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Abstract

In this work we propose a novel framework named Dual-
Net aiming at learning more accurate representation for im-
age recognition. Here two parallel neural networks are co-
ordinated to learn complementary features and thus a wider
network is constructed. Specifically, we logically divide
an end-to-end deep convolutional neural network into two
functional parts, i.e., feature extractor and image classifier.
The extractors of two subnetworks are placed side by side,
which exactly form the feature extractor of DualNet. Then
the two-stream features are aggregated to the final classifi-
er for overall classification, while two auxiliary classifiers
are appended behind the feature extractor of each subnet-
work to make the separately learned features discriminative
alone. The complementary constraint is imposed by weight-
ing the three classifiers, which is indeed the key of DualNet.
The corresponding training strategy is also proposed, con-
sisting of iterative training and joint finetuning, to make the
two subnetworks cooperate well with each other. Finally,
DualNet based on the well-known CaffeNet, VGGNet, NIN
and ResNet are thoroughly investigated and experimental-
ly evaluated on multiple datasets including CIFAR-100, S-
tanford Dogs and UEC FOOD-100. The results demon-
strate that DualNet can really help learn more accurate im-
age representation, and thus result in higher accuracy for
recognition. In particular, the performance on CIFAR-100
is state-of-the-art compared to the recent works.

1. Introduction

Recent years have witnessed the bloom of deep con-
volutional neural network (DCNN), which has remark-
ably boosted the performance of various visual assign-
ments [14, 29, 5]. The success of DCNN is largely at-
tributed to its deep architecture and end-to-end learning ap-
proach, which can learn hierarchical representation of the
input. And the fundamental research on DCNN is to de-
velop advanced networks and corresponding training algo-
rithms, with the aims of extracting more discriminative fea-
tures for recognition.
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Figure 1. Illustration of the proposed DualNet. The input images
are fed into two subnetworks, which are coordinated to learn com-
plementary features. The two-stream features are then fused to
form a unified representation, and passed into the Fused Classifier
for overall classification. The auxiliary classifiers are appended to
keep the separately learned features discriminative.

There have been considerable interests in enhancing DC-
NN with greater capacity, in which the networks are gener-
ally designed to be deeper or wider. For example, He et
al. [13] propose a 152-layer ResNet, which is 8x deep-
er than VGGNet [31] and achieves state-of-the-art perfor-
mance in several ILSVRC2015 tasks. On the other hand,
going wider has also been proven applicable [30, 37, 36].
For instance, the recent WRN [36] decreases depth and in-
creases width of ResNet and achieves comparable perfor-
mance. In fact, according to neurobiology, human visual
system only activates several neurons of cortex for a cer-
tain input pattern, but the details of visual stimulus can be
perfectly perceived in the V; zone, especially for the area
of central fovea [9]. Such powerful capability implies that
there exist plenty of neurons in visual cortex to represen-
t the details of input stimulus, although each of them just
has a simple response pattern. Inspired by such a mecha-
nism, we particularly propose to construct a wider network
to learn richer features for image recognition, i.e., assign-
ing more sibling nodes in each layer. However, developing
innovative networks is nontrivial, which needs expertise in
neuroscience and labor-intensive parameter tuning.

In this work, we present a framework named DualNet
to effectively learn more accurate representation for image
recognition, as illustrated in Figure 1. The core idea of Du-
alNet is to coordinate two parallel DCNNSs to learn features
complementary to each other, and thus richer features can
be extracted from the raw images. Specifically, we consider
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an end-to-end DCNN to be composed of two logical parts,
i.e., feature extractor and image classifier, although they are
integrated without explicit division. Then a network of dou-
ble width is constructed by placing the feature extractors of
two subnetworks side by side, which exactly form the fea-
ture extractor of DualNet. Consequently, two streams of
features can be extracted for an input image, which are then
aggregated to form a unified representation to the final clas-
sifier for overall classification. Meanwhile, two auxiliary
classifiers are appended behind the feature extractor of each
subnetwork to make the separately learned features discrim-
inative alone. And the complementary constraint is imposed
by weighting the three involved classifiers, which is indeed
the key of DualNet. Besides, the corresponding training
strategy is proposed to make two subnetworks cooperate
well, which consists of iterative training and joint finetun-
ing. Compared to straightly doubling the layer width', our
method is practically feasible without introducing too much
memory cost, and is able to bring significant improvement
for image recognition.

Finally, we thoroughly investigate the proposed Dual-
Net framework based on the well-known CaffeNet [19],
VGGNet [31], NIN [22] and ResNet [13], and experimen-
tally evaluate its effectiveness on multiple datasets includ-
ing CIFAR-100 [ 18], Stanford Dogs [17] and UEC FOOD-
100 [26]. The results show that DualNet performs well with
different DCNN architectures and datasets of diverse do-
mains, and reports promising improvement compared to the
baselines. In particular, the performance achieved by Dual-
Net on CIFAR-100 is state-of-the-art, with less computation
cost introduced compared to the recent works [35, 27]. To
the best of our knowledge, this work is the first to focus on
the cooperation of multiple DCNNs, with the same input
and only simple fusion method considered, such as SUM,
Max and Concat.

The following paper is organized as follows. In Sec-
tion 2, we review the related works on image recognition
and DCNN. Section 3 presents the details of DualNet, and
Section 4 provides the experimental evaluation, which is
further discussed in Section 5. Finally, the whole work is
concluded in Section 6.

2. Related Work

Image recognition is a basic issue of computer vision,
in which adopted features are critical in determining the
classification performance. While traditional methods are
usually based on hand-crafted features, such as SIFT [24]
and HOG [7], more recent works [19, 31, 34, 13] have re-
sorted to the Deep Convolutional Neural Network (DCNN),
which is able to automatically learn discriminative features

!To train a VGGNet with double neurons at each layer without decreas-
ing the mini-batch size (32) will exceed the memory limit of a Tesla K40
GPU.

from millions of labelled images. A typical DCNN consists
of a number of convolution and pooling layers optionally
followed by fully connected layers [19].

The convolutional neural network had its earlier root
in [8, 20]. But the real milestone was not set until re-
cent years by AlexNet [19], whose massive improvement
shown on ILSVRC2012 rekindled people’s interests in D-
CNN. Due to the availability to large training data and G-
PU accelerated computation, multiple efforts have been tak-
en to enhance DCNN for greater capacity, e.g., increased
depth [31, 34, 13], enlarged width [30, 37, 36], smaller
stride in convolution or pooling [31, 37], new nonlinear ac-
tivations [25, 12], novel layers [ 1, 34], effective regula-
tions [15] and so on. These improvements have turned out
to be helpful first on generic classification and then applied
to other visual assignments. However, the design of inno-
vative networks is of high complexity which needs exper-
tise in neuroscience [34], and the parameter tuning is labor-
intensive [31, 34, 13]. Different from these previous works,
in DualNet, we do not redesign a certain component in DC-
NN and instead exploit the potentials of existing networks.
We assemble multiple DCNNSs to learn complementary fea-
tures and thus form a wider network to extract more accu-
rate image representation for recognition.

More related works lie in [28, 23]. Compared to the
multi-stream learning [28] in which parallel streams have
different parameter numbers and receptive field sizes, the
subnetworks in DualNet have the same architectures. Be-
sides, the motivation and optimization are totally different.
As for [23], it specially deals with fine-grained categoriza-
tion, while DualNet aims at generic classification. And our
work further differs from [23] in design philosophy, net-
work architecture and computation cost. Firstly, in [23], the
output of two DCNN5s are multiplied to assemble the infor-
mation of each location, while DualNet is designed to make
each unit of high layers to describe its corresponding image
patch more accurately. Secondly, the bilinear pooling is tak-
en as the fusion method in [23], but in DualNet only simple
SUM is adopted. In fact, the bilinear model that performs
best in [23] is eventually implemented with a single DCNN
because of weight sharing, however, DualNet holds two D-
CNNs which do not share weights and are complementary
to each other. At the same time, the auxiliary classifiers are
introduced in DualNet and the training process is quite dif-
ferent. Thirdly, the features after the bilinear pooling are of
high dimension, which can model the subtle difference of
fine-grained categories better but requires much more train-
ing complexity and memory cost. In contrast, DualNet is
rather computationally efficient. Furthermore, DualNet is
not a specific network but a fairly generic framework which
can generalize multiple DCNN architectures. Particularly,
the performance achieved by DualNet is state-of-the-art on
CIFAR-100 with SUM as the fusion method.
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3. Our Approach

The extraction of visual features is usually treated as the
most important design choice in computer vision tasks, in-
cluding image recognition. Despite of the great improve-
ment brought by DCNN, the top-1 accuracy for image
recognition is still not satisfying enough for practical ap-
plications, e.g., 19.38% top-1 error on ImageNet validation
set with ResNet-152 [13]. Hence it is still vital and nec-
essary to develop advanced models to learn more accurate
image representation. So far DCNN is considered to be the
most competitive approach for feature extraction, which is
able to abstract hierarchical features ranging from edges to
entire objects [37]. In practice, DCNN is trained by opti-
mizing the objective loss function, i.e., the training is driv-
en by the errors generated at the highest layer according to
back propagation (BP). Consequently, in the optimization
of single network, some distinctive details of the objects,
which are low-level but essential to discriminate the classes
of strong similarity, are likely to be dropped in the mid-
dle layers or overwhelmed by massive useless information,
since the loss signals received by shallow layers for param-
eter update have been filtered by multiple upper layers. In
other words, it is difficult for single network to learn the
whole details of input images.

To deal with this issue, in this work, we propose a nov-
el DualNet framework consisting of two parallel networks.
The highlight of DualNet is to coordinate two networks to
learn complementary features from input images, i.e., one
network is able to learn details about the objects of interest
which are missing in the other, such that after fusion rich-
er and more accurate image representation can be extracted
for recognition. Particularly, in the design of DualNet, we
follow the principles listed below:

P1 The features after fusion are expected to be the most
discriminative compared to the features extracted by
each subnetwork, which exactly indicates the comple-
mentary learning embedded in DualNet.

P2 The framework should be fairly generic to perform
well with most of typical DCNNS, e.g., VGGNet and
ResNet, and popular datasets, e.g., CIFAR-100.

P3 In terms of computation cost, the networks should be
efficient as much as possible for training and test, and
compatible for a Tesla K40 GPU (12 GB memory lim-
it) without decreasing the mini-batch size.

P4 Only simple fusion methods, such as SUM, MAX and
Concat, are considered to ensure the generalization a-
bility and computation efficiency, and the focus is the
cooperation and complementarity of two subnetworks.

From another perspective, DualNet can be also viewed
to provide an approach to construct a wider network. By
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Figure 2. The architecture of DNC. The dropout layers following
fc6 and fc7 in the {Fused, SI, S2} Classifier are omitted. On the
whole, the feature maps of the S1 Extractor and S2 Extractor are
summed into the Fused Classifier, which is expected to achieve
higher accuracy for recognition by coordinating two extractors to
learn complementary features.

effectively assembling the feature extractors of two subnet-
works, we finally acquire a network with double neurons at
each layer such that the input patterns can be more fully rep-
resented. In the following, we will respectively elaborate on
the architecture of DualNet and the corresponding training
strategy.

3.1. Network Architecture

In DualNet, two identical DCNNs are adopted for the
complementary learning, as illustrated in Figure 1. The
Subnetwork 1 and Subnetwork 2 can be any existing mod-
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(a) Finetune CaffeNet

(c) Joint Finetuning
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(b) Iterative Training

Figure 3. Illustration of the training strategy of DNC. Caffenet is first finetuned on specific dataset for the initialization of DNC. Then
the S1 Extractor and S2 Extractor are trained in an iterative way through the iterative training. Finally, the last fully connected layers of
the Fused Classifier, SI Classifier, S2 Classifier are jointly finetuned. At each stage, only the components surrounded by the red rectangle

are finetuned with the rest fixed. Best viewed electronically.

els, and here we evaluate DualNet based on the well-known
CaffeNet, VGGNet, NIN and ResNet> (referring to P2).
They are coordinated to learn complementary features from
input images, which are then aggregated to build richer and
more accurate representation for recognition compared to
single network.

An example architecture of the DualNet From CaffeNet
(DNC) is shown in Figure 2, where the two involved Caf-
fenet are denoted as S/ and S2 for simplicity. Particularly,
we logically divide an end-to-end CaffeNet into two func-
tional parts, i.e., feature extractor and image classifier. The
division is not explicitly specified and theoretically can oc-
cur at any layer, e.g., pool5 here. On the whole, DNC has
a symmetrical architecture, in which the S/ Extractor and
S2 Extractor are placed side by side and the feature maps
produced by them are integrated into the Fused Classifier.
The auxiliary S Classifier and S2 Classifier are append-
ed to make the features produced by each feature extractor
discriminative alone. And the complementary constraint is
imposed by weighting the three classifiers. In fact, the key
component of DualNet is the Fused Classifier, which can
assemble two extractors to describe the objects of interest
from different aspects, and thus result in higher accuracy
for recognition (referring to P1).

The fusion layer pool5 is empirically selected for the fol-
lowing reasons. Each activation unit in pool5 corresponds
to a 32 x 32 patch in the input image, while the one in ful-

2 All using the public version in the Caffe Model Zoo [1]. For NIN,
the settings of NIN-CIFAR10 is adopted. And for ResNet, since there is
no complete model in the Caffe Model Zoo (only testing code), we imple-
ment it on CIFAR-10 with Caffe, according to [13, 14] and the third-party
implementation available at [2].

ly connected layers sees the entire scene. We expect that
one of the image extractors can learn more specific charac-
teristics about the objects complementary to the other, and
these details are usually presented in small regional areas.
So it is implied that the fusion is better performed on the
local patch, not the full image scope. In addition, fusing at
pool5 also has computational benefit when performing test
(referring to P3). SUM is chosen as the fusion method for
simplicity, and also for transferring the parameters from the
last fully connected layer, i.e., classifier, of the original Caf-
feNet. And the coefficients are fixed as {0.5,0.5}. Further
discussion about the selection of fusion method is provided
in Section 5 according to P2, P3 and P4.

The same strategy is applied to the 16-layer VGGNet to
construct the DualNet From VGGNet (DNV). Please refer
to [31] for the details of VGGNet. The SI Extractor and S2
Extractor are comprised of the layers before pool5 in VG-
GNet. The feature maps from two extractors are averaged
and sent into the following Fused Classifier for overall clas-
sification. The auxiliary classifier is appended after each
extractor to keep the features discriminative alone.

For NIN [22] and ResNet [13] in which there does not
exist fully connected layers and the input size is much s-
maller (32x32), following the same philosophy, we choose
to construct the DualNet From NIN (denoted as DNI instead
of DNN to avoid confusion) and DualNet From ResNet (D-
NR) by averaging the features maps of two subnetworks
at the penultimate convolution layer (e.g., cccp5 in NIN),
while the last convolution layer is for prediction’.

3The network architectures of DNV, DNI and DNR are illustrated in
the supplementary material.
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3.2. Training Strategy

The training strategy plays vital roles in coordinating the
two extractors to learn complementary features, in which
the whole network is not just globally finetuned (referrring
to P1, P3). Taking the training of DNC as example, as il-
lustrated in Figure 3, it mainly consists of two aspects: the
iterative training between the S1 Extractor and S2 Extrac-
tor to make them cooperate well, and the joint finetuning
of the Fused Classifier, SI Classifier and S2 Classifier for
further performance improvement.

3.2.1 Iterative Training

The iterative training means, between the SI Extractor and
S2 Extractor, fixing one of them and finetuning the other
in an iterative way. On the one hand, it is out of the con-
sideration of conserving GPU memory (referring to P3) and
reducing overfitting. On the other hand, we hope that this
way would explicitly make one extractor learn complemen-
tary features to the other during each iteration, thus yielding
more discriminative fused features (referring to P1). Partic-
ularly, the domain-specific finetuning of CaffeNet can be
treated as a special case of the iterative training for DNC,
i.e., iter_0, in which another extractor is assigned with ze-
ro and the auxiliary classifiers are omitted for the moment.
Then the finetuned CaffeNet is utilized to initialize the S/
Extractor and Fused Classifier for the next iteration, i.e.,
iter_1, and meanwhile the S/ Classifier is also initialized
but not involved in iter_I.

While training the S2 Extractor (in iter_i, i=1,3,...), the
parameters of the S1 Extractor are fixed. Appending the S2
Classifier at the top of pool5_S2 can prevent that, the S2 Ex-
tractor moves towards the same weights as the S1 Extrac-
tor during training*, and thus will have little effect on the
fused features. Specifically, the modules including the S2
Extractor, S2 Classifier and Fused Classifier are optimized
according the loss function defined as:

Ly = Lrysea + As2Ls2 9]

where Ly seq and Lgs are both cross entropy loss comput-
ed by the Softmax_Fused and Softmax_S2. The loss weight
Ag2 is empirically set to 0.3. To some extent, the second
term in the loss plays as the regularization for training, and
Ago < 1is to inform the S2 Extractor that the Fused Clas-
sifier is more important in the optimization.

And while the S2 Extractor is fixed (in iter_j, j=2,4,...),
the S1 Classifier is appended for the finetuning of the S7 Ex-
tractor (as well as the Fused Classifier) and the loss func-
tion is defined as:

Ly = Lpysea + As1Ls1 2

4For example, in iter_1, without the S2 Classifier, the modules to train
will be the S2 Extractor and Fused Classifier, which are basically the same
as CaffeNet in in ifer_0. The ablation study is taken in Section 4.4

where Ly seq and Lg; are cross entropy loss computed by
the Softmax_Fused and Softmax_S1. The loss weight \g; is
also set to 0.3.

The maximum iteration (denoted as max_iter) is set ac-
cording to the cross validation. Generally speaking, it is
no more than 2 to gain the satisfying improvement. When
testing, the output of the Fused Classifier is taken for a fair
comparison with the base model, e.g., CaffeNet. Certain-
ly, we can also assemble the predictions of three classifiers,
i.e., the probability of each class is computed as:

SCOTe = SCOT€pysed + Agascoregs + Agiscoregy  (3)

where scorepysed, Scoregs, scoreg; are the output of the
Fused Classifier, S2 Classifier and SI Classifier at testing
time. Then score is taken to evaluate for the recognition.

3.2.2 Joint Finetuning

There are three classifier modules, i.e., the SI Classifier, S2
Classifier and Fused Classifier, involved in DualNet, but
in the above methods their abilities have not been fully ex-
ploited. Here an alternative integration method is proposed
to further boost the performance.

Since global finetuning of the whole network, e.g., DNV,
is time-consuming and requires large GPU memory (refer-
ring to P3), we instead choose to jointly finetune the last
fully connected layer of three classifier modules (e.g., fc8
in DNC, cccp6 in DNI) with the following loss function:

L3 = Lpysea + AsaLs2 + As1Ls1 4

where as above Lpyseq, Ls2, Ly are all cross entropy loss
output by the Fused Classifier, S2 Classifier and SI Clas-
sifier respectively. The loss weights Ago and Ag1 keep as
0.3. Correspondingly, in the testing phase, the prediction
for each image is obtained according to Equation (3).

4. Experiment

In this section, we evaluate the DualNet From Caf-
feNet (DNC), DualNet From VGGNet (DNV), DualNet
From NIN (DNI), DualNet From ResNet (DNR) on mul-
tiple widely-used datasets, including CIFAR-100 [18], S-
tanford Dogs [17] and UEC FOOD-100 [26] (referring to
P2). The hyper-parameters for the iterative training are i-
dentical to those of finetuning the standard deep models on
specific datasets. For the joint finetuning, the base learning
rate is reduced by a factor of 10 for a few additional iter-
ations. All the networks are implemented with Caffe [16]
and trained/tested on a Tesla K40 GPU (referring to P3) 3.

5The implementation with the parameters for training each model, as
well as the pretrained models, is available at https://github.com/
ustc-vim/dualnet.
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Table 1. The top-1 accuracy on CIFAR-100 achieved by
the standard deep models (NIN&ResNet) and DualNet (D-
NI&DNR). The first row shows the results of NIN&ResNet and
the rest are all achieved by DNI&DNR. After the iterative training,
we respectively evaluate the performance of the Fused Classifier
and the weighted average of three classifiers, while the latter one
can validate the necessity of the joint finetuning. w/o aug-without
data augmentation, w/ aug-with data augmentation.

Training DNI DNR
Model (w/o aug) | (w/aug)
standard deep model (NIN&ResNet) 66.91% 69.09%
iterative training (Fused Classifier) 69.01% 71.93%
iterative training (classifier average) 69.51% 72.29%
Jjoint finetuning (classifier average) 69.76 % 72.43%

4.1. CIFAR-100

CIFAR-100 [18] consists of 60000 32 x 32 natural im-
ages in 100 classes, which are split into 50000 for train-
ing and 10000 for test. The dataset is pre-processed using
global contrast normalization and ZCA whitening follow-
ing [10, 22, 35, 27], and then is taken to evaluate DNI and
DNR here.

NIN [22] is chosen as the base model because it yields
one of the best performances on CIFAR-100, and the recent
works [35, 27] are also built upon it. We follow the network
setting of NIN-CIFAR10 available in the Caffe Model Zoo
and change the output number of the last convolution layer
to 100. The results achieved by the standard NIN and our
DNI are shown in Table 1, and reported in the top-1 accura-
cy. After the iterative training, the Fused Classifier of DNI
achieves 69.01% testing accuracy, which improves the per-
formance of NIN by more than 2%. At this stage, i.e., be-
fore the joint finetuing, we also evaluate the weighted aver-
age of three classifiers (computed according to Equation (3)
and denoted as classifier average) and get 69.51%. Final-
ly, the performance is further improved to 69.76% when the
joint finetuning is done. It is worth noticing that, max_iter is
set to 1 for the iterative training, and thus the computation
cost of training DNI is not heavy.

Since data augmentation for CIFAR-100 is not standard-
ized and it is hard to isolate the impact of data augmenta-
tion from the methods, following [27], DNI is trained on
CIFAR-100 without augmentation to enable a fair compar-
ison with the existing literatures. Table 2 shows the per-
formance comparison of different methods. There are some
works, e.g., [32, 14, 36, 6], which are not listed here because
they report the results only with data augmentation. Direct-
ly comparable to our DNI are [22, 35, 27], which are al-
so built upon NIN. Note that we reproduce higher accuracy
with NIN than the original version [22] that was implement-
ed with cuda-convnet [3], and some parameters have been
updated. HD-CNN [35] actually adopts the cropping strat-
egy and 10 view testing. It is listed here because it is one of
the most representative works and also taken for compari-

Table 2. Performance comparison of DNI with the existing
methods on CIFAR-100 without data augmentation. The re-
sults are all reported in the top-1 accuracy. *-with cropping strate-
gy and 10 view testing [35].

Method Test accuracy

Maxout Network [10] 61.43%
Tree based priors [33] 63.15%
Network In Network [22] 64.32%
DSN [21] 65.43%
NIN+LA units [4] 65.60%
HD-CNN* [35] 67.38%
DDN [27] 68.35%

[ DNI (ours) [ 69.76% |

son in [27]. To the best of our knowledge, DDN [27] reports
the best result on CIFAR-100 without augmentation before
this work. And our DNI performs better than DDN [27] by
1.41%.

Next, in order to evaluate DNR, we first follow the de-
scription in [13, 14] to implement a 20-layer ResNet (de-
noted as ResNet-20) with Caffe. And it achieves the top-1
accuracy of 90.55% on CIFAR-10 without any data aug-
mentation, which basically agrees with the result in [13].
But when the same setting is used for CIFAR-100, the per-
formance (only 60.82%) is much worse than NIN, which
is probably caused by data scarcity. After all, the number
of images in each class of CIFAR-100 is only one tenth
of CIFAR-10. In that case, we augment the training data
with padding and randomly changing contrast and bright-
ness, and then get 69.09% on CIFAR-100 with ResNet-20°.
Then DNR is constructed and also trained on the augmented
data. As shown in Table 1, the iterative training (max_iter
is also set to 1) improves the performance to 71.93%. Af-
ter the joint finetuning, DNR finally achieves 72.43% on
CIFAR-100, which is 3.34% higher than the base model.

4.2. Stanford Dogs

Since the image size of CIFAR-100 (32 x 32) is much
smaller than the input size of CaffeNet (227 x 227) and VG-
GNet (224 x 224), it is not proper to resize the images of
CIFAR-100 to train them. So another dataset, i.e., Stanford
Dogs [17], is chosen to evaluate DNC and DNV. The dataset
is made up of 120 classes and 20580 images. Throughout
the experiments, no bounding box annotation or data aug-
mentation is involved, except that the flip is randomly ex-
ecuted on the images before being input into the network.
We follow the standard split way attached in the dataset for
training and test, i.e., for each class there are 100 images
used for training and the rest for test. At testing time, the
evaluation is done with one single center crop of input im-
ages. For simplicity, we only report the results of DNC and
DNV when all the training is done. And max_iter is set to

The network architecture of ResNet-20 and the parameters for data
augmentation are provided in the supplementary material.
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Table 3. The top-1 accuracy on Stanford Dogs and UEC
FOOD-100 achieved by the standard deep models (Caf-
feNet& VGGNet) and DualNet (DNC&DNYV). The results are
reported using the weighted average of three classifiers when all
training is done. The performance comparison demonstrates that
the proposed DualNet performs well with CaffeNet and VGGNet.

Mot Dataset Stanford Dogs | UEC FOOD-100
CaffeNet 66.84% 39.92%
DNC (From CaffeNet) 67.94% 1%
VGGNet TH11% 47.40%
DNV (From VGGNet) 77.56 % 49.19%

1 for the iterative training. According to Table 3, DNC and
DNV perform well and both achieve higher accuracy than
the corresponding baselines, i.e., CaffeNet and VGGNet.

4.3. UEC FOOD-100

UEC FOOD-100 [26] is selected to further evaluate D-
NC and DNV since it is a totally fresh domain which dif-
fers from CIFAR-100 and Stanford Dogs (referring to P2),
and max_iter is set to 2 on it according to the cross valida-
tion. There are 100 food categories in the dataset with more
than 100 images for each category. There is no split way
provided in it, so for each class we randomly pick 100 im-
ages for training with the rest for test. The identical experi-
mental settings on Stanford Dogs are followed, i.e., neither
bounding box annotation nor data augmentation for train-
ing, and one single center crop for test. The performance
comparison of DNC and DNV with their base models on
UEC FOOD-100 is shown in Table 3. Besides, we further
evaluate DNV on the dataset after each training procedure,
i.e., the domain-specific finetuning of VGGNet, each iter-
ation of the iterative training (iter_i, i=1,2), and the joint
finetuning. As shown in Figure 4, the top-1 accuracy is im-
proved step by step in the training process, indicating that
each training procedure helps.

Note that the focus of experiments on Stanford Dogs and
UEC FOOD-100 is on the behaviors of DualNet from Caf-
feNet and VGGNet on datasets of diverse domains, not re-
porting state-of-the-art results. So we only compare the per-
formance of DNC and DNV with the base models, i.e., Caf-
feNet and VGGNet, and do not apply any data augmenta-
tion [19] or utilize parts [38]. The philosophy of DualNet is
to coordinate two DCNNSs to learn complementary features,
so it is natural to adopt the single DCNN as baselines. And
this work makes sense by providing a generic framework to
effectively integrate two DCNNSs to extract more discrimi-
native representation.

4.4. Experimental Analyses

In this section we take further experiments to analyze the
performance achieved by DualNet. Here DNI is taken to
illustrate the proof, and the results are reported on CIFAR-

49.5

49t

Top-1 Acc (%)

48

¢ VGGNet iter]-* iter2-* iter2-# jt-#
Figure 4. The top-1 accuracy on UEC FOOD-100 by DNV af-
ter each training procedure. *-Fused Classifier, #-classifier av-
erage, iter_i (i=1,2)-iterative training, jt-joint finetuning.

100 without data augmentation.

In Section 3.2.1, we have explained the importance of
the auxiliary classifiers and here assess it experimentally
through ablation study. Specifically, in the first iteration of
iterative training for DNI, i.e., iter_I, the identical settings
are followed except that the S2 Classifier is removed. That
is, the finetuned NIN is utilized to initialize the S1 Extractor
and Fused Classifier, and then the S2 Extractor and Fused
Classifier are trained without the S2 Classifier. When iter_I
is done, the output of the Fused Classifier is taken for eval-
vation. In this way we get 67.70% on CIFAR-100, which
is much lower than the 69.09% obtained in the same con-
ditions but with the S2 Classifier appended. So introducing
the auxiliary classifiers is indeed necessary.

We also have tried to remove both the auxiliary classi-
fiers of DNI and then train the remaining network globally,
including the S1 Extractor, S2 Extractor and Fused Clas-
sifier. In that case, there exist two initialization strategies.
The first one is to train from scratch. Then the Fused Classi-
fier only achieves 66.11% on CIFAR-100. The second is to
initialize the S1 Extractor, S2 Extractor and Fused Classifi-
er with NIN after being finetuned on CIFAR-100. Then we
obtain 68.49% with the Fused Classifier. Both the results
are lower than the 69.76% achieved by DNI.

Another attempt is to directly double the number of fea-
tures maps in each layer, which is feasible with NIN on a
Tesla K40 GPU (not feasible with VGGNet) and then train
the network from scratch on CIFAR-100. Compared to the
standard NIN (66.91%, also trained from scratch), the test-
ing accuracy is improved to 68.87%. However, it still per-
forms worse than DNI (69.76%), although more computa-
tion cost is introduced, such as time and GPU memory re-
quired for the optimization.

Besides, since the final accuray of DNI is reported by as-
sembling the three classifiers after the joint finetuning, we
further evaluate the performance of each individual classi-
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Figure 5. The evaluation of each classifier after the joint fine-
tuning of DNI on CIFAR-100 without data augmentation. S2-
S2 Classifier, S1-S1 Classifier, Fused-Fused Classifier, Average-
the weighted average of three classifiers.

fier (SI Classifier, S2 Classifier and Fused Classifier). Ac-
cording to Figure 5, among the three classifiers, the Fused
Classifier performs best as expected (referring to P1), and
the weighted average can further improve the performance.’

5. Discussion

Fusion method. In DualNet, we focus on the cooper-
ation of two subnetworks to learn complementary features
guided by P1-P4. Referring to P2 and P4, we deal with
the issue considering only simple fusion methods, such as
SUM, MAX and Concat, to ensure the generalization abil-
ity. Besides SUM, we have tried Concat but it does not
perform well. The probable reason is that much more pa-
rameters are introduced. Max is not a better choice ei-
ther because it does not make semantic sense for the fu-
sion, in which two extractors are supposed to be comple-
mentary, not competitive. Besides, adopting SUM as the
fusion method makes all our models, especially DNV, com-
patible to train on a Tesla K40 GPU without decreasing the
mini-batch size (referring to P3). Certainly, other complex
methods, e.g., the bilinear pooling, can also be adopted for
DualNet, which, however, will incur high computation cost
and impair the generalization ability.

Computational effort. In the iterative training of D-
ualNet, one of the feature extractor is fixed, and thus the
memory consumption is less compared to global finetuning
or directly doubling the width of each layer. And for the
joint finetuning, only the last layer of three classifiers are
jointly finetuned. Besides, max_iter is always no more than
2, and in most cases, it is in the first iteration that most of the
improvement is gained (e.g., DNI on CIFAR-100). More it-
erations for the iterative training and the joint training are

"More experimental analyses are provided in the supplementary mate-
rial.

Table 4. Comparison of GPU memory consumption and time
cost between NIN and DNI for the test on CIFAR-100 (10000
images). The first row shows the complexity statistics of NIN,
while the rest are about DNI.

Training Memory | Time

Model (MB) (sec.)
standard deep model (NIN) 515 9.3
iterative training (Fused Classifier) 1032 18.2
iterative training (classifier average) 1061 19.1
Jjoint finetuning (classifier average) 1061 19.1

both optional. Hence the cost of training DualNet is not
heavy. Besides, we provide some complexity statistics for
the test shown in Table 4. NIN and DNI are further evalu-
ated on CIFAR-100 in terms of GPU memory consumption
and time cost for the entire test set. The mini-batch size for
test is set to 100. Through the comparison, it can be seen
that the improvement brought by DNI is achieved without
introducing too much computation cost (two times as much
as NIN). By contrast, in HD-CNN [35] which is also built
on NIN, the GPU memory consumption and testing time are
three times and four times as much as the base model.

6. Conclusion

In this work, we deal with the issue of image recognition
through providing a fairly generic framework named Dual-
Net, in which two parallel DCNNSs are coordinated to learn
complementary features, thus constructing a wider network
and yielding more discriminative representation. Follow-
ing the principles P1-P4, two-stream features are extracted
for an input image, which are then fused through SUM to
form a unified representation. Apart from the overall clas-
sifier based on the fused features, two auxiliary classifiers
are proposed to be appended behind each extractor to keep
the separately learned features discriminative alone. And
the complementary constraint is imposed through weight-
ing the three classifiers. Finally, DualNet based on Caf-
feNet, VGGNet, NIN and ResNet are thoroughly investi-
gated and experimentally evaluated on CIFAR-100, Stan-
ford Dogs and UEC FOOD-100, which all achieve higher
top-1 accuracy than the baselines. In particular, the perfor-
mance on CIFAR-100 is state-of-the-art compared to the re-
cent works. In the future, we plan to explore the utilization
of more advanced fusion methods and apply the network
compression techniques to further optimize DualNet.
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