clip overlap as in SCNN.

Lloc =
∑n

i (0.5∗(
1/(1+e−csi,i )2

IoUi
−1)), where csi,i and IoUi

are respectively the alignment score and Intersection over

Union (IoU) between the aligned pairs of sentence and clip

in a mini-batch. The major difference is that SCNN solved a

classification problem, so they use Softmax score, however

in our case, we consider an alignment problem. The over-

all loss function is Lscnn = Laln + Lloc. For this method,

we use C3D as the visual encoder and Skip-thought as the

sentence encoder.

4.3. Experiments on TACoS

In this part, we discuss the experiment results on TACoS.

First we compare the performance of different visual en-
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Figure 5. Performance comparison of different visual encoders.

coders; second we compare two sentence embedding meth-

ods; third we compare the performance of CTRL variants

and baseline methods. The length of sliding windows for

test is 128 with overlap 0.8, multi-scale windows are not

used. We empirically set the context clip number n as 1 and

the length of context window as 128 frames. The dimension

of fv , fs and fsv are all set to 1000. We set batch size as

64, the networks are optimized by Adam [12] optimizer on

a Nvidia TITAN X GPU.

Comparison of visual features. We consider three clip-

level visual encoders: C3D [32], LRCN [3], VGG+Mean

Pooling [10]. Each of them takes a clip with 16 frames as

input and outputs a 1000-dimensional feature vector. For

C3D, fc6 feature vector is extracted and then linearly trans-

formed to 1000-dimension. For LRCN and VGG poolng,

we extract fc6 of VGG-16 for each frame. The LSTM’s

hidden state size is 256.We use Skip-thought as the sen-

tence embedding extractor and other parts of the model

are the same to CTRL(aln). There are three groups of

curves, which are Recall@10, Recall@5 and Recall@1 re-

spectively, shown in Figure. 5. We can see that C3D per-

forms generally better than other two methods. LRCN’s

performance is inferior, the reason maybe that the dataset is

relatively small, not enough to train the LSTM well.

Comparison of sentence embedding. For sentence

encoder, we consider two commonly used methods:

word2vec+LSTM [8] and Skip-thought [13]. In our imple-

mentation of word2vec, we train skip-gram model on En-

glish Dump of Wikipedia. The dimension of the word vec-

tor is 500 and the hidden state size of the LSTM is 512. For

Skip-thought vector, we linearly transform it from 4800-

dimension to 1000-dimension. We use C3D as the visual

feature extractor and other parts are the same to CTRL(aln).

From the results, we can see that the performance of Skip-

thought is generally better than word2vec+LSTM. We con-

jecture the reason is that the scale of TACoS is not large

enough to train the LSTM (comparing with the counterpart
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Figure 6. Performance comparison of different sentence embed-

ding.

datasets in object detection, like ReferIt [11], Flickr30k En-

tities [20], which contains over 100k sentences).

Comparison with other methods. We test our system

variants and baseline methods on TACoS and report the re-

sult for IoU ∈ {0.1, 0.3, 0.5} and Recall@{1, 5}. The

results are shown in Table 1. “Random” means that we

randomly select n windows from the test sliding windows

and evaluate Recall@n with IoU=m. All methods use the

same C3D features. VSA-RNN uses the end-to-end trained

LSTM as the sentence encoder and all other methods use

pre-trained Skip-thought as sentence embedding extractor.

We can see that visual retrieval baselines (i.e. VSA-

RNN, VSA-STV) lead to inferior performance, even com-

pared with our pure alignment model CTRL(aln). We be-

lieve the major reasons are two-fold: 1) the multilayer align-

ment network learns better alignment than the simple cosine

similarity model, which is trained by hinge loss function; 2)

visual retrieval models do not encode temporal context in-

formation in a video. Pre-defined classifiers also produce

inferior results. We think it is mainly because the pre-

defined actions and objects are not precise enough to rep-

resent sentence queries. By comparing Verb and Verb+Obj,

we can see that additional object (such as “knife”, “egg”)

information helps to represent sentence queries.

Temporal action boundary regression As described

before, we implemented a temporal localization loss func-

tion similar to the one in SCNN [26], which consider clip

overlap. Experiment results show that CTRL(loc) does

not bring much improvement over CTRL(aln), perhaps be-

cause CTRL(loc) still relies on clip selection from sliding

windows, which may not overlap with ground truth well.

CTRL(reg-np) outperforms CTRL(aln) and CTRL(loc) sig-

nificantly, showing the effectiveness of temporal regression

model. By comparing CTRL(reg-p) and CTRL(reg-np) in

Table 1, it can be seen that non-parameterized setting helps

the localizer regress the action boundary to a more accurate

location. We think the reason is that unlike objects can be

re-scaled in images due to camera projection, actions’ time

spans can not be easily rescaled in videos (we don’t consider

slow motion and quick motion). Thus, to do the boundary

regression effectively, the object bounding box coordinates

Table 1. Comparison of different methods on TACoS

Method
R@1

IoU=0.5

R@1

IoU=0.3

R@1

IoU=0.1

R@5

IoU=0.5

R@5

IoU=0.3

R@5

IoU=0.1

Random 0.83 1.81 3.28 3.57 7.03 15.09

Verb 1.62 2.62 6.71 3.72 6.36 11.87

Verb+Obj 8.25 11.24 14.69 16.46 21.50 26.60

VSA-RNN 4.78 6.91 8.84 9.10 13.90 19.05

VSA-STV 7.56 10.77 15.01 15.50 23.92 32.82

CTRL (aln) 10.67 16.53 22.29 19.44 29.09 41.05

CTRL (loc) 10.70 16.12 22.77 18.83 31.20 45.11

CTRL (reg-p) 11.85 17.59 23.71 23.05 33.19 47.51

CTRL (reg-np) 13.30 18.32 24.32 25.42 36.69 48.73

Table 2. Comparison of different methods on Charades-STA

Method
R@1

IoU=0.5

R@1

IoU=0.7

R@5

IoU=0.5

R@5

IoU=0.7

Random 8.51 3.03 37.12 14.06

VSA-RNN 10.50 4.32 48.43 20.21

VSA-STV 16.91 5.81 53.89 23.58

CTRL (aln) 18.77 6.53 54.29 23.74

CTRL (loc) 20.19 6.92 55.72 24.41

CTRL (reg-p) 22.27 8.46 57.83 26.61

CTRL (reg-np) 23.63 8.89 58.92 29.52

Table 3. Experiments of complex sentence query.

Method
R@1

IoU=0.5

R@1

IoU=0.7

R@5

IoU=0.5

R@5

IoU=0.7

Random 11.83 3.21 43.28 18.17

CTRL 24.09 8.03 69.89 32.28

CTRL+Fusion 25.82 8.32 69.94 32.81

should be first normalized to some standard scale, but for

actions, time itself is the standard scale.

Some prediction and regression results are shown in Fig-

ure 7. We can see that the alignment prediction gives

a coarse location, which is limited by the fixed window

length; the regression model helps to refine the clip’s bound-

ing box to a higher IoU location.

4.4. Experiments on Charades­STA

In this part, we evaluate CTRL models and baseline

methods on Charades-STA and report the results for IoU ∈
{0.5, 0.7} and Recall@{1, 5}, which are shown in Table 2.

The lengths of sliding windows for test are 128 and 256,

window’s overlap is 0.8. It can be seen that the results

are consistent with those in TACoS. CTRL(reg-np) shows

a significant improvement over CTRL(aln) and CTRL(loc).

The non-parameterized settings (CTRL(reg-np)) work con-

sistently better than the parameterized settings (CTRL(reg-

p)). Figure 8 shows some prediction and regression results.

We also test complex sentence query on Charades-STA.

As shown in Table. 3, “CTRL” means that we sim-

ply input the whole complex sentence into CTRL model.

“CTRL+fusion” means that we input each sentence of a

complex query separately into CTRL, and then do a late fu-

sion. Specifically, we compute the average alignment score
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ground truth

alignment prediction

regression refinement

16.0 s 21.9 s

16.7 s 20.9 s

16.0 s 22.3 s

Query: He gets a cutting board and knife.

Query: The person sets up two separate glasses on the counter.

18.0 s 25.3 s

21.4 s 26.0 s

19.2 s 25.7 s

ground truth

alignment prediction

regression refinement

Figure 7. Alignment prediction and regression refinement examples in TACoS. The row with gray background shows the ground truth for

the given query; the row with blue background shows the sliding window alignment results; the row with green background shows the clip

regression results.

ground truth

alignment prediction

regression refinement

Query:A person runs to the window and then look out

Complex Query:A person is walking around the room. She is eating something

ground truth 1.0 s 14.5 s

alignment prediction 5.1 s 9.4 s

regression refinement 2.1 s 12.9 s

9.3 s 14.4s

8.5s 12.8 s

10.2 s 14.2 s

regression refinement + fusion 1.7s 14.9 s

Figure 8. Alignment prediction and regression refinement examples in Charades-STA.

over all sentences, take the minimum of all start times and

maximum of all end times as start and end time of the com-

plex query. Although the random performance in Table. 3

(complex) is higher than that in Table 2 (single), the gain

over random performance remains similar, which indicates

that CTRL is able to handle complex query consisting mul-

tiple activities well. Comparing CTRL and CTRL+Fusion,

we can see that CTRL could be an effective first step for

complex query, if combined with other fusion methods.

In general, we observed two types of common hard

cases: (1) long query sentences increase chances of failure,

likely because the sentence embeddings are not discrimi-

native enough; (2) videos that contain similar activities but

with different objects (e.g. in TACOS dataset, put a cucum-

ber on chopping board, and put a knife on chopping board)

are hard to distinguish amongst each other.

5. Conclusion

We addressed the problem of Temporal Activity Local-

ization via Language (TALL) and proposed a novel Cross-

modal Temporal Regression Localizer (CTRL) model,

which uses temporal regression for activity location refine-

ment. We showed that non-parameterized offsets works

better than parameterized offsets for temporal boundary re-

gression. Experimental results show the effectiveness of our

method on TACoS and Charades-STA.
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