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Abstract

This paper addresses the problem of joint detection and

recounting of abnormal events in videos. Recounting of ab-

normal events, i.e., explaining why they are judged to be ab-

normal, is an unexplored but critical task in video surveil-

lance, because it helps human observers quickly judge if

they are false alarms or not. To describe the events in the

human-understandable form for event recounting, learning

generic knowledge about visual concepts (e.g., object and

action) is crucial. Although convolutional neural networks

(CNNs) have achieved promising results in learning such

concepts, it remains an open question as to how to effec-

tively use CNNs for abnormal event detection, mainly due to

the environment-dependent nature of the anomaly detection.

In this paper, we tackle this problem by integrating a generic

CNN model and environment-dependent anomaly detectors.

Our approach first learns CNN with multiple visual tasks to

exploit semantic information that is useful for detecting and

recounting abnormal events. By appropriately plugging the

model into anomaly detectors, we can detect and recount

abnormal events while taking advantage of the discrimina-

tive power of CNNs. Our approach outperforms the state-

of-the-art on Avenue and UCSD Ped2 benchmarks for ab-

normal event detection and also produces promising results

of abnormal event recounting.

1. Introduction

Detecting abnormal events in videos is crucial for video

surveillance. While automatic anomaly detection can free

people from having to monitor videos, we still have to check

videos when the systems raise alerts, and this still involves

immense costs. If systems can explain what is happen-

ing and assess why events are abnormal, we can quickly

identify unimportant events without having to check videos.

Such processes that explain the evidence in detecting events

is called event recounting, which was attempted as a multi-
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Figure 1. Our approach detects abnormal events and also recounts

why they were judged to be abnormal by predicting visual con-

cepts and anomaly scores of each concept.

media event recounting (MER) task in TRECVid 1 but has

not been explored in the field of abnormal event detection.

Recounting abnormal events is also useful in understanding

the behavior of algorithms. Analyzing the evidence of de-

tecting abnormal events should disclose potential problems

with current algorithms and indicate possible future direc-

tions. The main goal of the research presented in this paper

was to develop a framework that could jointly detect and

recount abnormal events, as shown in Fig. 1.

Abnormal events are generally defined as irregular

events that deviate from normal ones. Since normal be-

havior differs according to the environment, the target of

detection in abnormal event detection depends on the en-

vironment (e.g., ‘riding a bike’ is abnormal indoors while

it is normal on cycling roads). In other words, posi-

tive in anomaly detection has the nature of environment-

dependent, wherein only negative samples are given as

training data and positive in the environment is defined by

these negative samples. This is different from most other

computer vision tasks (e.g., ‘pedestrian’ is always posi-

tive on a pedestrian detection task). Since positive samples

are not given in anomaly detection, detectors of abnormal

events cannot be learned in a supervised way. Instead, the

standard approach to anomaly detection is 1) learning an

environment-dependent normal model using training sam-

ples, and 2) detecting outliers from the learned model.

However, learning knowledge about basic visual con-

cepts is essential for event recounting. The event in the

1http://www.nist.gov/itl/iad/mig/mer12.cfm

3619



example in Fig. 1 is explained as ‘person’, ‘bending’,

and ‘young’, because it has knowledge of these concepts.

We call such knowledge generic knowledge. We consider

generic knowledge to be essential for recounting and also

to contribute to accurately detecting abnormal events. Since

people also detect anomalies after recognizing the objects

and actions, employing generic knowledge in abnormal

event detection fits in well with our intuition.

Convolutional neural networks (CNNs) have proven suc-

cessful in learning visual concepts such as object categories

and actions. CNNs classify or detect target concepts with

high degrees of accuracy by learning them with numerous

positive samples. However, positive samples are not given

in anomaly detection due to its environment-dependent na-

ture. This is the main reason that CNNs still have not been

successful in anomaly detection and most approaches still

rely on low-level hand-crafted features. If we can fully ex-

ploit the representation power of CNNs, the performance of

anomaly detection will be significantly improved as it is in

other tasks. Moreover, its learned generic knowledge will

help to recount abnormal events.

This paper presents a framework that jointly detects

and recounts abnormal events by integrating generic and

environment-specific knowledge into a unified framework.

A model based on Fast R-CNN [15] is trained on large su-

pervised datasets to learn generic knowledge. Multi-task

learning is incorporated into Fast R-CNN to learn three

types of concepts, actions, objects, and attributes, in one

model. Then, environment-specific knowledge is learned

using anomaly detectors. Unlike previous approaches that

have trained anomaly detectors on low-level features, our

anomaly detector is trained on more semantic spaces by

using CNN outputs (i.e., deep features and classification

scores) as features. Our main contributions are:

• We address a new problem, i.e., joint abnormal event

detection and recounting, which is important for prac-

tical surveillance applications as well as understanding

the behavior of the abnormal event detection algorithm.

• We incorporate the learning of basic visual concepts into

the abnormal event detection framework. Our concept-

aware model opens up interesting directions for higher-

level abnormal event detection.

• Our approach based on multi-task Fast R-CNN achieves

superior performance over other methods on several

benchmarks and demonstrates the effectiveness of deep

CNN features in abnormal event detection.

2. Related Work

The approach of anomaly detection first involves model-

ing normal behavior and then detecting samples that deviate

from it. Modeling normal patterns of object trajectories is

one standard approach [3, 17, 36, 43] to anomaly detection

in videos. While it can capture long-term object-level se-

mantics, tracking fails in crowded or cluttered scenes. An

alternative approach is modeling appearance and activity

patterns using low-level features extracted from local re-

gions, which is a current standard approach, especially in

crowded scenes. This approach can be divided into two

stages: local anomaly detection assigning anomaly score

to each local region independently, and globally consistent

inference integrating local anomaly scores into a globally

consistent anomaly map with statistical inferences.

Local anomaly detection can be seen as a simple novelty

detection problem [31]: a model of normality is inferred

using a set of normal features X as training data, and used

to assign novelty scores (anomaly scores) z(x) to test sam-

ple x. Novelty detectors used in video anomaly detection

include distance-based [33], reconstruction-based (e.g., au-

toencoders [16, 32], sparse coding [7, 28, 44]), domain-

based (one-class SVM [41]), and probabilistic methods

(e.g., mixture of dynamic texture [29], mixture of proba-

bilistic PCA [18]), following the categories in the review by

Pimentel et al. [31]. These models are generally built on

the low-level features (e.g., HOG and HOF) extracted from

densely sampled local patches. Several recent approaches

have investigated the learning-based features using autoen-

coders [32, 41], which minimize reconstruction errors with-

out using any labeled data for training. Antic and Om-

mer [2] detected object hypotheses by video parsing instead

of dense sampling, although they relied on background sub-

traction that was not robust to illumination changes.

Globally consistent inference was introduced in several

approaches to guarantee the consistency of local anomaly

scores. Kratz et al. [20] enforce temporal consistency by

modeling temporal sequences with hidden Markov models

(HMM). The spatial consistency is also introduced in sev-

eral studies using Markov random field (MRF) [4, 18, 25]

to capture spatial interdependencies between local regions.

While recent approaches have placed emphasis on global

consistency [6, 9, 25], it is defined on top of the local

anomaly scores as explained above. Besides, several crit-

ical issues remain in local anomaly detection. Despite the

great success of CNN approaches in many visual tasks, the

application of CNN to abnormal event detection is yet to be

explored. Normally CNN requires rich supervised informa-

tion (positive/negative, ranking, etc.) and abundant training

data. However, supervised information is unavailable for

anomaly detection by definition. Hasan et al. [16] learned

temporal regularity in videos with a convolutional autoen-

coder and used it for anomaly detection. However, we con-

sider that autoencoders that are only learned with unlabeled

data do not fully leverage the expressive power of CNN. Be-

sides, recounting of abnormal events is yet to be considered,

while several approaches have been proposed for multime-

dia event recounting by localizing key evidence [14, 23] or

summarizing the evidence of detected events by text [42].
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Figure 2. Overview of our approach. (a) illustrates our learning procedures of two types of models: generic and environment-specific

models, and (b) shows our testing procedure of joint detection and recounting abnormal events.

3. Abnormal Event Detection and Recounting

We propose a method of detecting and recounting ab-

normal events. As shown in Fig. 2 (a), we learn generic

knowledge about visual concepts in addition to learning

environment-specific anomaly detectors. Although most

existing approaches use only environment-specific models,

they cannot extract semantic information and thus not suf-

ficient to recount abnormal events. Therefore, we learn the

generic knowledge that is required for abnormal event re-

counting by using large-scale supervised image datasets.

Since we learn the model with object, action, and attribute

detection task that are highly related to abnormal event de-

tection, this generic model can be used to improve anomaly

detection performance as shown in [27].

First, multi-task Fast R-CNN is learned with large super-

vised datasets, which corresponds to the generic model that

can be commonly used, irrespective of the environment. It

is used to extract deep features (we call it a semantic fea-

ture) and visual concept classification scores from multiple

local regions. Second, anomaly detectors are learned on

these features and scores for each environment, which mod-

els the normal behavior of the target environment and pre-

dict anomaly scores of test samples. The anomaly detectors

of features and classification scores are used for abnormal

event detection and recounting, respectively.

Our abnormal event detection and recounting are per-

formed using a combination of two learned models. Fig-

ure 2 (b) outlines the four steps in the pipeline.

1. Detect object proposal: Object proposals are detected

for each frame by geodesic object [19] and moving ob-

ject proposals [13].

2. Extract features: Semantic features and classification

scores are simultaneously extracted from all object pro-

posals by the multi-task Fast R-CNN.

3. Classify normal/abnormal: The anomaly scores of

each proposal are computed by applying the anomaly

detector to semantic features of the proposal. The ob-

ject proposals with anomaly scores above a threshold are

determined as source regions of abnormal events.

4. Recount abnormal events: Visual concepts of the

three types (objects, actions, and attributes) of abnor-

mal events are predicted from classification scores. The

anomaly scores of each predicted concept are computed

by the anomaly detector for classification scores to re-

count the evidence of anomaly detection. This phase is

explained in more detail in Sec. 3.2.

3.1. Learning of Generic Knowledge

We learn the generic knowledge about visual concepts to

use it for event recounting and to improve the performance

of abnormal event detection. To exploit semantic informa-

tion that is effective in these tasks, we learn three types of

concepts, i.e., objects, actions, and attributes, that are im-

portant to describe events. Since these concepts are jointly

learned by multi-task learning, features that are useful to

detect any type of abnormality (abnormal objects, actions,

or attributes) can be extracted. Our model is based on Fast

R-CNN because it can efficiently predict categories and out-

put features of multiple region-of-interests (RoIs) by shar-

ing computation at convolutional layers.

Network architecture. Figure 2 (b) illustrates the ar-

chitecture of the proposed multi-task Fast R-CNN (shaded

in red), which is the same as that for the Fast R-CNN ex-

cept for the last classification layers. It takes image and

RoIs as inputs. A whole image is first processed by con-

volutional layers and its outputs are then processed by the

RoI pooling layer and two fully-connected layers to extract

fixed length features from each RoI. We used the feature at

the last fully-connected layer (fc7 feature) as the semantic

feature for learning abnormal event detector. The features
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were fed into three classification layers, i.e., object, action,

and attribute classification layers, each of which consisted

of fully-connected layers and activation. A sigmoid was

used for activation in attribute and action classification to

optimize multi-label classification while softmax was used

in object classification as in Girshick [15]. The bounding

box regression was not used because it depends on the class

to detect, which is not determined in abnormal event detec-

tion. We used Alexnet [22] as the base network, which is

commonly used as a feature extraction network and is com-

putationally more efficient than that of VGG model [37].

Training datasets. We used Microsoft COCO [26]

training set to learn object and Visual Genome datasets [21]

to learn attributes and actions because both datasets contain

sufficiently large variations in objects with bounding box

annotations. Visual Genome was also used for the evalua-

tion, as will be explained later in Sec. 5, and to seek for the

fairness, the intersection of Visual Genome and COCO vali-

dation (COCO-val) set was excluded. We used all 80 object

categories in the COCO while 45 attributes and 25 actions

that appeared the most frequently were selected from the Vi-

sual Genome dataset. Our model only learned static image

information using image datasets instead of video datasets

because motion information (e.g., optical flow) from the

static camera was significantly different from that from the

moving camera, and large datasets from the static camera

with rich annotations were unavailable.

Learning details. We used almost the same learning

strategy and parameters as that for Fast R-CNN [15]. Here,

we only describe differences from Fast R-CNN. First, since

we removed bounding box regression, our model was only

trained with classification loss. Second, our model was

trained to predict multiple tasks, viz., object, action, and

attribute detection. A task was first randomly selected out

of three tasks for each iteration, and a mini-batch was sam-

pled from the dataset of the selected task following the same

strategy as that for Fast R-CNN. The loss of each task was

applied to its classification layer and shared layers. Since

multi-task model converged more slowly than the single-

task model in [15], we set the learning rate of SGD as 0.001

for first 200K iterations, and 0.0001 for the next 100K,

which are larger numbers of iterations for each step of the

learning rate than those for the single-task model. All mod-

els are trained and tested with Chainer [38].

3.2. Abnormal Event Recounting

Abnormal event recounting is expected to predict con-

cepts and also to provide evidence as to why the event was

detected as an anomaly, which is not a simple classification

task. In the case in Fig. 1 above, predicting category (ob-

ject=‘person’, attribute=‘young’, and action=‘bending’) is

not enough. It is important to predict which concept is an

anomaly (bending is an anomaly) to recount the evidence

of abnormal events. Therefore, as shown in Fig. 1, the pro-

posed abnormal event recounting system predicts:

• the categories of three types of visual concepts (object,

action, and attribute) of the detected event, and

• the anomaly scores for each concept to determine

whether the evidence of detecting it as an anomaly.

The approach to these predictions is straightforward. We

first predict categories by simply selecting the category

with the highest classification score for each concept. The

anomaly score of each predicted category is then computed.

At training time, the distribution of classification scores un-

der the target environment is modeled for each category by

using kernel density estimation (KDE) with a Gaussian ker-

nel and a bandwidth calculated with Scott’s rules [35]. At

test time, the density at the predicted classification score is

estimated by KDE for each predicted concept and the recip-

rocals of density are used as anomaly scores.

4. Experiments

4.1. Datasets

UCSD Ped2 [29] and Avenue [28] datasets were used to

evaluate the performance of our method. The UCSD pedes-

trian dataset is the standard benchmark for abnormal event

detection, where only pedestrians appear in normal events,

while bikes, trucks, etc., appear in abnormal events. The

UCSD dataset consists of two subsets, i.e., Ped1 and Ped2.

We selected Ped2 because Ped1 has a significantly lower

frame resolution of 158 × 240, which would have made it

difficult to capture objects in our framework based on object

proposal+CNN. Since inexpensive higher resolution cam-

eras have recently become commercially available, we con-

sidered that this was not a critical drawback in our frame-

work. Avenue datasets [28] are challenging datasets that

contain various types of abnormal events such as ‘throwing

bag’, ‘pushing bike’, and ‘wrong direction’. Since the pixel-

level annotation in some complex events is subjective (e.g.,

only the bag is annotated in a throwing bag event), we eval-

uated Avenue with only frame-level metrics. In addition,

while the Avenue dataset focuses on moving objects as ab-

normal events, our focus included static objects. Therefore,

we evaluated the subset excluding five clips out of 22 clips

that contained static but abnormal objects, viz., a red bag on

the grass, and a person standing in front of a camera, which

are regarded as normal in the Avenue dataset. We called

this subset Avenue17, which we will describe in more de-

tail in the supplemental material. We used standard metrics

in abnormal event detection, ROC curve, area under curve

(AUC), and equal error rate (EER), as was explained in Li

et al. [25] for both frame-level and pixel-level detection.

4.2. Implementation details

Abnormal event detection procedure. Given the input

video, we first detected object proposals from each frame
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Figure 3. Comparison of ROC curves between different appearance features on standard benchmarks.

using GOP [19] and MOP [13] as in [13] (around 2500 pro-

posals per frame). The frame images and detected object

proposals were input into Fast R-CNN to obtain semantic

features and classification scores for all proposals. The se-

mantic features were fed into the trained anomaly detec-

tor (described below) to classify each proposal into normal

or abnormal, which computed an anomaly score for each

proposal. Object proposals with anomaly scores above the

threshold were detected as abnormal events. The threshold

parameter was varied to plot the ROC curve in our evalua-

tion. Each detected event was finally processed for recount-

ing, as was explained in Sec. 3.2.

Anomaly detectors for semantic features. Given a

training set extracted from training samples, anomaly detec-

tors were learned to model ‘normal’ behavior. The anomaly

detector took semantic features in testing as an input to out-

put an anomaly score. Three anomaly detectors were used.

1) Nearest neighbor-based method (NN): An anomaly

score was the distance between the test sample and its near-

est training sample.2) One-class SVM (OC-SVM): The

anomaly score of test samples was the distance from the de-

cision boundary of OC-SVM [34] with RBF kernel. Since

we did not have validation data, we did tests with several pa-

rameter combinations and used parameters that performed

best (σ=0.001 and ν=0.1). 3) Kernel density estimation

(KDE): Anomaly scores were computed as a reciprocal of

density of test samples estimated by KDE with a Gaussian

kernel and a bandwidth calculated with Scott’s rules [35].

To reduce computational cost, we separated frames into

a 3×4 grid with the same cell size, and learned the anomaly

detectors for each location (12 detectors in total). The co-

ordinates of the bounding box center determined the cell

that each object proposal belonged to. In addition, features

were compressed using product quantization (PQ) [10] with

a code length of 128 bits in NN and features were reduced

down to 16-dims using PCA in OC-SVM and KDE.

4.3. Comparison of Appearance Features

We compare our framework using following different ap-

pearance features to demonstrate the effectiveness of Fast

R-CNN (FRCN) features in abnormal event detection:

• HOG: HOG [8] extracted from a 32×32 resized patch.
• SDAE: features of a stacked denoising autoencoder with

the same architecture and training procedure as in [41].
• FRCN objects, attributes, and actions: The fc7 fea-

ture of single-task FRCN trained on one dataset.
• MT-FRCN: The fc7 feature of multi-task FRCN.

We used the same settings for other components including

those for object proposal generation and anomaly detectors

to evaluate the effects of appearance features alone.

ROC curves. Figure 3 plots the ROC curves on Av-

enue17 and UCSD Ped2 datasets. These experiments used

NN as novelty detector. The curves indicate that FRCN

features significantly outperformed HOG and SDAE in all

benchmarks. The main reason is FRCN features could dis-

criminate different visual concepts while HOG and SDAE

features could not. In the supplemental material, the t-

SNE map [40] of feature space qualitatively justifies dis-

criminability of each feature. The FRCN action performs

slightly better than the others because the most challenging

abnormal events in the benchmarks are related to actions.

Compatibility with different anomaly detectors. We

measured performance using the three anomaly detectors

explained in Sec. 4.2 to clarify that FRCN features were

compatible with various anomaly detectors, Figure 4 com-

pares AUC tested on varied anomaly detectors on Avenue17

and Ped2 datasets. The results indicate that FRCN features

always outperformed HOG and SDAE features and our

performance was insensitive to anomaly detectors. Since

FRCN features were compatible with various anomaly de-

tectors, they can replace conventional appearance features

in any framework for abnormal event detection.

4.4. Comparison with State­of­the­art Methods

We compared our entire pipeline of abnormal event de-

tection pipeline with state-of-the-art methods, viz., local

motion histogram (LMH) [1], MPPCA [18], social force

model [30], MDT [25], AMDN [41], and video parsing [2]

on the Ped2 dataset. We also made comparisons with Lu et

al. (sparse 150 fps) [28], and Hasan et al. (Conv-AE) [16]

on the Avenue17 dataset. We measured the performance of

Avenue17 using the codes provided by the authors.
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Figure 4. Comparison of AUC (%) on standard benchmarks by

varing anomaly detectors and appearance features.

Results. Table 1 summarize the AUC/EER on Avenue17

and UCSD Ped2 datasets, which demonstrates our frame-

work outperformed all other methods on all benchmarks.

Especially, AUC of Ped2 was 89.2%, which significantly

outperformed the state-of-the-art method (66.5% in [25]).

Since our method was based on object proposals and cap-

tured object-level semantics by using FRCN features, we

accurately localized abnormal objects. Moreover, the Av-

enue17 dataset contained objects and actions that were not

included in Fast R-CNN’s training data (e.g., white paper

and throwing bag). This indicated that FRCN features gen-

eralized the detection of untrained categories. Note that our

method performed best without using any motion features

while others used motion features based on optical flows.

Learning motion features with two-stream CNN [12] or 3D-

CNN [39] remains to be undertaken in future work. Also,

our performance on Ped1 is much worse than state-of-the-

art (69.9/35.9 in AUC/EER) because of the low resolution

issue as stated above, which should be solved in the future.

4.5. Qualitative Evaluation of Evidence Recounting

Figure 5 has examples of recounting results obtained

with our framework where the predicted categories and

anomaly scores of each category (red bars) have been pre-

sented. Figures 5 (a)–(e) present successfully recounted re-

sults. Our method could predict abnormal concepts such

as ‘riding’, ‘truck’, and ‘bending’ while assigning lower

anomaly scores to normal concepts such as ‘person’ and

‘black’. The anomaly score of ‘young’ in (e) is much

higher than that in (d) because a high classification score

Method Avenue17 Ped2 (frame) Ped2 (pixel)

LMH [1] - 69.3/30 15.9/77.6

MPPCA [18] - 69.3/30 22.2/77.6

Social force [30] - 55.6/42 21.7/72.4

MDT [25] - 82.9/27.9 66.5/29.9

AMDN [41] - 90.8/17 -

Video parsing [2] - 92/- -

Sparse 150fps [28] 80.3/27.5 - -

Conv-AE [16] 76.9/34.0 90.0/21.7 -

FRCN object 88.8/16.7 89.5/15.8 86.3/19.3

FRCN attribute 86.7/22.7 88.5/18.8 85.3/21.2

FRCN action 89.8/17.5 92.2/13.9 89.1/15.9

MT-FRCN 89.2/17.2 90.8/17.1 87.3/19.4

Table 1. Abnormal event detection accuracy in AUC/EER (%).

for ‘young’ was assigned to the child in (e), which is rare.

Figures 5 (f)–(j) reveal the limitations of our approach. The

event in (f) is a false positive detection. Since we only

used appearance information, a person walking in a differ-

ent direction from the other people is predicted as stand-

ing. The events in (g) and (h), viz., scattered papers and

the person in the wrong direction, could not be recounted

with our approach because they were outside the knowledge

we learned. Nevertheless, the results provided some clues

to understanding events; the event (g) is something ‘white’

and the anomaly in the event (h) is not due to basic visual

concepts. The events in (i) and (j) that correspond to ‘throw-

ing a bag’ and ‘pushing a bicycle’ include the interaction of

objects, which could be captured with our approach. Since

large datasets for object interactions is available [5, 21, 24],

our framework could be extended to learn such knowledge,

and this could be another direction for future work.

5. Evaluation with Artificial Datasets

5.1. Settings

The current benchmark in abnormal event detection has

three main drawbacks when evaluating our methods. 1) The

dataset size is too small and variations in abnormalities are

limited because collecting data on abnormal events is dif-

ficult due to privacy issues in surveillance videos and the

scarcity of abnormal events. 2) The definition of abnormal

is subjective because it depends on applications. 3) Since

ground truth labels on the categories of abnormal events are

not annotated, it is difficult to evaluate recounting.

The experiments described in this subsection were de-

signed to evaluate the performance of unseen (novel) visual

concept detection, i.e., detect basic visual concepts that did

not appear in the training data, which represent an impor-

tant portion of abnormal event detection. Although most

events in the UCSD pedestrian dataset belong to this cat-

egory, the variations in concepts are limited (e.g., person,

bikes, and trucks). We artificially generated the dataset of

unseen visual concept detection with large variations based
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(f) person is walking (g) person is throwing papers (h) wrong direction (i) person is throwing bag (j) person is pushing bike

(a) person is riding bike (b) truck is running (d) person is bending (e) child is romping around(c) person is riding bike

Figure 5. Examples of recounting. Each example shows the recounting result of one detected event shaded in red. Its predicted categories

and anomaly scores of each category (red bars) are indicated as recounting results. ‘-’ corresponds to where classification scores of all

categories are under 0.1.

on image dataset. Its evaluation scheme was more objective

than abnormal event detection benchmarks.

Task Settings. This task was evaluated on the dataset

with the bounding box annotations of objects, actions, or

attributes. The nseen categories were selected from all n

annotated categories and the dataset was split into train-

ing and test sets so that training set only contained nseen

categories. The main objective of this task was to find

nunseen = n − nseen categories from the test set. In other

words, we detected unseen categories that did not appear

in the training set, which had similar settings to abnormal

event detection benchmarks. We specifically propose two

tasks to evaluate our method. Task 1 (Sec. 5.2): Detect ob-

jects that have annotations of unseen categories using our

abnormal event detection framework (anomaly detector +

fc7 features). Task 2 (Sec. 5.3): Detect and classify un-

seen objects with our method of abnormal event recounting

(kernel density estimation + classification scores).

5.2. Evaluation of Unseen Concept Detection

We evaluated this task on the datasets based on COCO

and PASCAL datasets. We used the COCO-val set for ob-

jects, and the intersection of COCO-val and Visual Genome

for actions and attributes. We used the same categories that

were used to train Fast R-CNN. As for PASCAL dataset, of-

ficial PASCAL VOC 2012 datasets were used for object and

action detection, while the a-PASCAL dataset [11] was used

for attribute detection. Each dataset was split into training

and test sets in the following procedure: 1) randomly select

unseen categories (nunseen is set to be around n/4), 2) as-

sign images with unseen category objects to training sets, 3)

assign randomly sampled images to training sets as distrac-

tors (so that # of test images equal to # of training images),

and 4) assign remaining images to test sets. We repeated

this to create five sets of training–test pairs for each dataset.

We used the same method of detection as that in the ex-

periments in Sec. 4.3; unseen categories were detected as

regions with high anomaly scores computed by a nearest

neighbor-based anomaly detector trained for each training

set. We used the ground truth bounding boxes as input

RoIs instead of using object proposals because some pro-

posals contained unannotated but unseen categories, which

made it difficult to evaluate our framework. To evaluate

performance, detection results are ranked by the anomaly

score and average precision (AP) was calculated similarly

to PASCAL detection (objects with the annotations of un-

seen categories are positive in our evaluation). The final

performance values were computed as mean average preci-

sion (mAP) over the five sets of unseen categories.

Table 2 summarizes the mAP of our framework with dif-

ferent appearance features. The training data to train each

feature have also been listed as check marks. We trained

two SDAE: a generic model trained on the dataset used in

Fast R-CNN learning, and a specific model trained on the
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training data for feature learning

unlabeled labeled mAP (COCO) mAP (PASCAL)

Feature generic normal object attribute action object attribute action object attribute action

HOG 8.3 5.4 16.8 34.6 2.4 42.3

SDAE ✓ 8.1 5.6 17.5 34.8 1.0 42.7

SDAE ✓ 10.9 5.2 17.9 34.6 1.6 43.2

FRCN object ✓ 20.6 13.6 20.5 62.0 1.9 47.9

FRCN attribute ✓ 12.1 18.3 20.9 48.3 2.8 47.1

FRCN action ✓ 12.4 9.1 30.2 44.5 1.8 50.8

MT-FRCN ✓ ✓ ✓ 16.9 14.5 29.6 57.7 2.2 50.2

Table 2. Performance of unseen visual concept detection on artificially created dataset based on COCO and PASCAL datasets. Training

data used for feature learning are also indicated by check marks.

training data of each set (that only contained ‘seen’ cate-

gories). The results demonstrated that Fast R-CNN signifi-

cantly outperformed HOG and SDAE, which indicated that

unseen visual concept detection is a difficult task without

learning with labeled data. The single-task Fast R-CNN

trained on the same task as the evaluation task performed

best in all tasks while the proposed multi-task Fast R-CNN

gained the second highest mAP in all tasks, which was

significantly better than models trained on different tasks.

Since the types of abnormal concepts to be detected were

not fixed in practice, multi-task Fast R-CNN is an excellent

choice for abnormal event detection.

5.3. Evaluation of Unseen Concept Recounting

We quantitatively evaluated our recounting method by

using the COCO-based unseen concept detection dataset

in Sec. 5.2. For each candidate region of test sample, our

framework outputs the classification scores and anomaly

scores computed by KDE learned from the train set. The

performance values were computed as AUC of TPR ver-

sus FPR. For a certain threshold of anomaly scores, unseen

categories were predicted for each region, i.e., categories

with the anomaly scores above the threshold and classifica-

tion scores above 0.1. Unlike the experiments described in

Sec. 4.5, multiple categories were sometimes predicted for

each concept in this evaluation. An object was true posi-

tive if 1) ground truth unseen categories were annotated (it

was positive), and 2) the predicted unseen categories agreed

with the ground truth. An object was false positive if 1)

ground truth unseen categories were not annotated (it was

negative), and 2) any category was predicted as being un-

seen. The threshold was varied to compute AUC. We com-

pared our method with HOG and SDAE features combined

with a linear SVM classifier. The SVM classification scores

were used as the input for the anomaly detector in these

methods. SVMs were trained on the COCO-training set that

was used in Fast R-CNN training.

Table 3 compares AUC on the COCO-based unseen con-

cept detection datasets. We can see that multi-task Fast R-

Method object attribute action

HOG+SVM 2.1 1.2 0.8

SDAE+SVM 2.3 1.2 1.3

MT-FRCN+SVM 24.7 13.4 16.2

MT-FRCN output 26.8 15.4 16.5

Table 3. AUC of recounting on artificially created abnormal con-

cept detection dataset based on COCO.

CNN outperformed best with all types of concepts while

HOG and SDAE could hardly recount unseen concepts.

This demonstrates that deeply learned generic knowledge is

essential for concept-level recounting of abnormal events.

6. Conclusion

We addressed the problem of joint abnormal event detec-

tion and recounting. To solve this problem, we incorporate

the learning of generic knowledge, which is required for

recounting, and environment-specific knowledge, which is

required for anomaly detection, into a unified framework.

Multi-task Fast R-CNN is first trained on richly annotated

image datasets to learn generic knowledge about visual con-

cepts. Anomaly detectors are then trained on the outputs of

this model to learn environment-specific knowledge. Our

experiments demonstrated the effectiveness of our method

for abnormal event detection and recounting by improving

the state-of-the-art performance on challenging benchmarks

and providing successful examples of recounting.

Although this paper investigated basic concepts such as

actions, our approach could be extended further to complex

concepts such as object interactions. This work is the first

step in abnormal event detection using generic knowledge

of visual concepts and sheds light on future directions for

such higher-level abnormal event detection.
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