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Figure 1: Our low-shot learning benchmark in two phases: representation learning and low-shot learning. Modern recognition

models use large labeled datasets like ImageNet to build good visual representations and train strong classifiers (representation learning).

However, these datasets only contain a fixed set of classes. In many realistic scenarios, once deployed, the model might encounter novel

classes that it also needs to recognize, but with very few training examples available (low-shot learning). We present two ways of significantly

improving performance in this scenario: (1) a novel loss function for representation learning that leads to better visual representations that

generalize well, and (2) a method for hallucinating additional examples for the data-starved novel classes.

Abstract

Low-shot visual learning—the ability to recognize novel

object categories from very few examples—is a hallmark

of human visual intelligence. Existing machine learning

approaches fail to generalize in the same way. To make

progress on this foundational problem, we present a low-

shot learning benchmark on complex images that mimics

challenges faced by recognition systems in the wild. We then

propose (1) representation regularization techniques, and

(2) techniques to hallucinate additional training examples

for data-starved classes. Together, our methods improve the

effectiveness of convolutional networks in low-shot learning,

improving the one-shot accuracy on novel classes by 2.3×
on the challenging ImageNet dataset.

1. Introduction

Recently, error rates on benchmarks like ImageNet [8]

have been halved, and then halved again. These gains come

from deep convolutional networks (ConvNets) that learn

rich feature representations [24]. It is now clear that if an

application has an a priori fixed set of visual concepts and

thousands of examples per concept, an effective way to build

an object recognition system is to train a deep ConvNet. But

what if these assumptions are not satisfied and the network

must learn novel categories from very few examples?

The ability to perform low-shot learning—learning novel

concepts from very few examples—is a hallmark of the hu-

man visual system. We are able to do this not only for natural

object categories such as different kinds of animals, but also

for synthetic objects that are unlike anything we’ve seen

before [39]. In contrast, in spite of significant improvements

in recognition performance, computational recognition ap-

proaches fail to generalize well from few examples [25]. Our

goal in this paper is to make progress towards imparting this

human ability to modern recognition systems.

Our first contribution is a low-shot learning benchmark

based on the challenging ImageNet1k dataset. As shown

in Figure 1, our benchmark is implemented in two phases.

In the representation learning phase, the learner tunes its

feature representation on a set of base classes that have many

training instances. In the low-shot learning phase, the learner

is exposed to a set of novel classes with only a few exam-

ples per class and must learn a classifier over the joint label

space of base and novel classes. This benchmark simulates a

scenario in which the learner is deployed in the wild and has

to quickly learn novel concepts it encounters from very little

training data. Unlike previous low-shot learning tests (e.g.,

[13, 25]) we measure the learner’s accuracy on both the base

and novel classes. This provides a sanity check that accuracy

gains on novel classes do not come at the expense of a large
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loss in performance on the base classes. This evaluation

protocol follows the standard way that image classifiers are

evaluated on popular benchmarks like ImageNet, thus eas-

ing the comparison of progress on low-shot learning to the

typical data-rich scenario.

Next, we investigate how to improve the learner’s per-

formance on the benchmark. We build on the intuition

that certain modes of intra-class variation generalize across

categories (e.g., pose transformations). We present a way

of “hallucinating” additional examples for novel classes by

transferring modes of variation from the base classes. These

additional examples improve the one-shot top-5 accuracy on

novel classes by 15 points (absolute) while also maintaining

accuracy on the base classes.

Finally, we show that the feature representation learnt

in the first phase has a large impact on low-shot general-

ization ability. Specifically, we formulate a loss function

that penalizes the difference between classifiers learnt on

large and small datasets, and then draw connections between

this loss and regularization of feature activations. We show

that simply regularizing feature activations can increase one-

shot, top-5 accuracy on novel classes by 9 points (absolute)

without harming base class performance. Combining this

better representation with the hallucination strategy pushes

our improvement up to 18 points above the baseline.

2. Related work

One-shot and low-shot learning. One class of ap-

proaches to one-shot learning uses generative models of

appearance that tap into a global [13] or a supercategory-

level [38] prior. Generative models based on strokes [26] or

parts [47] have shown promise in restricted domains such

as hand-written characters [28, 25]. They also work well in

datasets without much intra-class variation or clutter, such

as Caltech 101 [13]. Dixit et al. [9] leverage a corpus with

attribute annotations to generate additional examples by vary-

ing attributes. We also propose a way to generate additional

examples, but our model is non-parametric and directly gen-

erates feature vectors. Jia et al. [22] present a promising

alternative to generation using Bayesian reasoning to infer

an object category from a few examples; however, in [22]

the full, large-scale training set is available during training.

Among discriminative approaches, early work attempted

to use a single image of the novel class to adapt classifiers

from similar base classes [3, 32] using simple hand-crafted

features. Bertinetto et al. [4] regress from single examples

to a classifiers, while Wang and Hebert [46] regress from

classifiers trained on small datasets to classifiers trained on

large datasets. Recent “meta-learning” techniques learn to

directly map training sets and test examples to classifica-

tion outputs [45, 15, 35]. We compare favorably with these

approaches in our experiments.

Amongst representation learning approaches, metric

learning, such as the triplet loss [43, 40, 14] or siamese

networks [23, 18], has been used to automatically learn fea-

ture representations where objects of the same class are

closer together. Such approaches have shown benefits in

face identification [43]. On benchmarks involving more gen-

eral Internet imagery, such as ImageNet [8], these methods

perform worse than simple classification baselines [36], and

it is unclear if they can benefit low-shot learning.

Zero-shot learning. Zero-shot recognition uses textual

or attribute-level descriptions of object classes to train clas-

sifiers. While this problem is different than ours, the moti-

vation is the same: to reduce the amount of data required

to learn classifiers. One line of work uses hand-designed

attribute descriptions that are provided to the system for the

novel categories [37, 27, 12]. Another class of approaches

embeds images into word embedding spaces learnt using

large text corpora, so that classifiers for novel concepts can

be obtained simply from the word embedding of the con-

cept [16, 42, 31, 48]. A final class of approaches attempts to

directly regress to image classifiers from textual descriptions

[11, 29] or from prototypical images of the category [21].

Similar to our benchmark, Chao et al. [5] propose that zero-

shot learning evaluation should also include the training

categories that do have examples. We believe this evaluation

style is good for both zero and low-shot learning.

Transfer learning. The ability to learn novel classes

quickly is one of the main motivations for multitask and

transfer learning. Thrun’s classic paper convincingly argues

that “learning the n-th task should be easier than learning

the first,” with ease referring to sample complexity [44].

However, recent transfer learning research has mostly fo-

cussed on the scenario where large amounts of training data

are available for novel classes. For that situation, the effi-

cacy of pre-trained ConvNets for extracting features is well

known [10, 33, 41]. There is also some analysis on what

aspects of ImageNet training aid this transfer [1, 2]. For

faces, Taigman et al. [43] find that low-dimensional feature

representations transfer better on faces and Galanti et al. [17]

provide some theoretical justification for this finding. This

work hints at a link between the complexity of the feature

representation and its generalizability, a link which we also

observe in this paper. We find that stronger base classifiers

generalize better than weaker classifiers (e.g. comparing

ResNet-10 to ResNet-50 [19]). There have also been novel

losses proposed explicitly to aid transfer, such as the multi-

verse loss of Littwin and Wolf [30]. Our paper also proposes

novel losses designed specifically for low-shot learning.

3. A low-shot learning benchmark

Our goal is to build a benchmark for low-shot learning

that mimics situations that arise in practice. Current recog-

nition systems require days or even weeks of training on

expensive hardware to develop good feature representations.
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The trained recognition systems may then be deployed as

a service to be used by downstream applications. These

downstream applications may need the ability to recognize

novel categories, but they may have neither the training data

required, nor the infrastructure needed to retrain the models.

Thus, there are two natural phases: in the first phase, we

have the data and resources to train sophisticated feature

extractors on large labelled datasets, and in the second phase,

we want to add additional categories to our repertoire at

minimal computational and data cost.

Our low-shot learning benchmark implements a similar

setup. It employs a learner, two training phases, and one

testing phase. The learner is assumed to be composed of a

feature extractor and a multi-class classifier. The benchmark

is agnostic to the specific form of each component.

During representation learning (training phase one), the

learner receives a fixed set of base categories Cbase , and a

dataset D containing a large number of examples for each

category in Cbase . The learner uses D to set the parameters

of its feature extractor.

In the second phase, which we call low-shot learning, the

learner is given a set of categories Cl that it must learn to

distinguish. Cl = Cbase ∪Cnovel is a mix of base categories

Cbase, and unseen novel categories Cnovel. For each novel

category, the learner has access to only n positive examples,

where n ∈ {1, 2, 5, 10, 20}. For the base categories, the

learner still has access to D. The learner may then use these

examples and its feature extractor to set the parameters of

its multi-class classifier while also optionally modifying the

feature extractor.

In the testing phase, the learnt model predicts labels from

the combined label space Cbase ∪ Cnovel on a set of pre-

viously unseen test images. To measure the variability in

low-shot learning accuracy, we repeat the low-shot learn-

ing and testing phases for 5 trials, each time with a random

draw of examples for the novel classes. We report the mean

accuracy and the standard deviation over these trials.

The simplest, and commonly used, baseline approach is

to train a ConvNet with label cross-entropy loss in the repre-

sentation learning phase and then train a new linear classifier

head in the low-shot learning phase. We now show signifi-

cant improvements on this baseline, first by a novel strategy

of hallucinating additional training examples (Section 4) and

then by improving the representation itself (Section 5).

4. Better low-shot learning through generation

In the low-shot learning phase, our goal is to train good

classifiers for novel categories from only a few examples.

Intuitively, the challenge is that these examples capture very

little of the category’s intra-class variation. For instance, if

the category is a particular bird species, then we may only

have examples of the bird perched on a branch, and none of

it in flight. The classifier might then erroneously conclude

that this novel category only consists of perched birds.

However, this mode of variation is common to many bird

species, including those we have encountered in the base

classes. From the many base class examples we have seen,

we can understand the transformation that relates perched

bird images to the image of the corresponding bird in flight,

and then use this transformation to “hallucinate” additional

examples for our novel bird category. If we were given the

set of all such category-independent transformations, then

we can hallucinate as many new examples for each novel

category example as there are transformations.

However, we do not have a pre-defined set of transforma-

tions that we can apply. But we can take a non-parametric

approach. Any two examples z1 and z2 belonging to the

same category represent a plausible transformation. Then,

given a novel category example x, we want to apply to x

the transformation that sent z1 to z2. That is, we want to

complete the transformation “analogy” z1 : z2 :: x : ?.

We do this by training a function G that takes as in-

put the concatenated feature vectors of the three examples

[φ(x),φ(z1),φ(z2)]. It produces as output a “hallucinated”

feature vector (of the same dimensionality as φ), which cor-

responds to applying the z1 → z2 transformation to x. We

use an MLP with three fully connected layers for G.

We first describe how we train G, and then show how we

use the generated examples in the low-shot learning phase.

4.1. Learning to generate new examples

To train G, we first collect a dataset of completed analo-

gies from our base classes. To do this we first cluster the

feature vectors of the examples in each base category into

a fixed number of clusters (100). This is to keep computa-

tional complexity manageable. Next, for each pair of cen-

troids ca1 , c
a
2 in one category a, we search for another pair

of centroids cb1, c
b
2 from another category b, such that the

cosine distance between ca1 − ca2 and cb1 − cb2 is minimized.

We collect all such quadruplets (ca1 , c
a
2 , c

b
1, c

b
2) with cosine

similarity greater than zero into a dataset DG. See Figure 2

for example transformation analogies.

We now use the dataset DG to train G. For each quadru-

plet (ca1 , c
a
2 , c

b
1, c

b
2), we feed (ca1 , c

b
1, c

b
2) to the generator. Let

ĉa2 = G([ca1 , c
b
1, c

b
2]) be the output of the generator. We then

minimize λLmse(ĉa2 , c
a
2) + Lcls(W, ĉa2 , a), where:

1. Lmse(ĉa2 , c
a
2) is the mean squared error between the

generator’s output and the true target of the analogy ca2 .

2. Lcls(W, ĉa2 , a) is the classification loss, where W is the

fixed linear classifier on the base classes learnt during

representation learning, and Lcls(W,x, y) is the log

loss of the classifier W on the example (x, y).
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Figure 2: Example mined analogies. Each row shows the four

image clusters that form the four elements in the analogy. Row 1:

birds with a sky backdrop vs birds with greenery in the background.

Row 2: whole fruits vs cut fruit. Row 3: machines (printer, coffee

making) in isolation vs the same machine operated by a human.

4.2. Using generated examples for low­shot learning

Our generated examples are unlikely to be as good as real

examples, but should provide a useful bias to the classifier

when only a few real examples are present. Therefore we

want to rely on generated examples only when the number

of real examples is low.

Concretely, we have a hyperparameter k (set through

cross-validation), which is the minimum number of examples

per novel category that we want to have. If the actual number

of real examples for a novel category, n, is less than k, then

we additionally generate k − n hallucinated examples. To

generate a synthetic example for a novel category l, we

sample the feature vector of a “seed” example φ(x) from one

of the n real examples for this category, and a pair of cluster

centroids ca1 , c
a
2 from a base category a chosen uniformly at

random. We then pass this triplet through G, and add the

hallucinated feature vector G([φ(x), ca1 , c
a
2 ]) to our training

set with label l. We then train the logistic regression classifier

on this mix of real and generated data in the usual manner.

5. Better representations for low-shot learning

We now turn to the question of improving representation

learning so as to enable better low-shot learning. As de-

scribed above, the learner consists of a feature extractor φ

and a classifier W . The goal of representation learning is a

good feature extractor: one that enables learning of effective

classifiers from few examples. Intuitively, our goal is to

reduce the difference between classifiers trained on large

datasets and classifiers trained on small datasets so that those

trained on small datasets generalize better.

We first describe a proposal that encodes this goal in a

loss that can be minimized during representation learning.

Then, we draw connections to several alternatives.

5.1. Squared gradient magnitude loss (SGM)

We assume that the classifier W is linear, e.g., the last

layer of a ConvNet. Let D denote a large labeled dataset of

base class images. Typically, training the feature extractor φ

and the classifier W on D involves minimizing a classifica-

tion objective with respect to φ and W :

min
W,φ

LD(φ,W ) = min
W,φ

1

|D|

∑

(x,y)∈D

Lcls(W,φ(x), y) (1)

where Lcls(W,x, y) is the multiclass logistic loss on an ex-

ample x with label y for a linear classifier W :

Lcls(W,x, y) = − log py(W,x) (2)

pk(W,x) =
exp(wT

k x)∑
j exp(w

T
j x)

. (3)

We modify this training procedure as follows. We sim-

ulate low-shot learning experiments on the base classes by

considering several tiny training sets S ⊂ D, |S| ≪ |D|.
We then want to reduce the difference between classifiers

trained on the large dataset D (using the feature extractor φ)

and classifiers trained on these small datasets S.

The classifier trained on D is just W . Training a classifier

on S involves solving a minimization problem:

min
V

LS(φ, V ) = min
V

1

|S|

∑

(x,y)∈S

Lcls(V,φ(x), y) (4)

We want the minimizer of this objective to match W . In

other words, we want W to minimize LS(φ, V ). LS(φ, V )
is convex in V (Fig. 3), so a necessary and sufficient con-

dition for this is that the gradient of LS(φ, V ) at V = W ,

denoted by ∇V LS(φ, V )|V=W , is 0. More generally, the

closer W is to the global minimum of LS(φ, V ), the lower

the magnitude of this gradient. Thus, we want to minimize:

L̃S(φ,W ) = ‖∇V LS(φ, V )|V=W ‖2 (5)

The gradient ∇V LS(φ, V ) has a simple analytical form

(see supplemental material for details):

∇V LS(φ, V ) = [g1(S, V ), . . . gK(S, V )] (6)

gk(S, V ) =
1

|S|

∑

(x,y)∈S

(pk(V,φ(x))− δyk)φ(x) (7)

where K is the number of classes, δyk is 1 when y = k and

0 otherwise, and pk is as defined in equation (3).

This leads to an analytical form for the func-

tion L̃S(φ,W ) : 1
|S|2

∑K

k=1 ‖
∑

(x,y)∈S(pk(W,φ(x)) −

δyk)φ(x)‖
2. We use this analytical function of W and φ as

a loss.
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Figure 3: Motivation for the SGM loss. We want to learn a repre-

sentation φ such that the arg min of the small set training objective

LS(φ, V ) matches W , the classifier trained on a large dataset D.

We consider an extreme version of this loss where S is a

single example (x, y). In this case,

L̃S(φ,W ) =

K∑

k=1

(pk(W,φ(x))− δyk)
2‖φ(x)‖2 (8)

= α(W,φ(x), y)‖φ(x)‖2. (9)

where α(W,φ(x), y) =
∑

k(pk(W,φ(x))− δyk)
2 is a per-

example weight that is higher for data points that are misclas-

sified. Thus the loss becomes a weighted L2 regularization

on the feature activations.

Our final loss, which we call SGM for Squared Gradient

Magnitude, averages this over all examples in D.

LSGM
D (φ,W ) =

1

|D|

∑

(x,y)∈D

α(W,φ(x), y)‖φ(x)‖2

(10)

We train our feature representation by minimizing a

straightforward linear combination of the SGM loss and

the original classification objective.

min
W,φ

LD(φ,W ) + λLSGM
D (φ,W ) (11)

λ is obtained through cross-validation.

Batch SGM. Above, we used singleton sets as our tiny

training sets S. An alternative is to consider every mini-

batch of examples B that we see during SGD as S. Hence,

we penalize the squared gradient magnitude of the average

loss over B, yielding the loss term: λL̃B(φ,W ). In each

SGD iteration, our total loss is thus the sum of this loss term

and the standard classification loss. Note that because this

loss is defined on mini-batches the number of examples per

class in each mini-batch is a random variable. Thus this loss,

which we call “batch SGM”, optimizes for an expected loss

over a distribution of possible low-shot values n.

5.2. Feature regularization­based alternatives

In Eq. (9), it can be shown that α(W,φ(x), y) ∈ [0, 2]
(see supplementary). Thus, in practice, the SGM loss is

dominated by ‖φ(x)‖2, which is much larger. This suggests

a simple squared L2 norm as a loss:

min
W,φ

LD(φ,W ) + λ
1

|D|

∑

(x,y)∈D

‖φ(x)‖2. (12)

While L2 regularization is a common technique, note that

here we are regularizing the feature representation, as op-

posed to regularizing the weight vector. Regularizing the

feature vector norm has been a staple of unsupervised learn-

ing approaches to prevent degenerate solutions [34], but

to the best of our knowledge it hasn’t been considered in

supervised classification.

We can also consider other ways of regularizing the rep-

resentation, such as an L1 regularization:

min
W,φ

LD(φ,W ) + λ
1

|D|

∑

(x,y)∈D

‖φ(x)‖1. (13)

We also evaluate other forms of feature regularization

that have been proposed in the literature. The first of these

is dropout [20], which was used in earlier ConvNet archi-

tectures [24], but has been eschewed by recent architectures

such as ResNets [19]. Another form of feature regulariza-

tion involves minimizing the correlation between the fea-

tures [6, 7]. We also compare to the multiverse loss [30]

which was shown to improve transfer learning performance.

Why should feature regularization help? When learn-

ing the classifier and feature extractor jointly, the feature

extractor can choose to encode less discriminative informa-

tion in the feature vector because the classifier can learn to

ignore this information. However, when learning new classi-

fiers in the low-shot phase, the learner will not have enough

data to identify discriminative features for the unseen classes

from its representation. Minimizing the norm of the feature

activations might limit what the learner can encode into the

features, and thus force it to only encode useful information.

5.3. Metric­learning based approaches

A common approach to one-shot learning is to learn a

good distance metric that generalizes to unseen classes. We

train a ConvNet with the triplet loss as a representative base-

line method. The triplet loss takes as input a triplet of ex-

amples (x, x+, x−), where x and x+ belong to the same

category while x− does not:

Ltriplet(φ(x),φ(x+),φ(x−)) = (14)

max(‖φ(x+)− φ(x)‖ − ‖φ(x−)− φ(x)‖+ γ, 0).

The loss encourages x− to be at least γ farther away from x

than x+ is.
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6. Experiments and discussion

6.1. Low­shot learning setup

We use the ImageNet1k challenge dataset for experiments

because it has a wide array of classes with significant intra-

class variation. We divided the 1000 ImageNet categories

randomly into 389 base categories and 611 novel categories

(listed in the supplementary material).

Many of the methods we evaluate have hyperparameters

that need to be cross-validated. Since we are interested in

generalization to novel classes, we did not want to cross-

validate on the same set of classes that we test on. We

therefore constructed two disjoint sets of classes by dividing

the base categories into two subsets C1
base (193 classes) and

C2
base (196 classes) and the novel categories into C1

novel

(300 classes) and C2
novel (311 classes). Then, for cross-

validating hyperparameters, we provided the learner with

Ccv = C1
base ∪ C1

novel in the low-shot learning and testing

phase, and evaluated its top-5 accuracy on the combined

label set Ccv. The hyperparameter setting that gave the

highest top-5 accuracy was then frozen. We then conducted

our final experiments using these hyperparameter settings

by providing the learner with Cfin = C2
base ∪ C2

novel . All

reported numbers in this paper are on Cfin.

Our test images are a subset of the ImageNet1k validation

set: we simply restricted it to only include examples from the

classes of interest (Ccv or Cfin). Performance is measured

by top-1 and top-5 accuracy on the test images for each

value of n (number of novel examples per category). We

report the mean and standard deviation from 5 runs each

using a different random sample of novel examples during

the low-shot training phase.

To break down the final performance metrics, we report

separately the average accuracy on the test samples from the

novel classes and on all test samples. While our focus is on

the novel classes, we nevertheless need to ensure that good

performance on novel classes doesn’t come at the cost of

lower accuracy on the base classes.

6.2. Network architecture and training details

For most of our experiments, we use a small ten-layer

ResNet architecture [19] as our feature extractor φ (details

in supplementary material). When trained on all 1000 cate-

gories of ImageNet, it gives a validation top-5 error rate of

16.7% (center crop), making it similar to AlexNet [24]. We

use this architecture because it’s relatively fast to train (2

days on 4 GPUs) and resembles state-of-the-art architectures.

Note that ResNet architectures, as described in [19], do not

use dropout. Later, we show some experiments using the

larger and deeper ResNet-50 architecture.

For all experiments on representation learning, except

the triplet embedding, the networks are trained from scratch

for 90 epochs on the base classes. The learning rate starts

at 0.1 and is divided by 10 every 30 epochs. The weight

decay is fixed at 0.0001. For the triplet embedding, we first

pretrain the network using a softmax classifier and log loss

for 90 epochs, and then train the network further using the

triplet loss and starting with a learning rate of 0.001. We

stop training when the loss stops decreasing (55 epochs).

This schedule is used because, as described in [36], triplet

networks train slowly from scratch.

For methods that introduce a new loss, there is a hyper-

parameter that controls how much we weigh the new loss.

Dropout also has a similar hyperparameter that governs what

fraction of activations are dropped. We set these hyperpa-

rameters by cross-validation.

For our generator G, we use a three layer MLP with ReLU

as the activation function. We also add a ReLU at the end,

since φ is known to be non-negative. All hidden layers have

a dimensionality of 512.

In the low-shot learning phase, we train the linear classi-

fier using SGD for 10000 iterations with a mini-batch size

of 1000. We cross-validate for the learning rate.

6.3. Training with class imbalance

The low-shot benchmark creates a heavily imbalanced

classification problem. During low-shot learning the base

classes may have thousands of examples, while each novel

class has only a few examples. We use two simple strate-

gies to mitigate this issue. One, we oversample the novel

classes when training the classifier by sampling uniformly

over classes and then uniformly within each chosen class.

Two, we L2 regularize the multi-class logistic classifier’s

weights by adding weight decay during low-shot learning.

We find that the weight of the classifier’s L2 regularization

term has a large impact and needs to be cross-validated.

6.4. Results

Impact of representation learning. We plot a subset of

the methods1 in Figure 4, and show the full set of numbers

in Tables 1 and 2. The plots show the mean top-5 accuracy,

averaged over 5 low-shot learning trials, for the novel classes,

and over the combined set of novel and base classes. The

standard deviations are low (generally less than 0.5%, see

supplementary material) and are too small to display clearly

as error bars. Top-1 accuracy and numerical values are in

the supplementary material. We observe that:

• When tested just on base classes, many methods per-

form similarly (not shown), but their performance dif-

fers drastically in the low-shot scenarios, especially for

small n. Thus, accuracy on base classes does not gen-

eralize to novel classes, especially when novel classes

have very few training examples.

1The subset reduces clutter, making the plots more readable. We omit

results for Batch SGM, Dropout and L1 because Batch SGM performs

similarly to SGM and L2, while L1 and Dropout perform worse.
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Representation Lowshot phase n=1 2 5 10 20

ResNet-10

Baseline Classifier 14.1 33.3 56.2 66.2 71.5

Baseline Generation∗ + Classifier 29.7 42.2 56.1 64.5 70.0

SGM∗ Classifier 23.1 42.4 61.7 69.6 73.8

SGM∗ Generation∗ + Classifier 32.8 46.4 61.7 69.7 73.8

Batch SGM∗ Classifier 23.0 42.4 61.9 69.9 74.5

L1∗ Classifier 20.8 40.8 59.8 67.5 71.6

L2∗ Classifier 29.1 47.4 62.3 68.0 70.6

Triplets Classifier 24.5 41.8 56.0 61.3 64.2

Dropout [20] Classifier 26.8 43.9 59.6 66.2 69.5

Decov [7] Classifier 13.0 33.9 59.3 68.9 73.4

Multiverse [30] Classifier 13.7 30.6 52.5 63.8 71.1

Baseline Data augmentation 16.0 31.4 52.7 64.4 71.8

Baseline Model Regression [46] 20.7 39.4 59.6 68.5 73.5

Baseline Matching Network [45] 41.3 51.3 62.1 67.8 71.8

Baseline-ft Classifier 12.5 29.5 53.1 64.6 70.4

ResNet-50

Baseline Classifier 28.2 51.0 71.0 78.4 82.3

Baseline Generation∗ + Classifier 44.8 59.0 71.4 77.7 82.3

SGM∗ Classifier 37.8 57.1 72.8 79.1 82.6

SGM∗ Generation∗ + Classifier 45.1 58.8 72.7 79.1 82.6

Table 1: Top-5 accuracy on only novel classes. Best are bolded and

blue; the second best are italicized and red. ∗Our methods.

• Batch SGM, SGM, and L2 are top performers overall

with L2 being better for small n. They improve novel

class accuracy by more than 10 points for small n (1 or

2) and more than 3 points for n > 10. L1 also improves

low-shot performance, but the gains are much smaller.

• Dropout is on par with SGM for small n, but ends up

being similar or worse than the baseline for n ≥ 5 in

terms of all class accuracy. Empirically, dropout also re-

duces feature norm, suggesting that implicit L2 feature

regularization might explain some of these gains.

• Triplet loss improves accuracy for small n but is 5

points worse than the baseline for n = 20 in terms of

all class accuracy. While more sophisticated variants of

the triplet loss may improve performance [36], feature

regularization is both effective and much simpler.

• The decov loss [7] provides marginal gains for higher

values of n but is outperformed by the feature regular-

ization alternatives.

As an additional experiment, we also attempted to fine-

tune the baseline representation on all the base class exam-

ples and the small set of novel class examples. We found

that this did not improve performance over the frozen repre-

sentation (see Baseline-ft in Tables 1 and 2). This indicates

that finetuning the representation is not only expensive, but

also does not help in the low-shot learning scenario.

Impact of generation. Figure 5 shows the top-5 accu-

racies on novel classes and on base+novel classes for our

generation method applied on top of the baseline represen-

tation and the SGM feature representation. The numbers

Representation Lowshot phase n=1 2 5 10 20

ResNet-10

Baseline Classifier 43.0 54.3 67.2 72.8 75.9

Baseline Generation∗ + Classifier 52.4 59.4 67.5 72.6 76.9

SGM∗ Classifier 49.4 60.5 71.3 75.8 78.1

SGM∗ Generation∗ + Classifier 54.3 62.1 71.3 75.8 78.1

Batch SGM∗ Classifier 49.3 60.5 71.4 75.8 78.5

L1∗ Classifier 47.1 58.5 69.2 73.7 76.1

L2∗ Classifier 52.7 63.0 71.5 74.8 76.4

Triplets Classifier 47.6 57.1 65.2 68.4 70.2

Dropout [20] Classifier 50.1 59.7 68.8 72.7 74.7

Decov [7] Classifier 43.3 55.7 70.1 75.4 77.9

Multiverse [30] Classifier 44.1 54.2 67.0 73.2 76.9

Baseline Data Augmentation 44.9 54.0 66.4 73.0 77.2

Baseline Model Regression [46] 46.4 56.7 66.8 70.4 72.0

Baseline Matching Network [45] 55.0 61.5 69.3 73.4 76.2

Baseline-ft Classifier 41.7 51.7 65.0 71.2 74.5

ResNet-50

Baseline Classifier 54.1 67.7 79.1 83.2 85.4

Baseline Generation∗ + Classifier 63.1 71.5 78.8 82.6 85.4

SGM∗ Classifier 60.0 71.3 80.0 83.3 85.2

SGM∗ Generation∗ + Classifier 63.6 71.5 80.0 83.3 85.2

Table 2: Top-5 accuracy on base and novel classes. Best are bolded

and blue; the second best are italicized and red. ∗Our methods.

are in Tables 1 and 2. Note that we only generate examples

when n < k, with k = 20 for baseline representations and 5

for SGM (see Section 4.2). We observe that the generated

examples provide a large gain of over 9 points for n = 1, 2
on the novel classes for the baseline representation. When

using the SGM representation, the gains are smaller, but

significant.

We also compared our generation strategy to common

forms of data augmentation (aspect ratio and scale jitter, hor-

izontal flips, and brightness, contrast and saturation changes).

Data augmentation only provides small improvements (about

1 percentage point). This confirms that our generation strat-

egy produces more diverse and useful training examples than

simple data augmentation.

Comparison to other low-shot methods. We also com-

pared to two recently proposed low-shot learning methods:

matching networks [45] and model regression [46]. Model

regression trains a small MLP to regress from the classifier

trained on a small dataset to the classifier trained on the

full dataset. It then uses the output from this regressor to

regularize the classifier learnt in the low-shot learning phase.

Matching networks proposes a nearest-neighbor approach

that trains embeddings end-to-end for the task of low-shot

learning. We apply both these techniques on our baseline

representation.

For both these methods, the respective papers evaluated

on the novel classes only. In contrast, real-world recognition

systems will need to discriminate between data-starved novel

concepts, and base classes with lots of data. We adapt these

methods to work with both base and novel classes as follows.
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Figure 4: Representation learning comparison. Top-5 accuracy on ImageNet1k val. Top-performing feature regularization methods

reduce the training samples needed to match the baseline accuracy by 2x. Note the different Y-axis scales.
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Figure 5: Comparisons with and without example generation. Top-5 accuracy on ImageNet1k val. Note the different Y-axis scales.

1 2 5 10 20

Examples per novel class (n)

0

10

20

30

40

50

60

70

80

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

Novel classes

baseline

baseline+gen

sgm+gen

match. net

model reg

1 2 5 10 20

Examples per novel class (n)

40

50

60

70

80

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

All classes

1 2

Examples per novel class (n)

40

45

50

55

60

65

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

All classes (zoom n = 1,2)

Figure 6: Comparison to recently proposed methods. Top-5 accuracy on ImageNet1k val. Note the different Y-axis scales.

For model regression, we only use the model regressor-based

regularization on the novel classes, with the other classifiers

regularized using standard weight decay. We use one-vs-all

classifiers to match the original work.

Matching networks require the training dataset to be kept

in memory during test time. To make this tractable, we use

100 examples per class, with the novel classes correspond-

ingly oversampled.

Comparisons between these methods and our approach

are shown in Figure 6. We find that model regression im-

proves significantly over the baseline, but our generation

strategy works better for low n. Model regression also hurts

overall accuracy for high n.

Matching networks work very well on novel classes. In

terms of overall performance, they perform better than our

generation approach on top of the baseline representation,

but worse than generation combined with the SGM represen-

tation, especially for n > 2. Further, matching networks are

based on nearest neighbors and keep the entire training set

in memory, making them much more expensive at test time

than our simple linear classifiers.

Deeper networks. We also evaluated our approach on

the ResNet-50 network architecture to test if our conclusions

extend to deeper convnets that are now in use (Tables 1

and 2). First, even with the baseline representation and

without any generation we find that the deeper architecture

also leads to improved performance in all low-shot scenarios.

However, our SGM loss and our generation strategy further

improve this performance. Our final top-5 accuracy on novel

classes is still more than 8 points higher for n = 1, 2, and

our overall accuracy is about 3 points higher, indicating that

our contributions generalize to deeper and better models.

7. Conclusion

This paper proposes (1) a low-shot recognition
benchmark of realistic complexity, (2) the squared
gradient magnitude (SGM) loss that encodes the end-
goal of low-shot learning, and (3) a novel way of
transferring modes of variation from base classes to
data-starved ones. Source code and models are available at:
https://github.com/facebookresearch/

low-shot-shrink-hallucinate.
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