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Abstract

This paper introduces a probabilistic latent variable

model to address unsupervised domain adaptation problems.

Specifically, we tackle the task of categorization of visual

input from different domains by learning projections from

each domain to a latent (shared) space jointly with the clas-

sifier in the latent space, which simultaneously minimizes

the domain disparity while maximizing the classifier’s dis-

criminative power. Furthermore, the non-parametric nature

of our adaptation model makes it possible to infer the latent

space dimension automatically from data. We also develop

a novel regularized Variational Bayes (VB) algorithm for

efficient estimation of the model parameters. We compare

the proposed model with the state-of-the-art methods for the

tasks of visual domain adaptation using both handcrafted

and deep-net features. Our experiments show that even with

a simple softmax classifier, our model outperforms several

state-of-the-art methods that take advantage of more sophis-

ticated classification schemes.

1. Introduction

Traditional machine learning algorithms assume that the

training and test data are independent and identically dis-

tributed (i.i.d.), coming from the same underlying distribu-

tion [41]. However, in real-world data, this assumption rarely

holds due to a number of artifacts, such as different types of

noise, changes in object view, etc. This inevitably introduces

different types of biases in the observed data sampled during

the training and test stage.

Domain Adaptation (DA) approaches [11, 17, 31, 37, 2,

22, 26, 47] have been proposed to compensate for these ef-

fects. The goal of DA is to leverage the knowledge from

one domain to improve the model’s performance on another

domain. One way to reduce the adverse effects of the do-

main shift is to use an extensive set of labeled training data

(i.e., the source domain), hoping that these will eventually

Complex	

Feature	

Extractor

(e.g.,	DNN)

x ys

Complex	

Feature	

Extractor

(e.g.,	DNN)

x’y’ s’Ι Ι’

Domain	A	- supervised Domain	A’	- unsupervised

WΦ Φ’

Cross-domain	Adaptation

Amazon  Caltech 10 

Figure 1. The overview of the proposed PUnDA approach. We

jointly learn the mapping Φ and Φ′ linking the original domain

features x and x′ to the matched subspaces s and s′, automatically

inferring the subspace dimension, and the cross-domain classifier

W . Both domains use the same (pretrained) feature extractors (e.g.,

DNNs). Target domain A′ does not rely on labels. Details of the

model are specified in Fig. 2.

contain data from a distribution similar to that of the test

data (i.e., the target domain). The most representative ex-

amples of this are the recent trends in deep learning, which

have shown great improvements in the performance of super-

vised learning tasks due to the available substantial amount

of labeled data [30, 13, 20]. However, obtaining labels is

labor-intensive and expensive if one is to label training data

across all possible domains. More importantly, due to the

inherent bias within different datasets [43, 38], using a large

amount of (labeled) training data does not warrant a better

performance by these models. In this case, DA methods

are a good choice as they can smartly leverage the available

information across domains to correct for the domain shift,

reducing the need for large amount of labeled data, while

also correcting for differences in the distributions of the input

features (covariate shift).

Based on their learning assumptions, existing DA meth-

ods can be divided into two categories: (semi)supervised

DA [27, 9, 28, 45], and unsupervised DA [18, 16, 3, 13,

31, 32]. The former assumes that in addition to the labeled

data of the source domain, some labeled data from the target

domain are also available for training/adapting the classi-
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fiers. By contrast, the latter does not require any labels from

the target domain. While the labeled data should always

be used when available (as this allows for more effective

DA), there are many real-world applications where obtaining

the labels is impractical and/or infeasible. This calls for

unsupervised DA, the only feasible DA approach for many

real-world unsupervised problems. In this paper, we address

the unsupervised DA learning tasks for visual categories.

In most existing unsupervised DA methods, the first step

is to project the source and target data onto a common space

such that the source data is as close as possible to the tar-

get data in their distribution [18, 16, 3, 13, 31, 25, 34, 15].

Then, a classifier trained on the transformed source domain

is applied to the target data, hoping that it will perform

equally well across the domains as the domain mismatch

is minimized through the learned projections. Hence, these

methods have an underlying assumption that the shift in

the two distributions (termed covariate shift [40]) can be

reduced without relying on the labels from the target domain.

However, most of these methods suffer from at least one or

more of the following limitations that can adversely affect

their performance and/or constrain their applicability to the

target tasks. First, majority of existing methods are determin-

istic [18, 16, 3, 13, 31], relying on costly cross-validation

procedures to find the size of the underlying manifold in

which the mismatch between the source and target domains

can effectively be reduced — increasing the computational

complexity of the model and making it more prone to over-

fitting. Second, the minimization of the domain mismatch

and learning of the target classifiers are done independently

resulting in the joint feature space that is suboptimal for the

main task, i.e., classification.

To overcome the above-mentioned limitations, we intro-

duce a novel probabilistic framework that we call Probabilis-

tic Unsupervised Domain Adaptation (PUnDA). In contrast

to existing two-stage approaches where new feature spaces

and classifiers are separately learned, our approach learns

both the classifier and low dimensional subspace jointly via

a newly introduced Bayesian learning framework. Moreover,

the probabilistic nature of our PUnDA allows it to auto-

matically infer the dimensionality of the common subspace.

Since these benefits come with computational challenges

if not addressed properly, we introduce an efficient learn-

ing and inference method based on the variational Bayes

(VB) framework. Within this framework, we also propose

an extension of the Maximum Mean Discrepancy (MMD)

score [6], traditionally used to measure the domain mismatch,

with the aim to align the source and target domains via es-

timated (variational) posteriors - thus, exploiting the model

uncertainty — something the deterministic approaches fail

to account for. Finally, the proposed VB learning in our

PUnDA allows us to effectively incorporate unlabeled data

of the target domain into the classifier learning via the regu-

larizers specifically designed to minimize the expected clas-

sification loss in target domain. Our method is expected

to bring most benefits in the DA cases when: (i) the data

in both the source and target domains are tightly clustered,

and (ii) the clusters from the two domains are geometrically

close to each other. We show in our experiments on several

benchmark datasets that the proposed approach significantly

outperforms the state-of-the-art methods for unsupervised

DA as they fail to account for the properties exploited in our

PUnDA approach. An overview of this approach is shown

in Fig. 1.

2. Related Work

Existing methods for DA can be divided into three main

categories: 1) Instance-based methods (I-DA) [23, 12, 7],

where the goal is to perform re-weighting of the source do-

main samples (in their loss function) in order to minimize the

difference between the target and source domains. 2) Fea-

ture learning-based methods (FL-DA) [37, 35, 18, 17, 29]

aims to transform the original source and target feature

spaces to a shared subspace preserving the commonalities

between the source and target domain. 3) Model-based

methods operate directly on the model parameters (of the

source classifier) by adjusting them based on the input distri-

bution of the target domain (typically) without changing the

feature space [46, 1, 24]. Since the unsupervised methods

for DA are mainly based on the feature adaptation (due to

the lack of target labels), in what follows, we review the

methods for FL-DA. For a general overview of existing DA

methods, see [36].

One of the first FL-DA approaches is the Transfer Com-

ponent Analysis (TCA) [35]. The main idea is to find a

low-dimensional linear transformation such that the source

and target domains are as close as possible in their marginal

distributions, while maintaining the intrinsic structure of the

original domains. The latter is achieved by incorporating

a local geometry (manifold) preserving regularization term

into the TCA’s objective function. Likewise, [37] proposed

a metric learning-based DA method with cross-domain con-

straints. This method learns a symmetric transformation to

map source and target domain samples onto a new domain

invariant space. [18] proposed an feature alignment method

for DA based on the Sampling Geodesic Flow (SGF) that

exploits the geodesic distance between the source and target

subspaces. Likewise, [41] proposed a simple but effective

method for unsupervised DA called Correlation Alignment

(CORAL), which minimizes domain shift by aligning the

second-order statistics of source and target distributions.

Instead of aligning the source and target domains in a

(low) dimensional manifold, a few works attempted to re-

duce the domain mismatch by expanding the source and

target features in a non-parametric fashion using the notion

of Reproducing Kernel Hilbert Spaces (RKHS). The main
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assumption here is that in RKHS the domains can be brought

together more easily compared to parametric (fix-dimension)

transformations. Specifically, [3, 4] proposed the Domain

Invariant Projection (DIP) method that compares the domain

distributions in RKHS, while constraining the transformation

to be orthogonal. More recently, [21] proposed a DA scheme

to construct a RKHS using the Mahalanobis metric in the

target space. This is achieved by simultaneously learning the

projections from the source and target domains to RKHS, by

minimizing a notion of domain distance while maximizing a

measure of discriminatory power of RKHS.

The models reviewed lack the key properties of our

PUnDA approach: the majority of the models that perform

learning of the common subspace are deterministic, and

therefore do not account for the uncertainty during feature

adaptation - resulting in less robust measures of the domain

mismatch, used to find the subspace. More importantly,

because of their non-Bayesian treatment, most of these meth-

ods cannot automatically reveal the optimal subspace dimen-

sion. On the other hand, the non-parametric methods that

use the notion of RKHS can easily lead to overfitting of

the available target data. More importantly, in contrast to

our approach, the learning of the target classifier and the

domain alignment in these methods is done independently -

rendering suboptimal models for the classification task.

3. Proposed Method

In this section, we present PUnDA for unsupervised DA.

We consider a multi-class classification problem as the run-

ning example. Specifically, suppose we are given source-

domain training examples X = [x1, ..., xN ] ∈ R
d×N , with

labels Y = [y1, ..., yN ] ∈ R
1×N , y ∈ {1, 2, ..., C} (we

assume the shared set of class labels between the two do-

mains), and target data X
′ = [x′

1, ..., x
′
M ] ∈ R

d×M . Our

goal is to assign the correct class label Y ′ to target data

points X
′. Fig. 2 shows the model’s representation as a

Bayesian network. There are three observed variables rep-

resented by the shaded nodes: the source features {xi}, the

target features {x′
j}, and the source labels Y . Note that we

assume that we do not have access to target labels, hence,

Y ′ = [y′1, ..., y
′
M ] are unobserved. By assuming the exis-

tence of a low-dimensional latent space where the source

and target distributions are similar, we model each feature

xi/x
′
i, as a linear transformation Φ/Φ′ of their latent repre-

sentations si/s
′
i in the source/target domain, corrupted with

an additive Gaussian noise ǫ/ǫ′, as

xi = Φ
⊤si + ǫ, x′

i = Φ
′⊤s′i + ǫ′, (1)

where Φ = [φ1, ..., φK ] ∈ R
d×K , and Φ

′ = [φ′
1, ..., φ

′
K ] ∈

R
d×K are the transformation matrices for source and tar-

get domains, respectively. ǫ ∼ N (0, γ−1
s Id) and ǫ′ ∼

N (0, γ−1
t Id) are the zero-mean Gaussian noise with pre-

cision values γs and γt, respectively (Id denotes a d × d
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Figure 2. The graphical representation of PUnDA (the shaded

circles denote the observed data). {xi, x
′

j} are the source and the

target variables in the observation space, {yi, y
′

j} are the labels of

the source and the target data, and {si, s
′

j} are the representation

of two domains in the shared space. Φ,Φ′ are the projection

matrices. The elements of W are the classifier parameters that are

shared between both the source and target domains. Z defines the

underlying dimension of the shared space, and γs and γt are the

noise parameters of the source and target domain, respectively.

identity matrix). To keep the exponential family conjugacy

between the prior and likelihood distributions, we place non-

informative gamma hyper-priors on γs and γt, as

γs ∼ Ga(c1, c2), γt ∼ Ga(c′1, c
′
2),

where Ga denotes the Gamma distribution.

To automatically infer the dimensionality K of the shared

latent space, we introduce an auxiliary binary vector Z ∈
{0, 1}K for the latent features {si}, {s′j}, where the non-

zero entries of Z specify which latent features are used to

represent the observations. Consequently, the model in Eq. 1

is reformulated as

xi = Φ
⊤(Z ⊙ si) + ǫ, x′

i = Φ
′⊤(Z ⊙ s′i) + ǫ′, (2)

where ⊙ denotes the element-wise multiplication operator.

Note that all the source and target data points (xi/x
′
j) share

the same set of important latent features defined by Z, but

each have their unique weights (si/sj).

Using the notion of the probabilistic hierarchical frame-

work as in [10], we place a non-parametric prior on the

binary vector Z by introducing auxiliary variables Π =
{πk}

K
k=1 drawn from the Beta distribution as

πk ∼ Beta(a/K, b(K − 1)/K),

where a, b are the hyper-parameters and the integer K is the

largest possible dimension for Z (by letting K → ∞, the

length of the binary code Z can be learned from the observed
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data [42]). Then, we model the binary vector Z as a random

sample from the Bernoulli process parameterized by Π as

Z ∼
K
∏

k=1

Ber(zk;πk), k = 1, ...,K,

where zk denotes the k-th element of the binary vector Z
and Ber denotes the Bernoulli distribution (we obtain the

Indian Buffet Process (IBP) prior[19] on Z by integrating

out Π and letting K → ∞). For computational simplicity,

we model the latent features S = [s1, ..., sN ] ∈ R
K×N and

S
′ = [s′1, ..., s

′
M ] ∈ R

K×M using a multivariate zero-mean

Gaussian distribution:

P (si) ∼ N (0, IK), P (s′j) ∼ N (0, IK).

Similarly, we also assume that the elements of the transfor-

mation matrices are drawn from a multivariate zero-mean

Gaussian distribution:

P (φi) ∼ N (0, Id), P (φ′
j) ∼ N (0, Id).

In order to make the latent representations discriminative

for the classification task, we employ the softmax regression

classifier. More precisely, for the shared space representa-

tion Z ⊙ s of a sample x, the probability of the x’s label y
belonging to class c = 1, . . . , C is computed as:

P (y = c|W , s, Z) =
exp

(

w⊤
c (Z ⊙ s)

)

∑C
c′=1 exp

(

w⊤
c′ (Z ⊙ s)

)
,

where W = [w1, ..., wC ] ∈ R
(K+1)×C contains the class

projection vectors. Again, within our probabilistic frame-

work, we assume that elements of W are drawn from

a multivariate zero-mean Gaussian distribution (wc ∼
N (0, IK+1)). It is worth noting that W includes a bias

by having an extra dimension s0 = 1 and z0 = 1 for s and

Z, respectively.

3.1. Posterior Inference

Because computing the exact posterior distribution of the

latent variables Ω = {S,S′,W ,Φ,Φ′, Z,Π, γs, γt} is in-

tractable, we derive a Variational Bayes (VB) algorithm [14]

to approximate this posterior distribution in the proposed

PUnDA approach.

The goal of the VB is to approximate the true posterior

distribution over the latent variables P (Ω|X,X ′, Y ) with a

variational distribution q(Ω), which is closest in KL diver-

gence to the true posterior distribution. It is easy to show that

this equals to maximizing the lower bound of the marginal

likelihood P (X, Y,X ′|Θ)

q∗(Ω) = argmax
q(Ω)

Eq

[

log(X, Y,X ′,Ω|Θ)
]

+H[q(Ω)],

where Θ = {a, b,K, c, d, c′, d′} denotes the set of hyper-

parameters, Eq[.] denotes the expectation operator under

the distribution q, and H[.] the entropy operator. For our

framework to yield a computationally effective inference

method, we employ a factorized variational distribution:

q(Ω) =ΠN
i=1q(si)Π

M
j=1q(s

′
j)Π

K
k=1q(φk)q(φ

′
k)

ΠC
c=1q(wc)q(γs)q(γt).

For simplicity, we also fix K and set it to a finite but large

number. If K is large enough (see Sec. 4), the observed

data will reveal fewer than K components for shared space

features.

Apart from maximizing the marginal likelihood, we also

need the shared latent features to be invariant to differences

between the source and target domains, i.e., to be robust

to the covariate shift that may exist in the target space. To

this end, we introduce a regularizer L(S,S′), based on on

the Maximum Mean Discrepancy (MMD) [6], designed to

minimize the distance between the distributions of the source

and target representations. Specifically, given two sets of

source/target samples, the MMD measures the distance be-

tween the mean of the two sets after mapping each sample

to a RKHS:

MMD2(S,S′) =

∥

∥

∥

∥

N
∑

i=1

F(si)

N
−

M
∑

j=1

F(s′j)

M

∥

∥

∥

∥

2

, (3)

where F(.) denotes the target mapping. In practice, this

mapping is typically unknown. By expanding Eq. 3, and

using the kernel trick to replace the inner products by their

kernel values, we rewrite the squared MMD, leading to the

following regularizer:

L(S,S′) =
∑

i,i′

K(si, sj)

N2
−2

∑

i,j

K(si, s
′
j)

NM
+
∑

j,j′

K(s′j , s
′
j′)

M2
,

where K(., .) denotes the kernel function. In contrast to

most existing DA methods that measure the domain distance

directly in the learned RKHS [35, 3, 30, 44, 29], PUnDA

encodes this distance using the posterior distributions of

the shared features S and S
′ – thus, accounting also for

uncertainty of the projections from the two domains. To

this end, we use the Bhattacharyya kernel [8] to measure the

posterior similarity as

K(q(s), q(s′)) = log

∫

RK

q(s)1/2q(s′)1/2 ds ds′.

The intuition behind this kernel is that it measures the amount

of overlap (similarity) between two distributions q(s) and

q(s′), by integrating the square root of their product over the

whole space [8].

To learn a good classifier, we also leverage knowledge of

the target domain samples by minimizing the uncertainty of
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the classifier over the target samples. To this end, we intro-

duce a regularizer L′(W ,S′, Z) designed to minimize the

Shanon Entropy of the probability vectors P (y′j |W , s′j , Z)
over the target domain samples:

L′(W ,S′, Z) =

M
∑

j=1

C
∑

c=1

EP (y′

j
|W ,s′

j
,Z) logP (y′j = c).

Intuitively, if our assumptions about two sets of clusters be-

ing geometrically close indeed hold in the used datasets, the

probability vector P (y′j |W , Z, sj) = [p1j , ..., p
C
j ] should ide-

ally look like a posterior probability vector [0, 0, ...., 1, ..., 0]
(using 1-of-many coding). Since we do not know the

true label, we cannot measure directly the similarity of

P (y′j |W , Z, sj) and the correct label. However, we can

minimize the entropy of P (y′j |W , Z, sj) by which we can

reduce the amount of information that P (y′j |W , Z, sj) con-

tains about the confusing labels.

By defining the regularizers L(S,S′) and L′(S′,W , Z),
the proposed regularized VB algorithm can be written as the

following optimization problem:

q∗(Ω) = argmax
q(Ω)

Eq

[

log(X, Y,X ′,Ω|Θ)
]

+H[q(Ω)]

− λL(S,S′) + λ′L′(S′,W , Z),

where λ ≥ 0 and λ′ ≥ 0 denote the regularization parame-

ters. The VB algorithm solves the above optimization prob-

lem using the Coordinate Descent algorithm. The compu-

tational complexity of each iteration of the proposed VB

algorithm, for training, in one iteration is O((N +M)dK2),
i.e., linear in the size of the source+target data N +M , the

data dimensionality d, and quadratic in the dimensionality of

the shared space K(K << d). Details of the proposed VB

algorithm and its computational complexity analysis, along

with other derivations, are available in the Supplementary

Material.

3.2. Target Class Label Prediction

After computing the posterior distribution q∗(Ω), to de-

termine the target class-label y′j of a given target domain

instance x′
j , we first compute the distribution of y′j given x′

j

by integrating out the latent variables {W , Z, s′j}. Then, we

select the most likely label as

ŷ′j = argmax
y′

j
∈{1,...,C}

P (y′j |x
′
j),

where P (y′j |x
′
j) can be computed as

P (y′j = c|x′
j) =

∑

Z

∫

P (y′j |W , Z, s′j)q
∗(Z)q∗(s′j)q

∗(W ) dZ ds′j dW .

Since the above expression cannot be computed in a closed

form, we approximate q∗(Z), q∗(s′j), and q∗(W ) with their

mean values: Eq∗(Z)[Z],Eq∗(W )[W ] and Eq∗(s′
j
)[s

′
j ], re-

spectively. Using this approximation, we compute y′j as:

ŷ′j = argmax
c∈{1,...,C}

Eq∗(wc)[wc]
⊤(Eq∗(Z)[Z]⊙ Eq∗(s′

j
)[s

′
j ]).

4. Experimental Results

We run extensive experiments on unsupervised DA tasks,

where we use the handcrafted features (SURF) [5] and

the current state-of-the-art deep-net features (VGG-Net)

[39], employing the same datasets/features as in [21]. We

compare our approach to several state-of-the-art unsuper-

vised DA methods on two DA benchmark datasets: the Of-

fice+Caltech101 and Multi-PIE2 datasets.

Office+Caltech10 dataset contains images collected from

four different sources (see Fig. 3) and 10 object classes. The

corresponding domains are Amazon, Webcam, DSLR, and

Caltech. The Multi-PIE dataset includes face images of 67
individuals captured from different expressions, views, and

illumination conditions. We compare the performance of the

proposed PUnDA approach to the following benchmarks:

• 1-NN and SVM: original features are used without any

adaptation, a basic 1-nearest neighbor (1-NNs) and

linear SVM is found by comparing the target samples

to the training data from the source domain.

• GFK[17]: The geodesic flow kernel algorithm. Results

are evaluated using the kernel-NNs.

• SA[11]: The subspace alignment algorithm. Results

are evaluated using 1-NN.

• CORAL [41]: The correlation alignment algorithm

that uses a linear SVM on the similarity matrix formed

by the correlation matching.

• ILS [21]: Invariant Latent Space algorithm. Results are

evaluated using 1-NN.

To have a fair comparison, we use the accuracy reported by

other authors with exactly the same experimental settings

and source codes provided by the authors.

4.1. Implementation Details

In our experiments, we follow the standard setup in both

datasets with the train/test splits provided by [21]. For the

VB algorithm, we set the truncation level for the dimension-

ality of the latent space to (K = 100) for both datasets. The

1https://cs.stanford.edu/∼jhoffman/domainadapt
2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-

Pie/Home.html
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Amazon DSLR Webcam Caltech 10 

Figure 3. Exemplary images from the Office+Caltech10 dataset.

Figure 4. Three instances of the Multi-PIE face data. Here, the view

from C27 is used as the source domain (first column). Remaining

views (columns 2 − 6 represent samples from C09, C05, C37,

C25, and C02 respectively) are considered to be the target for each

transformation.

hyper-parameters a, b of the Beta distributions are set with

a = 1 and b = 1 (other settings of a and b yield similar

results). All Gamma priors are set as Ga(10−6, 10−6) to

make the prior distributions uninformative. In all our experi-

ments, we set λ = 0.1 and λ′ = 1. We use the classification

accuracy for the target data as the evaluation metric:

4.2. Results for OFFICE+CALTECH10

For this dataset, we used 4096 dimensional VGG-fc6 and

VGG-fc7 features extracted with the network model of [39]

for the deep-net feature experiments. Following the exper-

imental protocol in [21], we also use SURF features [5]

(each image is encoded with an 800-bin histogram and the

histograms are then normalized to have zero mean and unit

standard deviation in each dimension) as hand-crafted fea-

tures. We set the latent space dimensionality to 20 for VGG

features and to 100 for SURF features in all compared meth-

ods, as these were empirically found to be the best for the

competing methods [21]. For each pair of the source and

target domains, we conduct experiments using 20 random

train/test splits.

In Tables 1&3, we report the performance using VGG-

FC6, VGG-FC7 and SURF features, respectively. As can

be seen, for all the feature types, PUnDA outperforms the

state-of-the-art methods in most of domain transformations,

and, generally, provides the highest overall classification

accuracies for all the feature types. We also note that the

VGG-fc7 is less favorable than VGG-fc6 for majority of the

DA algorithms compared.

The higher performance of PUnDA compared to other

methods is mainly attributed to the joint learning of the dis-

criminative classifier and low-dimensional feature spaces.

The key observation is that good representations are benefi-

cial to data classification, with classification results provid-

ing supervisory signals to representation learning. Further-

more, from the results obtained, it is obvious that it is more

beneficial to make the use of information coming from unla-

beled target data during classifier learning process compared

to when no data from target domain is used. Indeed, using

the proposed learning scheme, we find a representation space

in which we embed the knowledge from the target domain

into the learned classifier.

4.2.1 Sensitivity Analysis

In the experiments above, we keep λ = 0.1, λ′ = 1. To ana-

lyze the sensitivity of our method to changes in parameters λ
and λ′, we conducted additional experiments to analyze the

parameter sensitivity of PUnDA w.r.t. the various values of

λ and λ′. To this end, we consider random splits from each

of the Office+Caltech10 dataset along VGG-FC6 features

here. Fig. 5 shows the sensitivity analysis for the parameters

of PUnDA on these random splits. Sensitivity analysis is

performed by varying one parameter at the time over a given

range, while for the other parameters we set them to their

final values (λ = 0.1, λ′ = 1). From Fig. 5 (a), we see that

when λ = 0 (no domain mismatch regularization term is

considered), the performance drops considerably. For other

values of λ, the performance is superior and there is little
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Table 1. Unsupervised domain adaptation results using VGG-FC6 features on Office+Caltech10 dataset with the evaluation setup of [21].

The best (bold red), the second best (red).
method A → W A → D A → C W → A W → D W → C D → A D → W D → C C → A C → W C → D Ave.

1-NN 60.9 52.3 70.1 66.4 91.3 60.2 57.0 86.7 48.0 81.9 65.9 55.6 66.4

SVM 63.1 51.7 74.2 73.3 94.2 68.2 58.7 91.8 55.5 86.7 74.8 61.5 71.1

GFK[17] 74.1 63.5 77.7 81.1 96.6 73.5 69.9 92.4 64.0 86.2 76.5 66.5 76.8

SA[11] 76.0 64.9 77.1 80.2 94.2 71.9 69.0 90.5 62.3 83.9 76.0 66.2 76.0

CORAL[41] 74.8 67.1 79.0 82.3 96.0 75.9 75.8 94.6 64.7 89.4 77.6 67.6 78.7

ILS[21] 82.4 72.5 78.9 87.2 89.3 79.9 79.2 94.2 66.5 87.6 84.4 73.0 81.3

PUnDA 82.7 76.2 82.3 86.9 89.8 82.6 83.1 93.4 69.2 90.3 88.3 76.2 83.4

Table 2. Unsupervised domain adaptation results using VGG-FC7 features on Office+Caltech10 dataset with the evaluation setup of [21].

The best (in bold red), the second best (in red).
method A → W A → D A → C W → A W → D W → C D → A D → W D → C C → A C → W C → D Ave.

1-NN 64.0 50.8 72.6 67.8 88.8 64.2 61.2 88.2 52.8 82.6 65.3 54.9 67.8

SVM 68.0 51.8 76.2 74.6 93.0 70.6 58.7 91.2 56.0 86.7 74.8 61.3 71.9

GFK[17] 74.0 57.6 76.6 76.0 92.9 69.5 67.5 91.9 62.9 84.1 73.6 63.4 74.2

SA[11] 75.0 60.7 76.2 76.4 94.0 69.0 66.0 89.5 59.4 82.6 73.6 63.2 73.8

CORAL[41] 71.8 61.3 78.6 82.0 94.6 73.7 71.2 93.5 63.0 88.6 76.0 63.8 76.5

ILS[21] 80.9 71.3 78.4 86.7 88.2 76.3 76.5 91.8 66.2 87.1 80.1 67.1 79.2

PUnDA 81.4 75.8 81.0 85.7 90.1 80.1 80.4 92.0 69.1 91.1 83.8 70.8 81.7
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Figure 5. Sensitivity analysis of PUnDA.

variation in the model performance, evidencing the robust-

ness of PUnDA w.r.t. λ. Similarly, from Fig. 5 (b), PUnDA

is largely insensitive to the parameter λ′ over the specified

range of its values. Moreover, it is clear that using the unla-

beled target data improves the discriminative power of the

classifier.

4.3. Results on Multi­PIE Faces

In this experiment, we follow the setting in [21] and use

the views: C27 (looking forward) and C09 (looking down),

as the source domain, and the views: C05, C37, C02, C25
(looking towards left in an increasing angle, see Fig. 4),

as target domains. We expect the face inclination angle to

reflect the complexity of transfer learning. We normalize

the images to 32 × 32 pixels and use the vectorized gray-

scale images as features. The dimensionality of the common

feature space for all the feature learning-based methods is

set to 100.

Table 4 shows the classification accuracy w.r.t. the in-

creasing angle of inclination. As can be seen, PUnDA

achieves the best performance (on average) as well as the

best scores for the 3 views and the second best for the C02.

Clearly, with the increasing camera angle, the feature struc-

ture changes up to a certain extent (the features become

heterogeneous). However, our method produces good accu-

racies even under such challenging conditions.

4.4. Model Selection

To demonstrate the ability of the proposed method to

learn the dimensionality of the latent space automatically, we

conduct experiments on both Office+Caltech10 and Multi-

PIE datasets. We consider a random split from A → W of

the Office+Caltech10 dataset along VGG-FC6 features, and

C27 → C25 from the Multi-PIE dataset.

We plot the sorted values of E[q∗(Z)] for the selected

source/target datasets, inferred by the algorithm in Fig. 7. As

can be seen, the PUnDA inferred approximately 25− 30 di-

mensions for the learned latent space for the selected domain

transformations of Office+Caltech10, and 80 − 85 dimen-

sions for the learned latent space for domain transformations

in the Multi-PIE dataset, fewer than 100, as initially pro-

vided. It is worth noting that since the number of data points

in the C27, C25 datasets is much larger than the number of

samples in the A,W dataset, we need more latent dimen-

sions for C27, C25 than for A,W to capture the variations

in these datasets.

4.5. Conclusions

In the experiments conducted, we showed that our ap-

proach is able to achieve better performance than the com-

peting methods. Namely, as stated in Sec. 1, our method

is expected to bring most benefits in the DA cases when
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Table 3. Unsupervised domain adaptation results using SURF features on the Office+Caltech10 dataset with the evaluation setup from [21].

The best and the second best are depicted in bold red and red, respectively.

method A → W A → D A → C W →A W → D W → C D → A D → W D → C C → A C → W C → D Ave.

1-NN 23.1 22.3 20.0 13.8 40.6 12.2 23.0 51.7 19.9 21.0 19.0 23.6 24.2

SVM 25.6 33.4 35.9 32.1 78.9 25.2 34.6 70.2 31.2 43.8 30.5 40.3 40.1

GFK[17] 35.7 35.1 37.9 35.5 71.2 29.3 36.2 79.1 32.7 40.4 35.8 41.1 42.5

SA[11] 38.6 37.6 35.3 37.4 80.3 32.3 38.0 83.6 32.4 39.0 36.8 39.6 44.2

CORAL[41] 38.7 38.3 40.3 37.8 84.9 34.6 38.1 85.9 34.2 47.2 39.2 40.7 46.7

ILS[21] 40.6 41.0 37.1 39.0 78.7 34.2 38.9 79.1 36.9 48.6 42.0 44.1 46.7

PUnDA 42.5 40.3 39.5 42.4 85.2 36.5 40.3 83.2 38.9 50.1 41.7 45.8 48.8
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Figure 6. Feature visualization. The embedding of Multi-PIE C05 data using t-sne algorithm [33]. (a) Original features. (b) PUnDA features.

(c) ILS features.

Table 4. Multi-PIE results. The changes in performance w.r.t. the

changing face orientations when frontal face images (C27) are

considered as the source domain. The best and the second best are

depicted in bold red and red, respectively.

method C09 C05 C37 C25 C02 Ave.

1-NN 92.5 55.7 28.5 14.8 11.0 40.5

SVM 87.8 65.0 35.8 15.7 16.7 44.2

GFK[17] 92.5 74.0 32.1 14.1 12.3 45.0

SA[11] 97.9 85.9 47.9 16.6 13.9 52.4

CORAL[41] 91.4 74.8 35.3 13.4 13.2 45.6

ILS[21] 96.6 88.3 72.9 28.4 34.8 64.2

PUnDA 94.3 92.2 78.8 28.9 34.7 65.7
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Figure 7. Inferred E[q∗(Z)] for the Office+Caltech10 and Multi-

PIE datasets.

data in both domains are tightly clustered, with the clusters

being geometrically proximal. Indeed, Fig. 6 depicts the

embedding of the learned features s/s′, and those of ILS

and the original features x. Colors indicate source (red) and

target (blue) domains. Notice that PUnDA significantly re-

duces the domain mismatch, resulting in the expected tight

clustering. This is partially due to the use of the proposed

probabilistic MMD with Bhattacharyya kernel, which penal-

izes the domain mismatch while exploiting the uncertainty in

the shared feature space - something the ILS fails to account

for. Further examples are provided in the supplementary

material.

In summary, we proposed a novel probabilistic approach

for unsupervised DA that learns an efficient domain-adaptive

classifier that can generalize well on target domains. The key

to the proposed approach is that it jointly learns a latent space

along with its size, and a softmax classifier, by exploiting

both labeled source and unlabeled target data in Bayesian

fashion. To tackle the intractability of computing the ex-

act posteriors in our model, we proposed a novel Bayesian

approximation to efficiently approximate the target distri-

butions. We showed on two benchmark datasets for image

classification, using both hand-crafted and deep-net features,

the superiority of the proposed method compared to the state-

of-the-art methods for unsupervised domain adaptation of

visual domain categories.
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