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Abstract

To solve deep metric learning problems and producing

feature embeddings, current methodologies will commonly

use a triplet model to minimise the relative distance between

samples from the same class and maximise the relative dis-

tance between samples from different classes. Though suc-

cessful, the training convergence of this triplet model can be

compromised by the fact that the vast majority of the train-

ing samples will produce gradients with magnitudes that are

close to zero. This issue has motivated the development of

methods that explore the global structure of the embedding

and other methods that explore hard negative/positive min-

ing. The effectiveness of such mining methods is often asso-

ciated with intractable computational requirements. In this

paper, we propose a novel deep metric learning method that

combines the triplet model and the global structure of the

embedding space. We rely on a smart mining procedure that

produces effective training samples for a low computational

cost. In addition, we propose an adaptive controller that

automatically adjusts the smart mining hyper-parameters

and speeds up the convergence of the training process. We

show empirically that our proposed method allows for fast

and more accurate training of triplet ConvNets than other

competing mining methods. Additionally, we show that our

method achieves new state-of-the-art embedding results for

CUB-200-2011 and Cars196 datasets.

1. Introduction

The development of deep metric learning models for the

estimation of effective feature embedding [2, 4, 9, 11, 15,

16, 17, 13, 22, 25, 27, 26] is at the core of many recently

proposed computer vision methods [3, 14, 19, 24, 28]. The

main advantage of such models lies in their ability to au-

tomatically learn metric spaces, where samples from sim-

ilar classes tend to be close together, while samples from

different classes are more likely to be far from each other.

The main scenario envisaged for such an approach involves

∗Vijay Kumar B G and Ben Harwood contributed equally to this work

the presence of an extremely large number of classes (more

than 105 classes) and low number of samples per class (in

[101, 102]), where the implementation of traditional classi-

fiers becomes challenging [19, 13].

Arguably, the most explored deep learning model that

can estimate feature embedding is based on triplet net-

works [6, 24], which are an extension of the siamese net-

work [1]. Triplet networks are composed of three identical

convolutional neural networks (ConvNets) that are trained

using triplets of samples: an anchor sample, a positive sam-

ple of the same class as the anchor, and a negative sam-

ple of a different class. The training procedure is based

on a loss function that penalises large relative distances be-

tween the anchor and positive samples and small relative

distances between the anchor and negative samples. There-

fore, this training procedure relies on triplets that contain

hard positive cases (anchor and positive samples that are far

apart) and hard negative cases (anchor and negative sam-

ples that are close together). In other words, these hard

samples will form triplets that produce gradients with suffi-

ciently large magnitude. Assuming that a training set has

N samples, then the set of triplets has complexity size

O(N3), which means that its formation is infeasible even

for datasets of modest sizes (e.g., N = 105). This issue has

lead to the implementation of importance sampling tech-

niques [14, 16, 24] that stochastically under-samples the set

of triplets. Here, their success relies on using enough sam-

ples to guarantee that a certain fraction of the hard posi-

tives and negatives are available for training 1. Given the

high complexity involved in finding hard positive and neg-

ative samples, another training procedure has been devel-

oped in order to guarantee training samples with large gra-

dient magnitudes: the incorporation of loss functions that

take into account the global structure of the embedding

space [9, 13, 22].

In this paper, we propose a novel deep metric learning

approach that combines a global [9] and a triplet loss [6, 24]

computed using training samples acquired from a smart

sampling method that has low computational complexity [5]

1We have not found a formal study that describes the number of sam-

ples used for training versus the fraction of hard positive/negatives.
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Figure 1. Our proposed deep metric learning model that combines a triplet and a global loss and uses a smart sampling procedure that is

capable of quickly searching the entire training set to select effective training samples. The hyper-parameters of the smart sampling are

automatically estimated by the proposed adaptive controller with the goal of accelerating the training process.

and can find effective training samples that produce gra-

dients with large magnitude (see Fig.1). Essentially, our

smart sampling method circumvents the importance sam-

pling issue mentioned above, enabling our model to be ro-

bustly trained with more effective hard negatives and posi-

tives, and without the need for a stochastic under-sampling

of the training set. Additionally, we propose a novel adap-

tive controller that accelerates learning by monitoring train-

ing performance, estimating its own internal parameters

and then automatically adjusting the smart sampling hyper-

parameters. We show empirically that our proposed method

allows for fast and more accurate training of triplet Con-

vNets than other competing mining methods. Additionally,

we show that our method achieves new state-of-the-art em-

bedding results for CUB-200-2011 and Cars196 datasets.

2. Related Work

In this section, we review recent approaches for selecting

hard positives and negatives for training triplet and siamese

networks, methods that explore the global structure of the

embedding space, and the approximate nearest neighbour

search that forms the basis of our proposed method. As

pointed out by Shrivastava et al. [15], hard negative and

positive mining is a relabeling of the problem of bootstrapp-

ping [20], where the idea is to start the training of the em-

bedding model with triplets containing positives and nega-

tives that appear to be well separated, and gradually intro-

duce more challenging positive and negative samples as we

progress with the training. One of the major issues associ-

ated with this approach is on how to introduce such chal-

lenging samples - in particular: 1) how to effectively and

efficiently sample the training set to select effective training

samples, particularly considering that there are N3 triplets

from a training set containing N samples, and 2) what is the

definition of challenging positive and negative samples.

Wang et al. [24] described a way to build triplets based

on a manual annotation of sample relevance. Using such

relevance, the idea is to use importance sampling to build

triplets, but this approach is limited by the fact that it needs

those manual annotations. More recently proposed ap-

proaches rely on image label, such as the siamese network

that gradually introduces hardest possible positive and neg-

ative samples [16]. This is achieved by randomly sampling

the training set for pairs of anchor and positive samples, and

sorting these pairs in descending order with respect to the

distance between the two samples in the embedding space.

A similar approach is applied for pairs of anchor and nega-

tive samples, but the sorting is in ascending order. Then, the

training pairs are formed by the top pairs in both lists. We

use this sampling scheme as the hard mining baseline. Han

et al. [4] introduced an efficient reservoir sampling method

to select positive and negative samples, but they do not ap-

ply any type of importance sampling to select challenging

samples. In FaceNet, Schroff et al. [14] introduced a triplet

training approach, where pairs of anchor and positive sam-

ples are randomly selected, and pairs of anchor and negative

samples are selected from a subset of the training set (i.e.,

the mini-batch in regular deep learning model training) us-

ing a criterion that selects ”semi-hard” negatives: pairs of

anchor and negative samples are selected if they are close,

but at least farther than the anchor-positive pair. This semi-

hard negative sampling improves the robustness of training

by avoiding overfitting outliers in the training set. An effi-

cient computation of the full matrix of pairwise distances of

a subset of the training set (i.e., the mini-batch) allows Song

et al. [19] to design of a new loss function that integrates

all positive and negative samples to form a lifted structured

embedding. However, differently from our work, the lifted
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structured embedding only works for the mini-batch instead

of the full training set.

The aforementioned issues present in the training of

triplet models has motivated the development of approaches

that explore the global structure of the embedding space.

Kumar et al. [9] proposed a global loss function that uses

first and second order statistics to allow for robust training

of triplet networks in an approach that improves the training

robustness, but still relies on stochastic sampling of posi-

tive and negative samples. Ustinova and Lempitsky [22]

presented a loss function that minimises the integral of the

product between the distribution of negative similarities and

the cumulative density function of the positive similarities.

Similarly, Song et al. [13] introduced a loss function that op-

timises a global clustering quality metric (NMI). As shown

by Kumar et al. [9], it appears that a combination of lo-

cal and global losses can produce the most effective em-

bedding spaces, so we believe that the last two approaches

mentioned above [22, 13] still have room for improvement,

but that improvement depends on more effective hard nega-

tive and positive sampling approaches.

In seeking a more effective approach to find hard triplets,

we observe that hard negative mining (and to a lesser ex-

tent hard positive mining) can be framed as an instance

of the well studied approximate nearest neighbour (ANN)

search problem. In particular, when mining for negatives

we are primarily interested in avoiding the computational

cost of exhaustively searching through the entire training

set. Fortunately, ANN search methods are able to trade-off

a small decrease in nearest neighbour recall for large gains

in computational efficiency. In the context of hard nega-

tive mining, a small set of nearest neighbours in the current

embedding can be guaranteed to contain samples from at

least two difference classes (due to training with very few

samples per class). A FANNG (Fast Approximate Nearest

Neighbour Graph) [5] is a graph based index that can find

these neighbourhoods quickly and with a very high rate of

recall. Additionally, FANNGs are built in the full embed-

ding space which allows the triplet selection to reuse exact

distances that have been computed during the ANN search.

FANNG provides state-of-the-art performance at high recall

rates while adding only a single tuning parameter for the in-

dexing quality and another for the ANN search quality.

3. Proposed Method

We first describe the architecture of a triplet network [24,

6, 14, 25] and the loss function used in its training. Then,

we describe the sampling method applied in the training

process. Assume that the training set is represented by

T = {(xi, yi)}
N
i=1, with xi ∈ R

n×n and yi ∈ {1, ..., C}.
The feature embedding is denoted by f(x, θf ), where f :
R

n×Rk → R
m, with θf ∈ R

k representing the network pa-

rameters (weight matrices, bias vectors, and normalisation

parameters). The triplet network comprises three identical

deep convolutional neural networks (ConvNet) containing

L layers, each defined by:

f(x, θf ) = fout ◦ rL ◦ hL ◦ fL ◦ ... ◦ r1 ◦ h1 ◦ f1(x), (1)

where θf is defined above, fl(.) denotes the linear trans-

forms, hl(.) represents a normalisation function, and rl(.)
denotes a non-linear activation function (e.g., ReLU [12]).

Also in (1), note that fl = [fl,1, ..., fl,nl
] represents an array

of nl pre-activation functions.

3.1. Triplet Networks

The triplet network [24, 6, 14, 25] is trained with an input

composed of an anchor point xi (from class yi), another

point from the same class x
+
i = xj (with i 6= j and yi =

yj), and a point from a different class x−
i = xk ((with k 6= i

and yi 6= yk). The loss function for each triplet is defined

by:

J t(xi,x
+
i ,x

−
i , θf ) =

max

(

0, 1−
‖f (1)(xi, θf )− f (3)(x−

i , θf )‖2
‖f (1)(xi, θf )− f (2)(x+

i , θf )‖2 +m

)

,

(2)

where m is the margin, x+
i and xi belong to the same class,

x
−
i and xi are from different classes, and f (1)(.), f (2)(.)

and f (3)(.) are constrained to be the same network parame-

terized by θf .

The training of the triplet network can be made more ro-

bust with the introduction of a loss that explores the global

structure of the embedding [9]. In particular, the triplet loss

in (2) can be extended with a global loss that assumes that

the distribution of distances between anchor and positive

samples and anchor and negative samples follow a Gaussian

distribution. This global loss aims to: 1) minimise the vari-

ance of the two distributions, 2) minimise the mean value of

the distances between anchor and positive samples, and 3)

maximise the mean value of the distances between anchor

and negative samples, as follows:

Jg({xi}
N
i=1,{x

+
i }

N
i=1, {x

−
i }

N
i=1, θf ) =

(σ2+ + σ2−) + λmax
(

0, µ+ − µ− + t
)

,

(3)

where µ+ =
∑N

i=1 d
+
i /N, µ− =

∑N

i=1 d
−
i /N , σ2+ =

∑N

i=1(d
+
i − µ+)2/N, σ2− =

∑N

i=1(d
−
i − µ−)2/N ,

with µ+ and σ2+ denoting the mean and variance of the

matching pair distance distribution, µ− and σ2− represent-

ing the mean and variance of the non-matching pair dis-

tance distribution, d+i =
‖f(1)(xi,θf )−f(2)(x+

i
,θf )‖

2
2

4 , d−i =
‖f(1)(xi,θf )−f(3)(x−

i
,θf )‖

2
2

4 , λ is a term that balances the im-

portance of each term, t is the margin between the mean of
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the matching and non-matching distance distributions and

N is the size of the training set. Note in (3), that we as-

sume a triplet network (i.e., f (1)(.), f (2)(.) and f (3)(.) are

the same network), where the squared Euclidean distances

of the matching and non-matching pairs of the ith triplet are

constrained to be 0 ≤ d+i , d
−
i ≤ 1 because of the division

by 4, and the normalisation layer enforces that the norm of

the embedding is 1.

3.2. Smart Mining

As discussed in Sec. 2, semi-hard mining has proved an

effective method for training triplet networks [14] with the

primary aim of finding sets of triplets that will continue to

progress the training of the network. Naively, this can be

achieved by selecting triplets that provide the greatest vio-

lation of the triplet constraint. For instance, given an anchor

xi, the hardest positive is defined as

x
+
i = argmax

(xj ,yj)∈T ,xj 6=xi,yj=yi

‖f (1)(xi, θf )− f (2)(xj , θf )‖
2
2,

(4)

and the hardest negative as

x
−
i = argmin

(xj ,yj)∈T ,xj 6=xi,yj 6=yi

‖f (1)(xi, θf )− f (3)(xj , θf )‖
2
2.

(5)

In order to avoid the costly argmax over the entire train-

ing set, semi-hard mining is instead commonly performed

over the stochastic subset of samples used in each mini-

batch [16, 14]. This method has the additional advantage

of avoiding repeated attempts at learning from the hardest

triplets that may never improve from epoch to epoch.

We define a novel off-line mining strategy that consists

of first finding a set of approximate nearest neighbours

S ⊂ T . Then, for all triplets with anchor xi the set of

neighbours Si is used to determine appropriate positive and

negative samples. To avoid mining poorly structured re-

gions of the embedding, we limit our selection of negative

samples to only include negatives where there is at least one

positive sample that is closer to the anchor than the negative

is. Positive samples are then chosen to guarantee a non-zero

response from the loss function (2).

More formally, we define a smart negative as any nega-

tive sample x
−
i ∈ Si such that

‖f (1)(xi, θf )−f
(3)(x−

i , θf )‖
2
2 >

κ · ‖f (1)(xi, θf )− f (2)(x+NN
i , θf )‖

2
2,

(6)

where κ is a global tuning variable and x
+NN
i is the closest

positive to xi (note that this is not the positive used to form

the triplet). The relationship between the exclusion bound-

ary, the anchor, positive samples and negative samples can

be seen in Figure 2.

Mining outside the region defined by the distance be-

tween an anchor xi and the closest positive sample x
+NN
i

Figure 2. A simplified 2-dimensional projection of the neighbours

for anchor xi, here Si contains two positive and four negative

samples. Distance d(x, y) is squared Euclidean. a) The current

κ and clustering of class yi specify an exclusion boundary con-

taining all negatives samples, as such none are currently deemed

suitable for training. b) On a subsequent epoch a smaller κ and

tighter class clustering now yeilds a negative sample outside the

exclusion boundary. This negative and the positive sample further

outside the exclusion boundary are used to complete a triplet that

is guaranteed to violate the triplet constraint.

ties the selection of negatives to how tightly the class yi
is currently clustered in the embedding space. Addition-

ally, the global parameter κ provides a tunable scaling factor

for the radius of these hyper-spherical exclusion boundaries

centred on each anchor. Experimentally we have found that

the best results are achieved by beginning training with a

larger value for κ and then gradually relaxing this constraint

throughout the training. This allows previously excluded

negatives to be selected for training during later epochs ei-

ther because the positive neighbours have formed a tighter

neighbourhood or the global exclusion value has been suffi-

ciently reduced. The practical details of implementing this

mining scheme are discussed below.

3.2.1 Implementing Smart Mining with FANNG

At the beginning of each training epoch we perform a full

forward pass of the training set T to generate the current

feature embedding f(x, θf ). The indexing graph used in

FANNG [5] is then constructed using the traverse-add al-

gorithm (Alg. 4 in [5]) with the embedding of each ele-

ment of T forming a vertex in the graph. At each vertex,

a list of outbound edges connect to un-occluded neighbours

in a way that approximates the local surface structures of

a lower dimensional manifold. Experimental results show

that the order of these edge lists remains low (between 15-

30 edges) and is independent of the size of the data set and

the extrinsic dimensionality of the embedding space. The

newly formed traversable graph enables the computation-

ally efficient collection of the approximate nearest neigh-

bour set S .

As described in [5], the traverse-add algorithm can be

repeatedly applied until a specified percentage success rate

is reached. Once our target build percentage of 98% is

achieved, our approach diverges from the original building

process for FANNGs. Rather than applying the backtrack
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search (Alg. 3 in [5]) to further refine the graph, we instead

use the same backtrack search algorithm to immediately

generate the approximate nearest neighbour set S . Since

the graph vertices provide a complete index of the training

samples, we can compute each neighbour list Si by passing

the vertex f(xi, θf ) to the backtracking search algorithm as

both the query vector and starting point for the search. Be-

cause the collection of these neighbour lists does not modify

the indexing graph, the searches can be performed in paral-

lel. Each query returns a pre-specified number of nearest

neighbours sorted in ascending order by distance from the

query vertex, as well as the distances themselves. The size

of the neighbour lists is selected to guarantee that both pos-

itive and negative samples will always be seen in the list.

3.2.2 Triplet Construction

Once S is computed, the class label information y is used

to separate the neighbours into several lists. We perform

a single iterative pass over each neighbour list Si while

maintaining a count of samples from class yi and a count

of all samples from outside that class. Once the first posi-

tive sample has been found, the exclusion boundary is com-

puted. Then any future negative samples that satisfy (6) are

added to the list of valid negatives. Each subsequent posi-

tive sample is added to the list of valid positives along with

the current number of valid negatives. With this informa-

tion we can ensure that a positive sample is not put into a

triplet with a later negative sample that is further from the

anchor. Lastly, to construct each mined triplet in the cur-

rent epoch, we take the first unused negative from the list of

valid negatives associated with the triplets anchor as well as

the first valid positive that is also valid for the chosen neg-

ative. Random triplets are used in rare cases where there

are no valid negatives. If there are no valid positive samples

associated with the chosen negative, then a positive sam-

ple is uniformly selected from the set T \Ni. Algorithm

1 illustrates this triplet selection process in pseudo-code.

It is important to note that while each negative is used no

more than once for a given anchor during any given epoch,

positive samples can be used multiple times with the same

anchor. However, the unique negatives will always ensure

that no triplets are repeated. In general, our method will

select softer negative and positive samples ahead of harder

options.

3.2.3 Runtime Complexity

A naive hard mining algorithm that selects O(N) triplets

will have a worst case complexity of O(N3) on any given

epoch. Assuming that the samples are equally distributed

between C classes, then the complexity can instead be ex-

pressed as O(N
N

C

(

N −
N

C

)

). As C → N , this com-

Algorithm 1: Triplet Selection

Input: Training samples X , Nearest neighbours S,

Class labels y, Scale parameter κ
Output: Mined triplets T

1 for each sorted neighbour list si do

2 neg ← empty list of negatives

3 pos← empty list of positives/valid negative range

4 for each neighbour si[j] of sample xi do

5 if isEmpty(pos) then

6 if class(si[j]) 6= yi then

7 continue

8 bound← κ · distance(xi, si[j])
9 pos.add(si[j], ∅)

10 continue

11 if distance(xi, si[j]) < bound then

12 continue

13 if class(si[j]) 6= yi then

14 neg.add(si[j])

15 if class(si[j]) = yi then

16 pos.add(si[j], clone(neg))

17 for each triplet t[j] with anchor xi do

18 if isEmpty(neg) then

19 t[j]← random triplet

20 continue

21 t[j]← xi, neg[0], random positive /∈ pos
22 for each positive pos[k] do

23 if neg[0] /∈ validRange(pos[k]) then

24 continue

25 t[j]← xi, neg[0], pos[k]
26 break

27 neg.remove(neg[0])

28 return T

plexity reduces to a best case of O(N2).

The smart mining algorithm requires the construction of

a nearest neighbour index. Exhaustive index construction

is O(N3) due to the sorting of all N2 pairwise distances.

However, we can guarentee a worst case complexity of

O(N2) by instead building an approximation of the index.

Using this index to find negatives up to the closest positive

sample for each anchor can be performed with worst case

complexity O(N2) regardless of class distribution. Given

that O(N2) is the best case complexity for the naive hard

mining approach above, we can conclude that our method

is computationally more efficient.

For semi-hard mining, such as [14], algorithmic com-

plexity is reduced by limiting triplet selection to a brute

force search within each minibatch. Given an epoch with
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M minibatches, the argmax for each anchor results in a to-

tal complexity of O(M

(

N

M

)2

), or simply O(
N2

M
). For

comparitive purposes, we note that larger minibatches (i.e.

smaller M) tend to reduce training error [16] up until per-

formance begins to be limited by the naive use of argmax.

Even so, as M → 1 the semi-hard mining complexity

approaches O(N2) and the information available in each

minibatch also approches that of both the naive and smart

mining.

3.2.4 Automatic Parameter Selection

Up to this point, running our mining scheme requires hand

tuning for the hyper-parameter κ. We propose a more robust

solution that closes the loop on the triplet mining and train-

ing losses. At the beginning of each epoch, we would like

to estimate what value of κ will produce triplets of a suit-

able difficulty for the current network. One such goal could

be to ensure that the error from the training set is consistent

with the current error of the validation set. We estimate κ
with a simple linear model

κ = αe+ β, (7)

that finds the least-squares solution for internal parameters

α and β from a vector of recent training errors e and their

associated κ. Once we have computed the internal parame-

ters, we can obtain the estimated value

κ = αet + β, (8)

by providing the current target error et. The model is ini-

tialised at the beginning of the third training epoch with an

initial estimate of the internal parameters. At the beginning

of the triplet mining on each subsequent epoch, the train-

ing results from the previous epoch are used to update the

model. The inclusion of as little as 2% mined triplets per

batch is enough to control the training losses.

As training progresses and the embedding improves, it

is expected that both the training and validation error will

decrease. Targeting a low training error will guarantee that

most of the next epoch is spent on triplets that will not make

a significant impact on the training. So instead, we can de-

liberately separate the training and validation errors so that

the training error is kept high, while the validation error

continues to decrease. To achieve this, we replace the use

of the current validation error with a constant value that rep-

resents our target training error. Experimental results have

shown that a target of between 50% and 75% training error

is capable of producing more accurate embeddings in far

fewer epochs. To maintain a high training error, it is best to

use batches that are 50% to 100% mined triplets.

A comparison of hand tuned and adaptive parameter se-

lection can be seen in figure 3. Training error gives an indi-

Figure 3. A comparison of training performance using hand tuned

and adaptive selection of κ. Training and validation error is shown

for the first 20 epochs while training on CUB- 200-2011 [23].

cation of the fraction of each batch that is producing a non-

zero gradient and so can continue to shape the embedding

space. The validation error is produced by evaluating the

embedding with a reserved set of samples not used for train-

ing and is used as an inverse measure of the current quality

of the embedding. Since the adaptive method is able to se-

lect harder triplets, while avoiding triplets that are so hard

that the embedding structure could be damaged, we see that

it can produce a higher quality embedding. Additionally,

the steeper decent of the adaptive validation indicates that

these results can be reached while also using fewer train-

ing epochs. In practice when using GPU accelerated code,

our triplet selection accounts for less than 1% of the total

epoch runtime (the majority of the cost being the forward

and backward propagation of the selected triplets). As such,

the ability to produce high quality embeddings while con-

verging in comparatively fewer epochs will greatly reduce

the overall training time.

4. Experiments

For the experiments, we follow the protocol used in pre-

vious papers [18, 19, 13], which uses unseen classes from

the CUB- 200-2011 [23] and Cars196 [8] datasets in or-

der to assess the clustering quality and k nearest neigh-

bour retrieval [7]. Our proposed method combining triplet

and global losses using FANNG [5] with and without au-

tomated hyper-parameter selection (i.e., the adaptive con-

troller) is compared with the following state-of-the-art deep

metric learning approaches: (1) triplet learning with semi-

hard negative mining [14] (with and without FANNG [5]),

(2) lifted structured embedding [19], (3) N-pairs metric

loss [18], (4) clustering [13], and (5) triplet combined with

global loss [9]. For the approaches (1), (2), (3) and (4)

above, we report the results from Song et al.’s paper [13].

For the remaining approaches (i.e. our proposed method,

and (5) ), we use the same training and test set split de-

scribed in [19] across all datasets. Specifically, the means
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CUB200-2011 [23] has 11, 788 images of 200 bird species,

from which we take the first 100 species for training and

use the remaining 100 species for testing. Cars196 [8] has

16, 185 images from 196 car models, from which we take

the first 98 classes for training and use the remaining 98 for

testing. For all our experiments, we initialize the network

with pre-trained GoogLeNet [21] weights and randomly ini-

tialize the final fully connected layer similar to [19]. We set

the embedding size to 64 [19] and the learning rate for the

randomly initialized fully connected layer is multiplied by

10 to achieve faster convergence similar to [19].

For the experiments using triplet combined with global

loss [9] and for our proposed approach, we let the training

procedure run for a maximum of 20 epochs or until con-

vergence (if fewer epochs were required). During the first

two epochs, triplet mining was completely disabled to al-

low for batches comprised of only random triplets. Similar

to [14, 9], we set the margin for the triplet and global loss to

0.2 and 0.01 respectively. We start experiment with an ini-

tial learning rate of 0.1 and gradually decrease it by a factor

of 2 after every 3 epochs. We use a weight decay of 0.0005
for all of our experiments.

4.1. Quantitative Results

Here we report quantitative results based on the nor-

malised mutual information (NMI) [10] score defined by

the ratio of mutual information and product of entropies for

two clustering assignments - this measures the label agree-

ment between these two clustering assignments (ignoring

the permutations). We also report the k nearest neighbour

performance using the Recall@K metric [13].

Tables 1 and 2 show the NMI and k nearest neigh-

bour performance with the Recall@K metric results defined

above comparing our method to the state of the art for the

datasets CUB- 200-2011 [23] and Cars196 [8]. From these

tables, we can first see that Triplet + FANNG significantly

improves upon the Semi-hard [14] results with respect to

all measures, and showing that the smart mining process

using FANNGs is more effective than the more commonly

used stochastic under-sampling of the training set. The

combination of Triplet + FANNG + Global shows gains

with respect to all measures, when compared to Triplet +

Global and Triplet + FANNG, demonstrating the impor-

tance of both the smart mining process and the use of a

global loss. The final model Triplet + FANNG + Global

+ Adaptive shows competitive results with respect to all

measures as well as a much faster convergence rate (see

Fig.4). For instance, for the CUB-200-2011 dataset [23],

Triplet + FANNG + Global + Adaptive converges in just

four epochs, while Triplet + FANNG + Global takes 20

epochs to converge. Similarly for Cars196 [8], Triplet

+ FANNG + Global + Adaptive converges in just four

epochs, while Triplet + FANNG + Global takes 20 epochs

Table 1. Clustering and recall performance on CUB-200-

2011 [23]. Our proposals are highlighted.

Method NMI R@1 R@2 R@4 R@8

Semi-hard [14] 55.38 42.59 55.03 66.44 77.23

Lifted Structure [19] 56.50 43.57 56.55 68.59 79.63

N-pairs [18] 57.24 45.37 58.41 69.51 79.49

Triplet + Global [9] 58.61 49.04 60.97 72.33 81.85

Clustering [13] 59.23 48.18 61.44 71.83 81.92

Triplet + FANNG 58.10 45.90 57.65 69.63 79.83

Triplet + FANNG +

Global
60.09 49.44 61.60 73.09 82.85

Triplet + FANNG +

Global + Adaptive
59.90 49.78 62.34 74.05 83.31

Table 2. Clustering and recall performance on Cars196 [8]. Our

proposals are highlighted

Method NMI R@1 R@2 R@4 R@8

Semi-hard [14] 53.35 51.54 63.78 73.52 82.41

Lifted Structure [19] 56.88 52.98 65.70 76.01 84.27

N-pairs [18] 57.79 53.90 66.76 77.75 86.35

Triplet + Global [9] 58.20 61.41 72.51 81.75 88.39

Clustering [13] 59.04 58.11 70.64 80.27 87.81

Triplet + FANNG 58.24 56.11 68.34 77.99 85.92

Triplet + FANNG +

Global
59.70 64.20 75.22 83.24 88.94

Triplet + FANNG +

Global + Adaptive
59.50 64.65 76.20 84.23 90.19

Figure 4. A comparison of the convergence rate of our differ-

ent methods using Recall@1 on CUB-200-2011 dataset (left) and

Cars196 (right).

to converge. The accelerated rate of convergence is only

achievable when the difficulty of the mined triplets is tar-

geted at the right level for each individual epoch.

4.2. Qualitative Results

Figures 5 and 6 show triplets for visual inspection. The

first column of each figure contains randomly selected an-

chor points from the training set. Each row then contains
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Figure 5. a) Triplets mined from the CUB-200-2011 [23] training

set using FANNG [5]. b) Random triplets constructed with the

same anchor.

the positive and negative sample images that complete each

of the triplets. For each of the mined triplets, the negative

sample is guaranteed to be a shorter distance from the an-

chor when compared to the positive sample in the embed-

ding being mined. As per our smart mining algorithm, each

of the mined positives is the closest possible positive to the

anchor, while still maintaining distance relationships. These

properties can be clearly seen when the mined triplets are

compared to a randomly generated triplet. The anchors of

the mined triplets appear to have stronger similarities with

the negative samples, while the random triplet anchors are

much closer in appearance to the positive samples. While

the mined positive samples are dissimilar from the anchors,

in many cases it appears that they are still sharing more fea-

tures with the anchor than the random positives are sharing

with the same anchor. By presenting difficult (but not im-

possible) triplets more often, our mined triplets enable faster

learning of the embedding.

5. Conclusion

From the results in Tables 1-2, we see that Triplet +

FANNG + Global + Adaptive significantly outperforms

the current state of the art methods [9, 13] in terms of clus-

tering and recall performances. Furthermore, it is worth

noting that Triplet + FANNG performs substantially better

than its counterpart Semi-hard [14] with respect to the clus-

tering and recall performances, thus highlighting the im-

portance of the smart mining process. Comparing Triple

Figure 6. a) Triplets mined from the Cars196 [8] training set using

FANNG [5]. b) Random triplets constructed with the same anchor.

+ FANNG + Global and Triple + FANNG, we can con-

clude that the global loss is indeed an important component

in improving the clustering and recall performance of the

embedding. Finally, Triplet + FANNG + Global + Adap-

tive and Triplet + FANNG + Global show almost equally

strong results, but the former has a significantly faster train-

ing process.

In this paper, we proposed a novel triplet-based deep
metric learning approach that combines a global structure
loss with a triplet loss. We rely on a smart mining process
to train our approach, which allows an effective selection of
training samples at a low computational cost. Furthermore,
we also extend this smart mining with an adaptive controller
that automatically selects its hyper-parameters throughout
training. By searching the entire training set, we pay a
high upfront cost, but make good use of the extra available
information to ultimately improve the convergence rate
of the training process without compromising on the
quality of the embedding. Using CUB-200-2011 [23] and
Cars196 [8], we show that our proposed method achieves
fast and more accurate training of triplet ConvNets than
other competing mining methods. Our approach sets new
state-of-the-art deep metric learning results for these two
datasets.
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