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Abstract

We introduce an approach to integrate segmentation in-

formation within a convolutional neural network (CNN).

This counter-acts the tendency of CNNs to smooth infor-

mation across regions and increases their spatial precision.

To obtain segmentation information, we set up a CNN to

provide an embedding space where region co-membership

can be estimated based on Euclidean distance. We use

these embeddings to compute a local attention mask rela-

tive to every neuron position. We incorporate such masks

in CNNs and replace the convolution operation with a

“segmentation-aware” variant that allows a neuron to se-

lectively attend to inputs coming from its own region. We

call the resulting network a segmentation-aware CNN be-

cause it adapts its filters at each image point according to

local segmentation cues, while at the same time remain-

ing fully-convolutional. We demonstrate the merit of our

method on two widely different dense prediction tasks, that

involve classification (semantic segmentation) and regres-

sion (optical flow). Our results show that in semantic seg-

mentation we can replace DenseCRF inference with a cas-

cade of segmentation-aware filters, and in optical flow we

obtain clearly sharper responses than the ones obtained

with comparable networks that do not use segmentation. In

both cases segmentation-aware convolution yields system-

atic improvements over strong baselines.

1. Introduction

Convolutional neural networks (CNNs) have recently

made rapid progress in pixel-wise prediction tasks, includ-

ing depth prediction [15], optical flow estimation [14], and

semantic segmentation [47, 9, 34]. This progress has been

built on the remarkable success of CNNs in image classifi-

cation tasks [29, 50] – indeed, most dense prediction mod-

els are based closely on architectures that were successful

in object recognition. While this strategy facilitates transfer

learning, it also brings design elements that are incompati-

ble with dense prediction.

By design CNNs typically produce feature maps and pre-
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Figure 1: Segmentation-aware convolution filters are invari-

ant to backgrounds. We achieve this in three steps: (i) com-

pute segmentation cues for each pixel (i.e., “embeddings”),

(ii) create a foreground mask for each patch, and (iii) com-

bine the masks with convolution, so that the filters only pro-

cess the local foreground in each image patch.

dictions that are smooth and low-resolution, resulting from

the repeated pooling and subsampling stages in the net-

work architecture, respectively. These stages play an im-

portant role in the hierarchical consolidation of features,

and widen the higher layer effective receptive fields. The

low-resolution issue has received substantial attention: for

instance methods have been proposed for replacing the

subsampling layers with resolution-preserving alternatives

such as atrous convolution [9, 58, 43], or restoring the lost

resolution via upsampling stages [39, 34]. However, the

issue of smoothness has remained relatively unexplored.

Smooth neuron outputs result from the spatial pooling (ab-

straction) of information across different regions. This can

be useful for in high-level tasks, but can degrade accuracy

on per-pixel prediction tasks where rapid changes in acti-

vation may be required e.g. around region boundaries, or

motion discontinuities.
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To address the issue of smoothness, we propose

segmentation-aware convolutional networks, which oper-

ate as illustrated in Figure 1. These networks adjust their

behavior on a per-pixel basis according to segmentation

cues, so that the filters can selectively “attend” to infor-

mation coming from the region containing the neuron and

treat it differently from background signals. To achieve this,

we complement each image patch with a local foreground-

background segmentation mask that acts like a gating mech-

anism for the information feeding into a neuron. This avoids

feature blurring, by reducing the extent to which foreground

and contextual information is mixed, and allows neuron ac-

tivation levels to change rapidly, by dynamically adapting

the neuron’s behavior to the image content. This goes be-

yond sharpening the network outputs post-hoc, as is cur-

rently common practice; it fixes the blurring problem “be-

fore the damage is done”, since it can be integrated at both

early and later stages of a CNN.

The general idea of combining filtering with segmen-

tation to enhance sharpness dates back to nonlinear im-

age processing [42, 53] and segmentation-aware feature ex-

traction [54, 55]. Apart from showing that this technique

successfully carries over to CNNs, another contribution of

our work consists in using the network itself to obtain seg-

mentation information, rather than relying on hand-crafted

pipelines. In particular, as in an earlier version of this work

[23], we use a constrastive side loss to train the “segmenta-

tion embedding” branch of our network, so that we can then

construct segmentation masks using embedding distances.

There are three steps to creating segmentation-aware

convolutional nets, described in Sections 3.1-3.4: (i) learn

segmentation cues, (ii) use the cues to create local fore-

ground masks, and (iii) use the masks together with con-

volution, to create foreground-focused convolution. Our

approach realizes each of these steps in a unified manner

that is at once general (i.e., applicable to both discrete and

continuous prediction tasks), differentiable (i.e., end-to-end

trainable as a neural network), and fast (i.e., implemented

as GPU-optimized variants of convolution).

Experiments show that minimally modifying existing

CNN architectures to use segmentation-aware convolution

yields substantial gains in two widely different task set-

tings: dense discrete labelling (i.e., semantic segmenta-

tion), and dense regression (i.e., optical flow estimation).

Source code for this work is available online at http:

//cs.cmu.edu/˜aharley/segaware.

2. Related work

This work builds on a wide range of research topics. The

first is metric learning. The goal of metric learning is to pro-

duce features from which one can estimate the similarity be-

tween pixels or regions in the input [18]. Bromley et al. [5]

influentially proposed learning these descriptors in a con-

volutional network, for signature verification. Subsequent

related work has yielded compelling results for tasks such

as wide-baseline stereo correspondence [20, 59, 60], and

face verification [11]. Recently, the topic of metric learning

has been studied extensively in conjunction with image de-

scriptors, such as SIFT and SID [54, 49, 3], improving the

applicability of those descriptors to patch-matching prob-

lems. Most prior work in metric learning has been con-

cerned with the task of finding one-to-one correspondences

between pixels seen from different viewpoints. In contrast,

the focus of our work is as in [23] to bring a given point

close to all of the other points that lie in the same object.

This requires a higher degree of invariance than before –

not only to rotation, scale, and partial occlusion, but also to

the interior appearance details of objects. Concurrent work

has targeted a similar goal, for body joints [38] and instance

segmentation [17]. We refer to the features that produce

these invariances as embeddings, as they embed pixels into

a space where the quality of correspondences can be mea-

sured as a distance.

The embeddings in our work are used to generate lo-

cal attention masks to obtain segmentation-aware feature

maps. The resulting features are meant to capture the ap-

pearance of the foreground (relative to a given point), while

being invariant to changes in the background or occlusions.

To date, related work has focused on developing hand-

crafted descriptors that have this property. For instance in

[54, 55], soft segmentation masks [41, 32] and boundary

cues [36, 48] have been used to develop segmentation-aware

variants of handcrafted features, like SIFT and HOG, effec-

tively suppressing contributions from pixels likely to come

from the background. More in line with the current paper

are recent works that incorporates segmentation cues into

CNNs, by sharpening or masking intermediate feature maps

with the help of superpixels [12, 19]. This technique adds

spatial structure to multiple stages of the pipeline. In all

of these works, the affinities are defined in a handcrafted

manner, and are typically pre-computed in a separate pro-

cess. In contrast, we learn the cues directly from image data,

and compute the affinities densely and “on the fly” within

a CNN. Additionally, we combine the masking filters with

arbitrary convolutional filters, allowing any layer (or even

all layers) to perform segmentation-aware convolution.

Concurrent work in language modelling [13] and im-

age generation [40] has also emphasized the importance

of locally masked (or “gated”) convolutions. Unlike these

works, our approach uniquely makes use of embeddings to

measure context relevance, which lends interpretability to

the masks, and allows for task-agnostic pre-training. Simi-

lar attention mechanisms are being used in visual [35] and

non-visual [52] question answering tasks. These works use

a question to construct a single or a limited sequence of

globally-supported attention signals. Instead, we use con-
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volutional embeddings and efficiently construct local atten-

tion masks ‘in batch mode’ around the region of any given

neuron.

Another relevant thread of works relates to efforts on

mitigating the low-resolution and spatially-imprecise pre-

dictions of CNNs. A resolution-preserving alternative to

subsampling is to use atrous (aka dilated) convolution

[9, 58], so that neurons cover a wider field of view with the

same number of parameters. Approaches to counter the spa-

tial imprecision weakness can be grouped into cures (i.e.,

post-processes), and preventions (i.e., methods integrated

earlier in the CNN). The “cures” aim to restore resolution or

sharpness after it has been lost. For example, one effective

approach is to add trainable upsampling stages to the net-

work, via “deconvolution” layers [39, 34]. A complemen-

tary approach is to stack features from multiple resolutions

near the end of the network, so that the final stages have

access to both high-resolution (shallow) features and low-

resolution (deep) features [22, 37, 14]. Sharpening can be

done outside of the CNN, e.g., using edges found in the im-

age [8, 4], or using a dense conditional random field (CRF)

[28, 9, 58]. Recently, the CRF approach has been integrated

more closely with the CNN, by framing the CRF as a re-

current network, and chaining it to the backpropagation of

the underlying CNN [61]. We make connections and exten-

sions to CRFs in Section 3.3 and provide comparisons in

Section 5.1.

3. Technical approach

The following subsections describe the main compo-

nents of our approach. We begin by learning segmen-

tation cues (Sec. 3.1). We formulate this as the task of

finding “segmentation embeddings” for the pixels. This

step yields features that allow region similarity to be mea-

sured as a distance in feature-space. That is, if two pix-

els have nearby embeddings, then they likely come from

the same object. We next create soft segmentation masks

from the embeddings (Sec. 3.2). Our approach general-

izes the bilateral filter [31, 2, 51, 53], which is an effec-

tive technique for creating adaptive smoothing filters that

preserve object boundaries. Noting that CRFs make heavy

use of bilateral filters to sharpen posterior estimates, we

next describe how to simplify and improve CRFs using our

segmentation-aware masks (Sec. 3.3). Finally, in Sec. 3.4

we introduce segmentation-aware convolution, where we

merge segmentation-aware masks with intermediate con-

volution operations, giving rise to segmentation-aware net-

works.

3.1. Learning segmentation cues

The first goal of our work is to obtain segmentation cues.

In particular, we desire features that can be used to infer –

Input
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Figure 2: Visualization of the goal for pixel embeddings.

For any two pixels sampled from the same object, the em-

beddings should have a small relative distance. For any

two pixels sampled from different objects, the embeddings

should have a large distance. The embeddings are illustrated

in 2D; in principle, they can have any dimensionality.

for each pixel – what other pixels belong to the same object

(or scene segment).

Given an RGB image, I, made up of pixels, p ∈ R
3 (i.e.,

3D vectors encoding color), we learn an embedding func-

tion that maps (i.e., embeds) the pixels into a feature space

where semantic similarity between pixels can be measured

as a distance [11]. Choosing the dimensionality of that fea-

ture space to be D = 64, we can write the embedding func-

tion as f : R3 7→ R
D, or more specifically, f(p) = e, where

e is the embedding for pixel p.

Pixel pairs that lie on the same object should produce

similar embeddings (i.e., a short distance in feature-space),

and pairs from different objects should produce dissimilar

embeddings (i.e., a large distance in feature-space). Fig-

ure 2 illustrates this goal with 2D embeddings. Given se-

mantic category labels for the pixels as training data, we can

represent the embedding goal as a loss function over pixel

pairs. For any two pixel indices i and j, and corresponding

embeddings ei, ej and object class labels li, lj , we can op-

timize the same-label pairs to have “near” embeddings, and

the different-label pairs to have “far” embeddings. Using

α and β to denote the “near” and “far” thresholds, respec-

tively, we can define the pairwise loss as

ℓi,j =

{

max (‖ei − ej‖ − α, 0) if li = lj
max (β − ‖ei − ej‖, 0) if li 6= lj

, (1)

where ‖ ·‖ denotes a vector norm. We find that embeddings

learned from L1 and L2 norms are similar, but L1-based

embeddings are less vulnerable to exploding gradients. For

thresholds, we use α = 0.5, and β = 2. In practice, the

specific values of α and β are unimportant, so long as α ≤ β

and the remainder of the network can learn to compensate

for the scale of the resulting embeddings, e.g., through λ in

upcoming Eq. 3.

To quantify the overall quality of the embedding func-

tion, we simply sum the pairwise losses (Eq. 1) across the

image. Although for an image with N pixels there are N2

pairs to evaluate, we find it is effective to simply sample
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Figure 3: Embeddings and local masks are computed

densely for input images. For four locations in the im-

age shown on the left, the figure shows (left-to-right) the

extracted patch, the embeddings (compressed to three di-

mensions by PCA for visualization), the embedding-based

mask, and the mask generated by color distance.

pairs from a neighborhood around each pixel, as in

L =
∑

i∈N

∑

j∈Ni

ℓi,j , (2)

where j ∈ Ni iterates over the spatial neighbors of index i.

In practice, we use three overlapping 3× 3 neighborhoods,

with atrous factors [9] of 1, 2, and 5. We train a fully-

convolutional CNN to minimize this loss through stochastic

gradient descent. The network design is detailed in Sec. 4.

3.2. Segmentation­aware bilateral filtering

The distance between the embedding at one index, ei,

and any other embedding, ej , provides a magnitude indicat-

ing whether or not i and j fall on the same object. We can

convert these magnitudes into (unnormalized) probabilities,

using the exponential distribution:

mi,j = exp(−λ‖ei − ej‖), (3)

where λ is a learnable parameter specifying the hardness

of this decision, and the notation mi,j denotes that i is the

reference pixel, and j is the neighbor being considered. In

other words, considering all indices j ∈ Ni, mi represents a

foreground-background segmentation mask, where the cen-

tral pixel i is defined as the foreground, i.e., mi,i = 1. Fig-

ure 3 shows examples of the learned segmentation masks

(and the intermediate embeddings), and compares them

with masks computed from color distances. In general,

the learned semantic embeddings successfully generate ac-

curate foreground-background masks, whereas the color-

based embeddings are not as reliable.

A first application of these masks is to perform a

segmentation-aware smoothing (of pixels, features, or pre-

dictions). Given an input feature xi, we can compute a

segmentation-aware smoothed result, yi, as follows:

yi =

∑

k xi−kmi,i−k
∑

k mi,i−k

, (4)

Embed

FC8
Input Sharpened FC8

Figure 4: Segmentation-aware bilateral filtering. Given an

input image (left), a CNN typically produces a smooth pre-

diction map (middle top). Using learned per-pixel embed-

dings (middle bottom), we adaptively smooth the FC8 fea-

ture map with our segmentation-aware bilateral filter (right).

where k is a spatial displacement from index i. Equation 4

has some interesting special cases, which depend on the un-

derlying indexed embeddings ej :

• if ej = 0, the equation yields the average filter;

• if ej = i, the equation yields Gaussian smoothing;

• if ej = (i, pi), where pi denotes the color vector at i,

the equation yields bilateral filtering [31, 2, 51, 53].

Since the embeddings are learned in a CNN, Eq. 4 repre-

sents a generalization of all these cases. For comparison,

Jampani et al. [25] propose to learn the kernel used in the

bilateral filter, but keep the arguments to the similarity mea-

sure (i.e., ei) fixed. In our work, by training the network

to provide convolutional embeddings, we additionally learn

the arguments of the bilateral distance function.

When the embeddings are integrated into a larger net-

work that uses them for filtering, the embedding loss func-

tion (Eq. 2) is no longer necessary. Since all of the terms

in the filter function (Eq. 4) are differentiable, the global

objective (e.g., classification accuracy) can be used to tune

not only the input terms, xi, but also the mask terms, mi,j ,

and their arguments, ej . Therefore, the embeddings can

be learned end-to-end in the network when used to create

masks. In our work, we first train the embeddings with a

dedicated loss, then fine-tune them in the larger pipeline in

which they are used for masks.

Figure 4 shows an example of how segmentation-aware

bilateral filtering sharpens FC8 predictions in practice.

3.3. Segmentation­aware CRFs

Segmentation-aware bilateral filtering can be used to im-

prove CRFs. As discussed earlier, dense CRFs [28] are

effective at sharpening the prediction maps produced by

CNNs [9, 61].

These models optimize a Gibbs energy given by

E(x) =
∑

i

ψu(xi) +
∑

i

∑

j≤i

ψp(xi, xj), (5)
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where i ranges over all pixel indices in the image. In seman-

tic segmentation, the unary term ψu is typically chosen to

be the negative log probability provided by a CNN trained

for per-pixel classification. The pairwise potentials take the

form ψp(xi, xj) = µ(xi, xj)k(fi, fj), where µ is a label

compatibility function (e.g., the Potts model), and k(fi, fj)
is a feature compatibility function. The feature compatibil-

ity is composed of an appearance term (a bilateral filter),

and a smoothness term (an averaging filter), in the form

k(fi, fj) = w1 exp

(

−
‖i− j‖2

2θ2α
−

‖pi − pj‖
2

2θ2β

)

+ w2 exp

(

−
‖i− j‖2

2θ2γ

)

,

(6)

where the wk are weights on the two terms. Combined with

the label compatibility function, the appearance term adds

a penalty if a pair of pixels are assigned the same label but

have dissimilar colors. To be effective, these filtering oper-

ations are carried out with extremely wide filters (e.g., the

size of the image), which necessitates using a data structure

called a permutohedral lattice [1].

Motivated by our earlier observation that learned embed-

dings are a stronger semantic similarity signal than color

(see Fig. 3), we replace the color vector pi in Eq. 6 with

the learned embedding vector ei. The permutohedral lattice

would be inefficient for such a high-dimensional filter, but

we find that the signal provided by the embeddings is rich

enough that we can use small filters (e.g., 13 × 13), and

achieve the same (or better) performance. This allows us to

implement the entire CRF with standard convolution oper-

ators, reduce computation time by half, and backpropagate

through the CRF into the embeddings.

3.4. Segmentation­aware convolution

The bilateral filter in Eq. 4 is similar in form to convo-

lution, but with a non-linear sharpening mask instead of a

learned task-specific filter. In this case, we can have the

benefits of both, by inserting the learned convolution filter,

t, into the equation:

yi =

∑

k xi−kmi,i−ktk
∑

k mi,i−k

. (7)

This is a non-linear convolution: the input signal is multi-

plied pointwise by the normalized local mask before form-

ing the inner product with the learned filter. If the learned

filter ti is all ones, we have the same bilateral filter as in

Eq. 4; if the embedding-based segmentation mask mi is all

ones, we have standard convolution. Since the masks in

this context encode segmentation cues, we refer to Eq. 7 as

segmentation-aware convolution.

The mask acts as an applicability function for the fil-

ter, which makes segmentation-aware convolution a special

case of normalized convolution [27]. The idea of normal-

ized convolution is to “focus” the convolution operator on

the part of the input that truly describes the input signal,

avoiding the interpolation of noise or missing information.

In this case, “noise” corresponds to information coming

from regions other than the one to which index i belongs.

Any convolution filter can be made segmentation-aware.

The advantage of segmentation awareness depends on the

filter. For instance, a center-surround filter might be ren-

dered useless by the effect of the mask (since it would block

the input from the “surround”), whereas a filter selective to

a particular shape might benefit from invariance to context.

The basic intuition is that the information masked out needs

to be distracting rather than helping; realizing this in prac-

tice requires learning the masking functions. In our work,

we use backpropagation to learn both the arguments and the

softness of each layer’s masking operation, i.e., both ei and

λ in Eq. 3. Note that the network can always fall back to a

standard CNN by simply learning a setting of λ = 0.

4. Implementation details

This section first describes how the basic ideas of the

technical approach are integrated in a CNN architecture,

and then provides details on how the individual components

are implemented efficiently as convolution-like layers.

4.1. Network architecture

Any convolutional network can be made segmentation-

aware. In our work, the technique for achieving this mod-

ification involves generating embeddings with a dedicated

“embedding network”, then using masks computed from

those embeddings to modify the convolutions of a given

task-specific network. This implementation strategy is il-

lustrated in Figure 5.

The embedding network has the following architecture.

The first seven layers share the design of the earliest con-

volution layers in VGG-16 [7], and are initialized with that

network’s (object recognition-trained) weights. There is a

subsampling layer after the second convolution layer and

also after the fourth convolution layer, so the network cap-

tures information at three different scales. The final output

from each scale is sent to a pairwise distance computation

(detailed in Sec. 4.2) followed by a loss (as in Eq. 1), so that

each scale develops embedding-like representations. The

outputs from the intermediate embedding layers are then

upsampled to a common resolution, concatenated, and sent

to a convolution layer with 1× 1 filters. This layer learns a

weighted average of the intermediate embeddings, and cre-

ates the final embedding for each pixel.

The idea of using a loss at intermediate layers is inspired

by Xie and Tu [57], who used this strategy to learn boundary

cues in a CNN. The motivation behind this strategy is to

provide early layers a stronger signal of the network’s end
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Figure 5: General schematic for our segmentation-aware CNN. The first part is an embedding network, which is guided

to compute embedding-like representations at multiple scales, and constructs a final embedding as a weighted sum of the

intermediate embeddings. The loss on these layers operates on pairwise distances computed from the embeddings. These

same distances are then used to construct local attention masks, that intercept the convolutions in a task-specific network.

The final objective backpropagates through both networks, fine-tuning the embeddings for the task.

goal, reducing the burden on backpropagation to carry the

signal through multiple layers [30].

The final embeddings are used to create masks in the

task-specific network. The lightest usage of these masks in-

volves performing segmentation-aware bilateral filtering on

the network’s final layer outputs; this achieves the sharp-

ening effect illustrated in Figure 4. The most intrusive us-

age of the masks involves converting all convolutions into

segmentation-aware convolutions. Even in this case, how-

ever, the masks can be inserted with no detrimental effect

(i.e., by initializing with λ = 0 in Eq. 3), allowing the net-

work to learn whether or not (and at what layer) to acti-

vate the masks. Additionally, if the target task has discrete

output labels, as in the case of semantic segmentation, a

segmentation-aware CRF can be attached to the end of the

network to sharpen the final output predictions.

4.2. Efficient convolutional implementation details

We reduce all steps of the pipeline to matrix multipli-

cations, making the approach very efficient on GPUs. We

achieve this by casting the mask creation (i.e., pairwise em-

bedding distance computation) as a convolution-like opera-

tion, and implementing it in exactly the way Caffe [26] re-

alizes convolution: via an image-to-column transformation,

followed by matrix multiplication.

More precisely, the distance computation works as fol-

lows. For every position i in the feature-map provided by

the layer below, a patch of features is extracted from the

neighborhood j ∈ Ni, and distances are computed between

the central feature and its neighbors. These distances are ar-

ranged into a row vector of lengthK, whereK is the spatial

dimensionality of the patch. This process turns an H ×W

feature-map into an H ·W ×K matrix, where each element

in the K dimension holds a distance relating that pixel to

the central pixel at that spatial index.

To convert the distances into masks, theH·W×K matrix

is passed through an exponential function with a specified

hardness, λ. This operation realizes the mask term (Eq. 3).

In our work, the hardness of the exponential is learned as a

parameter of the CNN.

To perform the actual masking, the input to be masked

is simply processed by an image-to-column transformation

(producing another H · W × K matrix), then multiplied

pointwise with the normalized mask matrix. From that

product, segmentation-aware bilateral filtering is merely a

matter of summing across the K dimension, producing an

H · W × 1 matrix that can be reshaped into dimensions

H × W . Segmentation-aware convolution (Eq. 7) simply

requires multiplying the H ·W ×K masked values with a

K×F matrix of weights, whereF is the number of convolu-

tion filters. The result of this multiplication can be reshaped

into F different H ×W feature maps.

5. Evaluation

We evaluate on two different dense prediction tasks: se-

mantic segmentation, and optical flow estimation. The goal

of the experiments is to minimally modify strong baseline

networks, and examine the effects of instilling various lev-

els of “segmentation awareness”.

5.1. Semantic segmentation

Semantic segmentation is evaluated on the PASCAL

VOC 2012 challenge [16], augmented with additional im-

ages from Hariharan et al. [21]. Experiments are carried

out with two different baseline networks, “DeepLab” [9]

and “DeepLabV2” [10]. DeepLab is a fully-convolutional

version of VGG-16 [7], using atrous convolution in some

layers to reduce downsampling. DeepLabV2 is a fully-

convolutional version of a 101-layer residual network

(ResNet) [24], modified with atrous spatial pyramid pooling

and multi-scale input processing. Both networks are initial-
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Table 1: PASCAL VOC 2012 validation results for the var-

ious considered approaches, compared against the baseline.

All methods use DeepLab as the base network; “BF” means

bilateral filter; “SegAware” means segmentation-aware.

Method IOU (%)

DeepLab 66.33

. . . + CRF 67.60

. . . + 9× 9 SegAware BF 66.98

. . . + 9× 9 SegAware BF ×2 67.36

. . . + 9× 9 SegAware BF ×4 67.68

. . . with FC6 SegAware 67.40

. . . with all layers SegAware 67.94

. . . with all layers SegAware + 9× 9 BF 68.00

. . . with all layers SegAware + 7× 7 BF ×2 68.57

. . . with all layers SegAware + 5× 5 BF ×4 68.52

. . . with all layers and CRF SegAware 69.01

ized with weights learned on ImageNet [46], then trained on

the Microsoft COCO training and validation sets [33], and

finally fine-tuned on the PASCAL images [16, 21].

To replace the densely connected CRF used in the orig-

inal works [9, 10], we attach a very sparse segmentation-

aware CRF. We select the hyperparameters of the

segmentation-aware CRF via cross validation on a small

subset of the validation set, arriving at a 13 × 13 bilateral

filter with an atrous factor of 9, a 5 × 5 spatial filter, and 2

meanfield iterations for both training and testing.

We carry out the main set of experiments with DeepLab

on the VOC validation set, investigating the piecewise ad-

dition of various segmentation-aware components. A sum-

mary of the results is presented in Table 1. The first re-

sult is that using learned embeddings to mask the output

of DeepLab approximately provides a 0.6% improvement

in mean intersection-over-union (IOU) accuracy. This is

achieved with a single application of a 9 × 9 bilateral-like

filter on the FC8 outputs produced by DeepLab.

Once the embeddings and masks are computed, it is

straightforward to run the masking process repeatedly. Ap-

plying the process multiple times improves performance by

strengthening the contribution from similar neighbors in the

radius, and also by allowing information from a wider ra-

dius to contribute to each prediction. Applying the bilat-

eral filter four times increases the gain in IOU accuracy to

1.3%. This is at the cost of approximately 500 ms of addi-

tional computation time. A dense CRF yields slightly worse

performance, at approximately half the speed (1 second).

Segmentation-aware convolution provides similar im-

provements, at less computational cost. Simply making the

FC6 layer segmentation-aware produces an improvement of

approximately 1% to IOU accuracy, at a cost of +100 ms,

Input Labels Baseline Proposed

Figure 6: Visualizations of semantic segmentations pro-

duced by DeepLab and its segmentation-aware variant on

the PASCAL VOC 2012 validation set.
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Figure 7: Performance near object boundaries (“trimaps”).

Example trimaps are visualized (in white) for the image in

the top left; the trimap of half-width three is shown in the

middle left, and the trimap of half-width ten is shown on the

bottom left. Mean IOU performance of the baseline and two

segmentation-aware variants are plotted (right) for trimap

half-widths 1 to 40.

while making all layers segmentation-aware improves accu-

racy by 1.6%, at a cost of just +200 ms.

To examine where the gains are taking place, we com-

pute each method’s accuracy within “trimaps” that extend

from the objects’ boundaries. A trimap is a narrow band (of

a specified half-width) that surrounds a boundary on either

side; measuring accuracy exclusively within this band can

help separate within-object accuracy from on-boundary ac-

curacy [9]. Figure 7 (left) shows examples of trimaps, and

(right) plots accuracies as a function of trimap width. The

results show that segmentation-aware convolution offers its

main improvement slightly away from the boundaries (i.e.,

beyond 10 pixels), while bilateral filtering offers its largest

improvement very near the boundary (i.e., within 5 pixels).

Combining segmentation-aware convolution with bilat-

eral filtering pushes the gains to 2.2%. Finally, adding a

segmentation-aware CRF to the pipeline increases IOU ac-
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Table 2: PASCAL VOC 2012 test results.

Method IOU (%)

DeepLab 67.0

DeepLab+CRF 68.2

SegAware DeepLab 69.0

DeepLabV2 79.0

DeepLabV2+CRF 79.7

SegAware DeepLabV2 79.8

curacy by an additional 0.5%, bringing the overall gain to

approximately 2.7% over the DeepLab baseline.

We evaluate the “all components” approach on the VOC

test server, with both DeepLab and DeepLabV2. Results are

summarized in Table 2. The improvement over DeepLab is

2%, which is noticeable in visualizations of the results, as

shown in Figure 6. DeepLabV2 performs approximately 10

points higher than DeepLab; we exceed this improvement

by approximately 0.8%. The segmentation-aware modifi-

cations perform equally well (0.1% superior) to dense CRF

post-processing, despite being simpler (using only a sparse

CRF, and replacing the permutohedral lattice with basic

convolution), and twice as fast (0.5s rather than 1s).

5.2. Optical flow

We evaluate optical flow on the recently introduced Fly-

ingChairs [14] dataset. The baseline network for this ex-

periment is the “FlowNetSimple” model from Dosovitskiy

et al. [14]. This is a fully-convolutional network, with a

contractive part that reduces the resolution of the input by

a factor of 64, and an expansionary part (with skip connec-

tions) that restores the resolution to quarter-size.

In this context, we find that relatively minor

segmentation-aware modifications yield substantial gains in

accuracy. Using embeddings pre-trained on PASCAL VOC,

we make the final prediction layer segmentation-aware,

and add 9 × 9 bilateral filtering to the end of the network.

This reduces the average end-point error (aEPE) from 2.78

to 2.26 (an 18% reduction in error), and reduces average

angular error by approximately 6 degrees, from 15.58

to 9.54. We achieve these gains without the aggressive

data augmentation techniques pursued by Dosovitskiy et

al. [14]. Table 3 lists these results in the context of some

related work in this domain, demonstrating that the gain is

fairly substantial. FlowNetCorr [14] achieves a better error,

but it effectively doubles the network size and runtime,

whereas our method only adds a shallow set of embedding

layers. As shown in Figure 8, a qualitative improvement to

the flow fields is easily discernable, especially near object

boundaries. Note that the performance of prior FlowNet

architectures diminishes with the application of variational

Input Labels Baseline Proposed

Figure 8: Visualizations of optical flow produced by

FlowNet and its segmentation-aware variant on the Fly-

ingChairs test set: segmentation-awareness yields much

sharper results than the baseline.

Table 3: FlyingChairs test results.

Method aEPE aAE

SPyNet [44] 2.63 -

EpicFlow [45] 2.94 -

DeepFlow [56] 3.53 -

LDOF [6] 3.47 -

FlowNetSimple [14] 2.78 15.58

FlowNetSimple + variational [14] 2.86 -

FlowNetCorr [14] 2.19 -

FlowNetCorr + variational [14] 2.61 -

SegAware FlowNetSimple 2.36 9.54

refinement [14], likely because this step was not integrated

in the training process. The filtering methods of this work,

however, are easily integrated into backpropagation.

6. Conclusion

This work introduces Segmentation-Aware Convolu-

tional Networks, a direct generalization of standard CNNs

that allows us to seamlessly accommodate segmentation in-

formation throughout a deep architecture. Our approach

avoids feature blurring before it happens, rather than fix-

ing it post-hoc. The full architecture can be trained end-to-

end. We have shown that this allows us to directly com-

pete with segmentation-specific structured prediction al-

gorithms, while easily extending to continuous prediction

tasks, such as optical flow estimation, that currently have

no remedy for blurred responses.
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