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Abstract

We address an essential problem in computer vision, that

of unsupervised foreground object segmentation in video,

where a main object of interest in a video sequence should

be automatically separated from its background. An effi-

cient solution to this task would enable large-scale video

interpretation at a high semantic level in the absence of the

costly manual labeling. We propose an efficient unsuper-

vised method for generating foreground object soft masks

based on automatic selection and learning from highly

probable positive features. We show that such features

can be selected efficiently by taking into consideration the

spatio-temporal appearance and motion consistency of the

object in the video sequence. We also emphasize the role

of the contrasting properties between the foreground ob-

ject and its background. Our model is created over sev-

eral stages: we start from pixel level analysis and move to

descriptors that consider information over groups of pix-

els combined with efficient motion analysis. We also prove

theoretical properties of our unsupervised learning method,

which under some mild constraints is guaranteed to learn

the correct classifier even in the unsupervised case. We

achieve competitive and even state of the art results on the

challenging Youtube-Objects and SegTrack datasets, while

being at least one order of magnitude faster than the com-

petition. We believe that the strong performance of our

method, along with its theoretical properties, constitute a

solid step towards solving unsupervised discovery in video.

1. Introduction

Unsupervised learning in video is a very challenging

task in computer vision. Fully solving this problem would

shed new light on our understanding of intelligence from a

scientific perspective. It would also have a strong impact

in many real-world applications, as large datasets of un-

labeled videos could be collected at a relatively low cost.

There are several different published approaches for un-

supervised learning and discovery of the salient object in

video [20, 12, 17, 16], but most have a high computational

cost. In general, algorithms for unsupervised mining and

clustering are expected to be computationally expensive due

to the inherent combinatorial nature of the problem [7].

In this paper we address the computational cost chal-

lenge and propose a method that is both accurate and fast.

We achieve our goal based on a key insight: we focus on

selecting and learning from features that are highly corre-

lated with the presence of the object of interest and can be

rapidly selected and computed. Note: in this paper, when

referring to highly probable positive features, we use ”fea-

ture” to indicate a feature vector sample, not a feature type.

While we do not require these features to cover all instances

and parts of the object of interest (we could expect low re-

call), we show that it is possible to find, in the unsupervised

case, positive features with high precision (a large number

of those selected are indeed true positives). Then we prove

theoretically that we can reliably train an object classifier

using sets of positive and negative samples, both selected

in an unsupervised way, as long as the set of features con-

sidered to be positive has high precision, regardless of the

recall, if certain conditions are met (and they are often met

in practice). We present an algorithm that can effectively

and rapidly achieve this task in practice, in an unsupervised

way, with state-of-the art results in difficult experiments,

while being at least 10x faster than its competition. The

proposed method outputs both the soft-segmentation of the

main object of interest as well as its bounding box. Two

examples are shown in Figure 1.

While we do not make any assumption about the type

of object present in the video, we do expect the sequence to

contain a single salient object, as our method performs fore-

ground soft-segmentation and doesn’t expect videos with no
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Figure 1. Qualitative results of our method, which provides the soft-segmentation of the main object of interest and its bounding box.

salient object or with multiple objects of interest. The key

insights that led to our formulation and algorithm are the

following:

1) First, the foreground and background are complementary

and in contrast to each other - they have different sizes, ap-

pearance and movements. We observed that the more we

can take advantage of these contrasting properties the bet-

ter the results, in practice. While the background occupies

most of the image, the foreground is usually small and has

distinct color and movement patterns - it stands out against

its background scene.

2) The second main idea of our approach is that we should

use this foreground-background complementarity in order

to automatically select, with high precision, foreground fea-

tures, even if the expected recall is low. Then, we could

reliably use those samples as positives, and the rest as neg-

atives, to train a classifier for detecting the main object of

interest. We present this formally in Sec. 2.2.

These insights lead to our two main contributions in this

paper: first, we show theoretically that by selecting features

that are positive with high probability, a robust classifier for

foreground regions can be learned. Second, we present an

efficient method based on this insight, which in practice out-

performs its competition on many different object classes,

while being 10x faster.

Related work on object discovery in video: The task of

object discovery in video has been tackled for many years,

with early approaches being based on local features match-

ing [20, 12]. Current literature offers a wide range of solu-

tions, with varying degrees of supervision, going from fully

unsupervised methods [17, 16] to partially supervised ones

[10, 25, 24, 11, 21] - which start from region, object or seg-

mentation proposals estimated by systems trained in a su-

pervised manner [1, 4, 3]. Some methods also require user

input for the first frame of the video [8]. Most object dis-

covery approaches that produce a fine shape segmentation

of the object also make use of off-the-shelf shape segmen-

tation methods [19, 5, 14, 2, 15].

2. Approach

Our method receives as input a video sequence, in which

there is a main object of interest, and it outputs its soft-

segmentation masks and associated bounding boxes. The

proposed approach has, as starting point, a processing stage

based on principal component analysis of the video frames,

which provides an initial soft-segmentation of the object

- similar to the recent VideoPCA algorithm introduced as

part of the object discovery approach of [21]. This soft-

segmentation usually has high precision but may have low

recall. Starting from this initial stage that classifies pix-

els independently based only on their individual color, next

we learn a higher level descriptor that considers groups of

pixel colors and is able to capture higher order statistics

about the object properties, such as different color patterns

and textures. During the last stage we combine the soft-

segmentation based on appearance with foreground cues

computed from the contrasting motion of the main object

vs. its scene. The resulting method is accurate and fast

(≈ 3 fps in Matlab, 2.60GHz CPU - see Sec. 3.3). Our code

is available online1.

Below, we summarize the steps of our approach (also see

Figure 2), in relation with Algorithm 1 (the pseudocode of

our approach).

• Step 1: select highly probable foreground pixels based

on the differences between the original frames and the

frames projected on their subspace with principal com-

ponent analysis (Sec. 2.1, Alg. 1 - lines [2, 5]).

• Step 2: estimate empirical color distributions for fore-

ground and background from the pixel masks com-

puted at Step 1. Use these distributions to estimate the

probability of foreground for each pixel independently

based on its color (Sec. 2.1.1, Alg. 1 - line 6).

• Step 3: improve the soft-segmentation from Step 2,

by projection on the subspace of soft-segmentations

(Sec. 2.3, Alg. 1 - lines [7, 9]).

1https://goo.gl/2aYt4s
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• Step 4: re-estimate empirical color distributions for

foreground and background from the pixel masks up-

dated at Step 3. Use these distributions to estimate the

probability of foreground for each pixel independently

based on its color (Sec. 2.1.1, Alg. 1 - line 10).

• Step 5: learn a discriminative classifier of foreground

regions with regularized least squares regression on the

soft segmentation real output ∈ [0, 1]. Use a feature

vector that considers groups of colors that co-occur in

larger patches. Run classifier at each pixel location in

the video and produce improved per frame foreground

soft-segmentation (Sec. 2.4, Alg. 1 - lines [11, 15]).

• Step 6: combine soft-segmentation using appearance

(Step 5) with foreground motion cues efficiently com-

puted by modeling the background motion. Obtain the

final soft-segmentation (Sec. 2.5, Alg. 1 - lines [16,

23]).

• Step 7: Optional: refine segmentation using Grab-

Cut [19], by considering as potential foreground

and background samples the pixels given by the soft-

segmentation from Step 6 (Sec. 2.5).

Figure 2. Algorithm overview. a) original image b) first pixel-level

appearance model, based on initial object cues (Step 1 & Step 2)

c) refined pixel-level appearance model, built from the projection

of soft-segmentation (Step 3 & Step 4) d) patch-level appearance

model (Step 5) e) motion estimation mask (part of Step 6) f) final

soft-segmentation mask (Step 6).

We reiterate: our algorithm has at its core two main

ideas. The first is that the object and the background

have contrasting properties in terms of size, appearance and

movement. This insight leads to the ability of reliably se-

lecting a few regions in the video that are highly likely to

belong to the object. The following, second idea, which

brings certain formal guarantees, is that if we are able to se-

lect, in an unsupervised manner, even a small portion of

the foreground object, but with high precision, then, un-

der some reasonable assumptions, we could train a robust

foreground-background classifier that can be used for the

automatic discovery of the object. In Table 1 we present the

improvements in precision, recall and F-measure between

the different steps of our algorithm. Note that the arrows go

from the precision and recall of the samples initially consid-

ered to be positive, to the precision and recall of the pixels

finally classified as positive. The significant improvement

Step 1&2 Step 3&4 Step 5

precision 66 → 70 62 → 60 64 → 74
recall 17 → 51 45 → 60 58 → 68
F-measure 27 → 59 53 → 60 61 → 72

Table 1. Evolution of precision, recall and F-measure of the feature

samples considered as positives (foreground) at different stages of

our method (SegTrack dataset). We start with a corrupted set of

positive samples with high precision and low recall, and improve

both precision and recall through the stages of our method. Thus

the soft masks become more and more accurate from one stage to

the next.

Step 1&2 Step 3&4 Step 5 Step 6

F-meas. (SegTrack) 59.0 60.0 72.0 74.6

F-meas. (YTO) 53.6 54.5 58.8 63.4

Runtime (sec/frame) 0.05 0.03 0.25 0.02

Table 2. Performance analysis and execution time for all stages of

our method.

in F-measure is explained by our theoretical result (stated in

Proposition 1), which shows that under certain conditions,

a reliable classifier will be learned even if the recall of the

corrupted positive samples is low, as long as the precision

is relatively high. In Table 2 we introduce quantitative re-

sults of the different stages of our method, along with the

associated execution times.

Algorithm 1 Video object segmentation

1: get input frames Fi

2: PCA(A1) => V1 eigenvectors; A1(i, :) = F
i(:)

3: R1 = Ā1 + (A1 − Ā1) ∗V1 ∗V
T
1 - reconstruction

4: P1
i = d(A1(i, :),R1(i, :))

5: P1
i = P1

i ⊗Gσ1

6: P1
i => pixel-level appearance model => S1

i

7: PCA(A2) => V2 eigenvectors; A2(i, :) = S1
i(:)

8: R2 = Ā2 + (A2 − Ā2) ∗V2 ∗V
T
2 - reconstruction

9: P2
i = R2

i ⊗Gσ2

10: P2
i => pixel-level appearance model => S2

i

11: D - data matrix containing patch-level descriptors

12: s patch labels extracted from S2
i

13: select k features from D => Ds

14: w = (λI+Ds
T
Ds)

−1
Ds

T
s

15: evaluate => patch-level appearance model => S3
i

16: for each frame i do

17: compute Ix, Iy and It

18: build motion matrix Dm

19: wm = (Dm

T
Dm)

−1
Dm

T
It

20: compute motion model Mi

21: M
i = M

i ⊗Gσ
i

22: combine S3
i and M

i => S4
i

23: end for
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2.1. Select highly probable object regions

We estimate the initial foreground regions by Princi-

pal Component Analysis, an approach similar to the recent

method for soft foreground segmentation, VideoPCA [21].

Other approaches for soft foreground discovery could have

been applied here, such as [26, 6, 9], but we have found

the direction using PCA to be both fast and reliable and

to fit perfectly with the later stages of our method. The

principal components will represent a linear subspace of the

background, as the object is expected to be an outlier, not

obeying the principal variation observed in the video, thus

harder to reconstruct. At this step, we project the frames on

the resulted subspace and compute reconstruction error im-

ages as differences between original frames and their PCA

reconstructed counter parts. If principal components are

ui, i ∈ [0 . . . nu] (we used nu = 3) and frame f projected

on the subspace is fr ≈ f0 +
∑nu

i=1((f − f0)
⊤
ui)ui, where

f0 is the average frame, then we compute the error image

fdiff = |f − fr|. High value pixels in the error image are

more likely to belong to foreground. If we further smooth

these regions with a large enough Gaussian and multiply

the resulting smoothed difference with another large cen-

tered Gaussian (which favors objects in the center of the

image), we obtain soft foreground masks that have high pre-

cision (most pixels on these masks indeed belong to true

foreground), even though they often have low recall (only

a small fraction of all object pixels are selected). As dis-

cussed, high precision and low recall is all we need at this

stage (see Table 1)

2.1.1 Initial soft-segmentation

Considering the small fraction of the object regions ob-

tained at the previous step, the initial whole object soft

segmentation is computed by capturing foreground and

background color distributions, followed by an independent

pixel-wise classification. Let p(c|fg) and p(c|bg) be the

true foreground (fg) and background (bg) probabilities for

a given color c. Using Bayes’ formula with equal priors,

we compute the probability of foreground for a given pixel,

with an associated color c, as p(fg|c) = p(c|fg)
p(c|fg)+p(c|bg) .

The foreground color likelihood is computed as p(c|fg) =
n(c,fg)
n(c) , where n(c, fg) is the number of considered fore-

ground pixels having color c and n(c) is the total number

of pixels having color c. The background color likelihood

is computed in a similar manner. Note that when comput-

ing the color likelihoods, we take into consideration infor-

mation gathered from the whole movie, obtaining a robust

model. The initial soft segmentation produced here is not

optimal but it is computed fast (20 fps) and of sufficient

quality to ensure the good performance of the subsequent

stages. The first two steps of the method follow the al-

gorithm VideoPCA first proposed in [21]. In Sec. 2.2 we

present and prove our main theoretical result (Proposition

1), which explains in large part why our approach is able

to produce accurate object segmentation in an unsupervised

way.

2.2. Learning with HPP features

Figure 3. Learning with HPP feature vectors. Essentially, Proposi-

tion 1 shows that we could learn a reliable discriminative classifier

from a small set of corrupted positive samples, with the rest being

considered negatives, if the corrupted positive set contains mostly

good features such that the ratio of true positives in the corrupted

positive set is greater than the overall ratio of true positives. This

assumption can often be met in practice and efficiently used for

unsupervised learning.

In Proposition 1 we show that a classifier trained on cor-

rupted sets of positive and negative samples, can learn the

right thing as if true positives and negatives were used for

training, if the following condition is met: the set of cor-

rupted positives should contain positive samples in a pro-

portion that is greater than the overall proportion of true

positives in the whole training set. This proposition is the

basis for both stages of our method, the one that classifies

pixels independently based on their colors and the second

in which we consider higher order color statistics among

groups of pixels.

Let us start with the example in Figure 3, where we have

selected a set of samples S (inside the box) as being posi-

tive. The set S has high precision (most samples are indeed

positive), but low recall (most true positives are wrongly la-

beled). Next we show that the sets S and ¬S could be used

reliably (as defined in Proposition 1, below) to train a binary

classifier.

Let p(E+) and p(E−) be the true distributions of posi-

tive and negative elements, and p(x|S) and p(x|¬S) be the

probabilities of observing a sample inside and outside the

considered positive set S and negative set ¬S, respectively.

Proposition 1 (learning from highly probable pos-

itive (HPP) features): Considering the following hy-

potheses H1 : p(E+) < q < p(E−), H2 :
p(E+|S) > q > p(E−|S), where q ∈ (0, 1), and H3 :
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p(x|E+) and p(x|E−) are independent of S, then, for any

sample x we have: p(x|S) > p(x|¬S) <=> p(x|E+) >

p(x|E−). In other words, a classifier that classifies pixels

based on their likelihoods w.r.t to S and ¬S will take the

same decision as if it was trained on the true positives and

negatives, and we refer to it as a reliable classifier.

Proof: We express p(E−) as
(p(E

−
)−p(E

−
|S)·p(S))

(1−p(S)) (Eq

1), using the hypothesis and the sum rule of probabilities.

Considering (Eq 1), hypothesis H1, H2, and the fact that

p(S) > 0, we obtain that p(E−|¬S) > q (Eq 2). In a

similar fashion, p(E+|¬S) < q (Eq 3). The previously

inferred relations (Eq 2 and Eq 3) generate p(E−|¬S) >

q > p(E+|¬S) (Eq 4), which along with hypothesis H2

help as conclude that p(E+|S) > p(E+|¬S) (Eq 5).

Also, from H3, we infer that p(x|E+, S) = p(x|E+)
and p(x|E−, S) = p(x|E−) (Eq 6). Using the sum rule

and hypothesis H3, we obtain that p(x|S) = p(E+|S) ·
(p(x|E+)−p(x|E−))+p(x|E−) (Eq 7). In a similar way, it

results that p(x|¬S) = p(E+|¬S)·(p(x|E+)−p(x|E−))+
p(x|E−) (Eq 8).

p(x|S) > p(x|¬S) => p(x|E+) > p(x|E−): using the

hypothesis and previously inferred results (Eq 5, 7 and 8) it

results that p(x|E+) > p(x|E−).
p(x|E+) > p(x|E−) => p(x|S) > p(x|¬S): from the

hypothesis we can infer that p(x|E+)− p(x|E−) > 0, and

using (Eq 5) we obtain p(x|S) > p(x|¬S). �

2.3. Object proposals refinement

During this stage, the soft segmentations obtained so far

are improved using a projection on their PCA subspace. In

contrast to 2.1, now we select the probable object regions as

the PCA projected versions of the soft segmentations com-

puted in previous steps. For the projection we consider the

first 8 principal components, with the purpose of reducing

the amount of noise that might be leftover from the previous

steps. Further, color likelihoods are re-estimated to obtain

the soft-segmentation masks.

2.4. Considering color co­occurrences

The foreground masks obtained so far were computed by

treating each pixel independently, which results in masks

that are not always correct, as first-order statistics, such

as colors of individual pixels, cannot capture more global

characteristics about object texture and shape. At this step

we move to the next level of abstraction by considering

groups of colors present in local patches, which are suffi-

ciently large to capture object texture and local shape. We

define a patch descriptor based on local color occurrences,

as an indicator vector dW over a given patch window W ,

such that dW (c) = 1 if color c is present in window W

and 0 otherwise (Figure 4). Colors are indexed according

to their values in HSV space, where channels H, S and V

are discretized in ranges [1, 15], [1, 11] and [1, 7], generat-

ing a total of 1155 possible colors. The descriptor does not

take in consideration the exact spatial location of a given

color in the patch, nor its frequency. It only accounts for

the presence of c in the patch. This leads to invariance to

most rigid or non-rigid transformations, while preserving

the local appearance characteristics of the object. Then, we

take a classification approach and learn a classifier (using

regularized least squares regression, due to its considerable

speed and efficiency) to separate between highly probable

positive (HPP) descriptors and the rest, collected from the

whole video according to the soft masks computed at the

previous step. The classifier is generally robust to changes

in viewpoint, scale, illumination, and other noises, while

remaining discriminative (Figure 2).

Figure 4. Initial patch descriptors encoding color occurrences (n

number of considered colors).

Unsupervised descriptor learning: Not all 1155 colors are

relevant for our classification problem. Most object textures

are composed of only a few important colors that distin-

guish them against the background scene. Effectively re-

ducing the number of colors in the descriptor and selecting

only the relevant ones can improve both speed and perfor-

mance. We use the efficient selection algorithm presented

in [13]. The method proceeds as follows. Let n be the total

number of colors and k < n the number of relevant colors

we want to select. The idea is to identify the group of k

colors with the largest amount of covariance - they will be

the ones most likely to select well the foreground versus the

background (see [13] for details). Now consider C the co-

variance matrix of the colors forming the rows in the data

matrix D. The task is to solve the following optimization

problem:

w
∗ = argmax

w

w
T
Cw

s.t.

n
∑

i=1

wi = 1, wi ∈ [0,
1

k
]

(1)

The non-zero elements of w
∗ correspond to the col-

ors we need to select for creating our descriptor used by

the classifier (based on regularized least squares regression
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model), so we define a binary mask ws ∈ R
n×1 over the

colors (that is the descriptor vector) as follows:

ws(i) =

{

1 if w∗(i) > 0

0 otherwise
(2)

The problem above is NP-hard, but a good approximation

can be efficiently found by the method presented in [13],

based on a convergent series of integer projections on the

space of valid solutions. The optimal number of selected

colors is a relatively small fraction of the total number, as

expected. Besides the slight increase in performance, the

real gain is in the significant decrease in computation time

(see Figure 5).

Next we define Ds ∈ R
m×(1+k) to be the data matrix,

with a training sample per row, after applying the selection

mask to the descriptor; m is the number of training samples

and k is the number of colors selected to form the descriptor

(we add a constant column of 1’s for the bias term). Then,

the weights w ∈ R
(1+k)×1 of the regularized regression

model are learned very fast, in closed-form:

w = (λI+Ds
T
Ds)

−1
Ds

T
s (3)

where I is the identity matrix, λ is the regularization term

and s is the vector of soft-segmentation masks values (es-

timated at the previous step) corresponding to the samples

chosen for training of the descriptor. Then, the final ap-

pearance based soft-segmentation masks are generated by

evaluating the regression model for each pixel.

Figure 5. Features selection - optimization and sensitivity analysis.

2.5. Combining appearance and motion

The foreground and background have complementary

properties at many levels, not just that of appearance. Here

we consider that the object of interest must distinguish itself

from the rest of the scene in terms of its motion pattern. A

foreground object that does not move in the image, relative

to its background, cannot be discovered using information

from the current video alone. We take advantage of this idea

by the following efficient approach.

Let It be the temporal derivative of the image as a func-

tion of time, estimated as difference between subsequent

frames It+1 − It. Also let Ix and Iy be the partial deriva-

tives in the image w.r.t x and y. Consider Dm to be the

motion data matrix, with one row per pixel p in the current

frame corresponding to [Ix, Iy, xIx, xIy, yIx, yIy] at loca-

tions estimated as background by the foreground segmen-

tation estimated so far. Given such a matrix at time t we

linearly regress It on Dm. The solution would be a least

square estimate of an affine motion model for the back-

ground using first order Taylor expansion of the image w.r.t

time: wm = (Dm
T
Dm)

−1
Dm

T
It. Here wm contains the

six parameters defining the affine motion (including trans-

lation) in 2D.

Then, we consider deviations from this model as poten-

tial good candidates for the presence of the foreground ob-

ject, which is expected to move differently than the back-

ground scene. The idea is based on an approximation,

of course, but it is very fast to compute and can be reli-

ably combined with the appearance soft masks. Thus we

evaluate the model in each location p and compute errors

|Dm(p)wm − It(p)|. We normalize the error image and

map it to [0, 1]. This produces a soft mask (using motion

only) of locations that do not obey the motion model - they

are usually correlated with object locations. This map is

then smoothed with a Gaussian (with σ proportional to the

distribution on x and y of the estimated object region).

At this point we have a soft object segmentation com-

puted from appearance alone, and one computed indepen-

dently, based on motion cues. The two soft results are mul-

tiplied to obtain the final segmentation.

Optional: refinement of video object segmentation Op-

tionally we can further refine the soft mask by applying an

off-the-shelf segmentation algorithm, such as GrabCut [19]

and feeding it our soft foreground segmentation. Note: in

our experiments we used GrabCut only for evaluation on

SegTrack, where we were interested in the fine details of the

objects shape. All other experiments are performed without

this step.

3. Experimental analysis

Our experiments were performed on two datasets:

YouTube-Objects dataset and SegTrack v2 dataset. We first

introduce some qualitative results of our method, on the

considered datasets (Figure 6). Note that for the final evalu-

ation on the YouTube-Objects dataset, we also extract ob-

ject bounding boxes, that are computed using the distri-

bution of the pixels with high probability of being part of

the foreground. Both position and size of the boxes are

computed using a mean shift approach. For the final eval-

uation on the SegTrack dataset, we have refined the soft-

segmentation masks, using the GrabCut algorithm [19]. In

Tabel 2 we present evaluation results for different stages of

our algorithm, along with the execution time, per stage. The

F-measure is increased with each stage of our algorithm.
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Figure 6. Qualitative results on YouTube-Objects dataset and SegTrack dataset.

3.1. YouTube­Objects dataset

Dataset: The YouTube-Objects dataset [18] contains a

large number of videos filmed in the wild, collected from

YouTube. It contains challenging, unconstrained sequences

of ten object categories (aeroplane, bird, boat, car, cat, cow,

dog, horse, motorbike, train). The sequences are considered

to be challenging as they are completely unconstrained, dis-

playing objects performing rapid movements, with difficult

dynamic backgrounds, illumination changes, camera mo-

tion, scale and viewpoint changes and even editing effects,

like flying logos or joining of different shots. The ground

truth is provided for a small number of frames, and con-

tains bounding boxes for the object instances. Usually, a

frame contains only one primary object of the considered

class, but there are some frames containing multiple in-

stances of the same class of objects. Two versions of the

dataset were released, the first (YouTube-Objects v1.0) con-

taining 1407 annotated objects from a total of ≈ 570 000

frames, while the second (YouTube-Objects v2.2) contains

6975 annotated objects from ≈ 720 000 frames.

Metric: For the evaluation on the YouTube-Objects

dataset we have adopted the CorLoc metric, computing the

percentage of correctly localized object bounding-boxes.

We evaluate the correctness of a box using the PASCAL-

criterion (intersection over union ≥ 0.5).

Results: We compare our method against [10, 25, 18,

21, 17]. We considered their results as originally reported

in the corresponding papers. The comparison is presented

in Table 3. From our knowledge, the other methods were

evaluated on YouTube-Objects v1.0, on the training sam-

ples (the only exception would be [21], where they have

considered the full v1.0 dataset). Considering this, and the

differences between the two versions, regarding the num-

ber of annotations, we have reported our performances on

both versions, in order to provide a fair comparison and also

to report the results on the latest version, YouTube-Objects

v2.2 (not considered for comparison). We report results of

the evaluation on v1.0 by only considering the training sam-

ples, for a fair comparison with other methods. Our method,

which is unsupervised, is compared against both supervised

and unsupervised methods. In the table, we have marked

state-of-the-art results for unsupervised methods (bold), and

overall state-of-the-art results (underlined). We also men-

tion the execution time for the considered methods, in order

to prove that our method is one order of magnitude faster

than others (see Sec. 3.3 for details).

The performances of our method are competitive, obtain-

ing state-of-the-art results for 3 classes, against both super-

vised and unsupervised methods. Compared to the unsu-

pervised methods, we obtain state-of-the-art results for 7

classes. On average, our method performs better than all

the others, and also in terms of execution time (also see

Sec. 3.3). The fact that, on average, our algorithm outper-

forms other methods proves that it generalizes better for dif-

ferent classes of objects and different types of videos. Our

solution performs poorly on the ”horse” class, as many se-

quences contain multiple horses, and our method is not able

to correctly separate the instances. Another class with low

performance is the ”cow” class, where we deal with same

problems as in the case of ”horse” class, and where objects

are usually still, being hard to segment in our system.

3.2. SegTrack v2 dataset

Dataset. The SegTrack dataset was originally intro-

duced by [22], for evaluating tracking algorithms. Further,

it was adapted for the task of video object segmentation

[16]. We work with the second version of the dataset (Seg-

Track v2), which contains 14 videos (≈ 1000 frames), with

pixel level ground truth annotations for the object of inter-

est, in every frame. The dataset is difficult as the included

objects can be easily confused with the background, appear

in different sizes and display complex deformations. There

are 8 videos with one primary object and 6 with multiple

objects, from 8 different categories (bird, cheetah, human,
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Method
Supervised?

[10]
Y

[25]
Y

[18]
N

[21]
N

[17]
N

Ours
v1.0

N

Ours
v2.2

N

aeroplane 64.3 75.8 51.7 38.3 65.4 76.3 76.3

bird 63.2 60.8 17.5 62.5 67.3 71.4 68.5

boat 73.3 43.7 34.4 51.1 38.9 65.0 54.5

car 68.9 71.1 34.7 54.9 65.2 58.9 50.4

cat 44.4 46.5 22.3 64.3 46.3 68.0 59.8

cow 62.5 54.6 17.9 52.9 40.2 55.9 42.4

dog 71.4 55.5 13.5 44.3 65.3 70.6 53.5

horse 52.3 54.9 48.4 43.8 48.4 33.3 30.0

motorbike 78.6 42.4 39.0 41.9 39.0 69.7 53.5

train 23.1 35.8 25.0 45.8 25.0 42.4 60.7

Avg 60.2 54.1 30.4 49.9 50.1 61.1 54.9

time
sec/frame N/A N/A N/A 6.9 4 0.35

Table 3. The CorLoc scores of our method and 5 other state-of-

the-art methods, on the YouTube-Objects dataset (note that result

for v2.2 of the dataset are not considered for comparison).

worm, monkey, dog, frog, parachute).

Metric. For the evaluation on the SegTrack we have

adopted the average intersection over union metric. We

specify that for the purpose of this evaluation, we use Grab-

Cut for refinement of the soft-segmentation masks.

Results. We compare our method against [11, 24, 23,

17, 16]. We considered their results as originally reported

by [23]. The comparison is presented in Table 4. Again, we

compare our method against both supervised and unsuper-

vised methods, and, in the table, we have marked state-of-

the-art results for unsupervised methods (bold), and overall

state-of-the-art results (underlined). The execution times

are also introduced, to highlight that our method outper-

forms other approaches in terms of speed (see Sec. 3.3).

The performance of our method is competitive, while

being an unsupervised method. Also, we prove that our

method is one order of magnitude faster than the previous

state-of-the-art [17] (see Sec. 3.3).

Method
Supervised?

[11]
Y

[24]
Y

[23]
Y

[17]
N

[16]
N

Ours
N

bird of paradise 92 - 95 66 94 93

birdfall 49 71 70 59 63 58

frog 75 74 83 77 72 58

girl 88 82 91 73 89 69

monkey 79 62 90 65 85 69

parachute 96 94 92 91 93 94

soldier 67 60 85 69 84 60

worm 84 60 80 74 83 84

Avg 79 72 86 72 83 73

time
sec/frame >120 >120 N/A 4 242 0.73

Table 4. The average IoU scores of our method and 5 other state-

of-the-art methods, on the SegTrack v2 dataset. Our reported time

also includes the computational time required for GrabCut.

3.3. Computation time

One of the main advantages of our method is the reduced

computational time. Note that all per pixel classifications

can be efficiently implemented by linear filtering routines,

as all our classifiers are linear. It takes only 0.35 sec/frame

for generating the soft segmentation masks (initial object

cues: 0.05 sec/frame, object proposals refinement: 0.03

sec/frame, patch-based regression model: 0.25 sec/frame,

motion estimation: 0.02 sec/frame (Table 2)). The method

was implemented in Matlab, with no special optimizations.

All timing measurements were performed using a computer

with an Intel core i7 2.60GHz CPU. The method of Papa-

zoglou et al. [17] report a time of 3.5 sec/frame for the

initial optical flow computation, on top of which they run

their method, which requires 0.5 sec/frame, leading to a to-

tal time of 4 sec/frame. The method introduced in [21] has

a total of 6.9 sec/frame. For other methods, like the one in-

troduced in [24, 11], it takes up to 120 sec/frame only for

generating the initial object proposals using the method of

[3]. We have no information regarding computational time

of other considered methods, but due to their complexity we

expect them to be orders of magnitude slower than ours.

4. Conclusions

We have presented an efficient fully unsupervised

method for object discovery in video that is both fast and

accurate. It achieves state of the art results on a challeng-

ing benchmark for bounding box object discovery and very

competitive performance on a video object segmentation

dataset. At the same time, our method is fast, being at least

an order of magnitude faster than competition. We achieve

an excellent combination of speed and performance by ex-

ploiting the contrasting properties between objects and their

scenes, in terms of appearance and motion, which makes

it possible to select positive feature samples with a very

high precision. We show, theoretically and practically, that

high precision is sufficient for reliable unsupervised learn-

ing (since positives are generally less frequent than nega-

tives), which we perform both at the level of single pixels

and at the higher level of groups of pixels, which capture

higher order statistics about objects appearance, texture and

shape. The top speed and accuracy of our method, com-

bined with theoretical guarantees that hold in practice under

mild conditions, make our approach unique and valuable in

the quest for solving the unsupervised learning problem in

video.
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