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Abstract

What defines a visual style? Fashion styles emerge or-

ganically from how people assemble outfits of clothing,

making them difficult to pin down with a computational

model. Low-level visual similarity can be too specific to

detect stylistically similar images, while manually crafted

style categories can be too abstract to capture subtle style

differences. We propose an unsupervised approach to learn

a style-coherent representation. Our method leverages

probabilistic polylingual topic models based on visual at-

tributes to discover a set of latent style factors. Given a

collection of unlabeled fashion images, our approach mines

for the latent styles, then summarizes outfits by how they mix

those styles. Our approach can organize galleries of outfits

by style without requiring any style labels. Experiments on

over 100K images demonstrate its promise for retrieving,

mixing, and summarizing fashion images by their style.

1. Introduction

Computer vision methods that can understand fashion

could transform how individual consumers shop for their

clothing as well as how the fashion industry can analyze its

own trends at scale. The scope for impact is high: fashion is

already a $1.2 trillion USD global industry, popular social

commerce websites like Chictopia and Polyvore draw mil-

lions of users, and online subscription services like Stitch-

Fix blend algorithms and stylists to personalize shopping

selections. In sync with these growing possibilities, recent

research explores new vision methods for fashion, with ex-

citing advances for parsing clothing [39, 38], recognizing

clothing, attributes [5, 40], and styles [20, 33], matching

clothing seen on the street to catalogs [19, 25, 18, 37, 26],

and recommending clothing [24, 28, 36, 14, 16].

Despite substantial progress on all these fronts, captur-

ing the style-coherent similarity between outfits remains

an important challenge. In particular, a visual representa-

tion with style coherency would capture the relationship

Query
Instance match Label-based Latent looks

– low diversity. – inconsistent. – consistent, diverse.
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Figure 1: The leftmost query image relates to instances like those

in (a),(b),(c) in distinct ways. In contrast to matching near-

duplicate outfits (a) or classifying broad styles (b), we propose

to discover the latent “looks”—compositions of clothing elements

that are stylistically similar (c).

between clothing outfits that share a “look”, even though

they may differ in their specific composition of garments.

A style-coherent representation would be valuable for i)

browsing, where a consumer wants to peruse diverse outfits

similar in style, ii) recommendation, where a system should

suggest new items that add novelty to a consumer’s closet

without straying from his/her personal style, and iii) style

trend tracking, where analysts would like to understand the

popularity of items over time.

Style coherency differs from traditional notions of vi-

sual similarity. The problem of style coherency sits between

the two extremes currently studied in the literature: on one

end of the spectrum are methods that seek robust instance

matching, e.g., to allow a photo of a garment seen on the

street to be matched to a catalog [19, 25, 18, 37, 26] (see

Figure 1(a)); on the other end of the spectrum are methods

that seek coarse style classification, e.g., to label an outfit

as one of a small number predefined categories like Hip-

ster, Preppy, or Goth [20, 33] (see Figure 1(b)). In contrast

to these two extremes, style coherency refers to consistent

fine-grained trends exhibited by distinct assemblies of gar-

ments. In other words, coherent styles reflect some latent

“look”. See Figure 1(c).
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We propose an unsupervised approach to learn a style-

coherent representation. Given a large repository of unla-

beled fashion images, the goal is to discover the latent fac-

tors that naturally guide how people dress—that is, the un-

derlying compositions of visual attributes that define styles.

To this end, we explore probabilistic topic models. Topic

models in natural language processing [3, 31] represent text

documents as distributions over concepts, each of which

is a distribution over words. In our case, an outfit is a

“document”, a predicted visual attribute (e.g., polka dotted,

flowing, wool) is a “word”, and each style is a discovered

“topic”. Furthermore, we consider polylingual topic mod-

els [29] in order to model style consistency across multiple

regions of the body, enforcing that the discovered style fac-

tors for each region of the body should interact compatibly.

Our idea makes it possible to organize galleries of outfits

by style without any style labels. Building on the proposed

model, we develop methods to mix styles or summarize an

image gallery by its styles.

The proposed approach is well-suited for the problem at

hand, for several reasons. First, being unsupervised, our

algorithm discovers the underlying elements of style, as op-

posed to us manually defining them. It is often difficult

to manually craft labels, especially in the domain of fash-

ion. Clothing styles emerge organically from instances of

what people choose to wear—not from some top-down pre-

ordained bins of outfit types—and furthermore they evolve

over time, meaning today’s hand-crafted lexicon will even-

tually fade in relevance. Secondly, our approach accounts

for the fact that style is about the Gestalt: individual items

do not dictate a style; rather, it is their composition that cre-

ates a look [2]. Finally, our topic model approach also nat-

urally accounts for the soft boundaries of style, describing

outfits as mixtures of overlapping styles.

Our experiments on two challenging fashion

datasets [20, 26] demonstrate the advantages of our

unsupervised representation compared to style-based

CNNs and more basic attribute descriptions. We validate

that our styles align well with human perceived styles.

We further show their value for retrieval, mixing, and

summarization. Finally, we introduce a new dataset of 19K

images labeled for fine-grained, body-localized attributes

relevant for fashion analysis.

2. Related Work

Attributes for fashion Describable attributes, such as flo-

ral, denim, long-sleeved, are often of interest in analyzing

fashion images. Prior work explores a variety of recogni-

tion schemes [9, 40, 5, 4, 26, 7], including ways to jointly

recognize attributes [40, 5] or simultaneously detect cloth-

ing articles and attributes [4]. In our work, attributes serve

as a starting point for discovering styles (i.e., the “words” in

our topic model), and improvements in attribute prediction

from work like the above would also benefit our model.

Retrieval and matching for clothing Given an image

of a garment, clothing retrieval methods identify exact or

close matches, which supports shopping needs. Clothing

deformations and complex body poses make retrieval chal-

lenging, so researchers develop ways to learn the similar-

ity of outfits or garments [12, 25, 18, 37, 23]. Matching

clothing seen “on the street” to instances stored in cata-

logs “at the shop” requires new ideas in domain adapta-

tion [19, 15, 18, 25]. Existing methods are largely super-

vised, i.e., provided with street-shop pairs or pairs of out-

fits judged as similar by human annotators. In contrast, we

develop an unsupervised approach that can leverage ample

unlabeled data. More importantly, whereas retrieval work

aims to match the same (or similar) garment(s), we aim to

identify style-coherent complete outfits.

Models of style, fashionability, compatibility Previous

work offers a few perspectives on the meaning of visual

style. The Hipster Wars project defines five style categories

(Hipster, Goth, Preppy, Pinup, Bohemian) and recognizes

them based on patches on body part keypoints [20]. An-

other approach pre-trains a neural network for style using

weak meta-data labels [33]. Compared to the retrieval work

above, both (like us) aim to capture a broader notion of

style. However, unlike [20, 33] we treat styles as discover-

able latent factors rather than manually defined categories,

which has the advantages discussed in the Introduction.

Whereas style refers to a characterization of whatever it

is people wear, compatibility refers to how well-coordinated

individual garments are [36, 16, 24], and fashionability

refers to the popularity of clothing items, e.g., as judged

by the number of “like” votes on an image posted on-

line [32]. Recent work explores forecasting the popularity

of styles [1].

Topic models Topic models originate in text processing.

The well-known topic model Latent Dirichlet Allocation

(LDA) [3] and its polylingual extension [29] use multino-

mial distributions to represent the generation of documents

comprised of words. Polylingual topic models are applied

to Web fashion data in [35] to discover links between tex-

tual design element meta-data and textual style meta-data,

with no computer vision. Early uses of topic models in vi-

sion relied on “visual words” (quantized image patches) to

discover representations for scene recognition [10] or per-

form object category discovery in unlabeled images [34].

More recently, topic models are used to recommend a color-

coordinating garment in [16]. To our knowledge, we are the

first to propose discovering visual styles for outfits using

topic models. Deriving topic models on top of semantic

visual attributes is also new, and has the added benefit of

yielding interpretable latent topics.
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Figure 2: Graphical model of the polylingual visual style LDA.

3. Approach

After providing background on topic models in Sec-

tion 3.1, we introduce our visual fashion topic model in Sec-

tion 3.2. Next in Section 3.3 we overview the fine-grained

localized attributes used in our model. Finally, we leverage

the learned style-coherent embedding for retrieval, mixing,

and summarization tasks in Section 3.4.

3.1. Background: Topic models

We explore unsupervised topic models originating from

text analysis to discover visual styles. In particular, we

employ Latent Dirichlet Allocation (LDA) [3]. LDA is a

Bayesian multinomial mixture model that supposes a small

number of K latent topics account for the distribution of ob-

served words in any given document. It uses the following

generative process for a corpus D consisting of M docu-

ments each of length Ni:

1. Choose θi ∼ Dir(α), where i ∈ {1, . . . ,M} and

Dir(α) is the Dirichlet distribution for parameter α

2. Choose ϕk ∼ Dir(β), where k ∈ {1, . . . ,K}
3. For each word indexed by i, j, where j ∈ {1, . . . , Ni},

and i ∈ {1, . . . ,M}

(a) Choose a topic zi,j ∼ Multinomial(θi)
(b) Choose a word xi,j ∼ Multinomial(ϕzi,j

)

Only the word occurrences are observed.

Polylingual LDA [29] extends LDA (we will call it

MonoLDA) to process an aligned corpus of documents ex-

pressed in multiple languages. The idea is to recover topics

that preserve the ties between translated text. In particular,

translated documents form a tuple, and all documents in a

tuple have the same distribution over topics. Each topic is

produced from a set of distributions over words, one distri-

bution per language.

3.2. Discovering a style­coherent embedding

We propose to learn a style-coherent embedding using

a topic model. In our setting, the latent topics will be dis-

covered from unlabeled full-body fashion images, meaning

images of people wearing an entire outfit (as opposed to

catalog images of individual garments). In this way, we aim

to discover the compositions of lower-level visual cues that

characterize the main visual themes—styles—emerging in

how people choose to assemble their outfits.

The basic mapping from document topic models to our

visual style topic models is as follows: an observed out-

fit is a “document”, a predicted visual attribute (e.g., polka

dotted, flowing, wool) is a “word”, and each style is a dis-

covered “topic”.

A potential limitation of this mapping, however, is that

it treats an outfit as a bag of attributes. Thus it loses valu-

able information about the attributes’ associated articles of

clothing. For example, learned topics could interchange the

appearance of wool pants with a wool jacket, when the two

may in reality signify distinct latent styles. A partial so-

lution is to specify localized attributes. For example, we

could expand wool to wool pants and wool jacket. However,

this expansion may suffer from allowing LDA to decouple

topics across different regions of the body. For example,

in Figure 3 (left), MonoLDA dedicates topic 1 to shirt and

topic 2 to skirt.

Thus, we consider a polylingual LDA (PolyLDA)

model [29]. In this case, each region of the body is a

“language”, and an outfit is a “document tuple” in multiple

languages. As above, latent styles are topics and inferred

clothing attributes are words. The body regions (denoted

as R) we consider are: outer layer (i.e., where a jacket

or blazer goes), upper body (shirt/blouse/sweater), lower

body (pants/skirt/shorts), and hosiery (tights/leggings). The

polylingual topic model adds a structural constraint that

forces body regions to share styles, such that we can learn

styles consistent across body regions. The generative pro-

cess of PolyLDA is as follows:

1. For each topic k ∈ {1, . . . ,K}

(a) For each body part r ∈ R

i. Choose attribute distribution ϕ
(r)
k

∼ Dir(β)

2. For each outfit i ∈ {1, . . . ,M}

(a) Choose style distribution θi ∼ Dir(α)
(b) For each body part r ∈ R

i. For each attribute belonging to that body part, in-

dexed by i, j, where j ∈ {1, 2, . . . , Ni
(r)}

– Draw a style z
(r)
ij ∼ Mult(θi)

– Draw an attribute x
(r)
ij ∼ Mult(ϕ

(r)

z
(r)
ij

)

Figure 2 shows the associated graphical model. In con-

trast to MonoLDA, PolyLDA captures the interaction of

garment regions, such that each style specifies a full-body

trend (Figure 3, right).
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Mono-topic1 Mono-topic2 Poly-topic1 Poly-topic2

U shirt collar L skirt O deco button O length short

U deco button L skirt short O pattern plain O sleeve long

U buttoned L skirt full O blazer O pullover

G deco button L skirt pleat U buttoned U shirt collar

U sleeve long L skirt high-rise U shirt collar U color white

G pattern plaid G pattern plain L length long L skirt short

G pattern plain G front pullover L shape straight L skirt full

G deco button G deco button H pattern plain

G pants H length short

G jacket G sweater

Figure 3: Mono vs. Polylingual LDA: U for upper body, O

for outer layer, L for lower body, H for hosiery and G for

global. MonoLDA (left) learns a topic either for U or L , while

PolyLDA’s styles (right) span the whole body.

By applying PolyLDA to a database of unlabeled outfit

images, we obtain a set of discovered styles (see Figure 7 in

our experiment section for examples) with which to encode

novel images. Each topic k has its attribute probability ϕ
(r)
k

depending on body region r. Given an outfit d, we represent

it in a style-coherent embedding by its topic proportions:

θd = [θd1, . . . , θdK ], (1)

where θdk ≥ 0, Σkθdk = 1. The resulting embedding ac-

counts for the fact that a composition of style elements de-

fines a look [2].

We stress that our style-coherent embedding is fully un-

supervised. Our method discovers styles from unlabeled

images, as opposed to learning a style embedding with su-

pervision. For example, one could gather pairs of fashion

images and ask human annotators to label them as similar

or dissimilar in style (or use noisy tags as labels [33]), then

learn an embedding that keeps similar pairs close. Or, in

the spirit of [19], one could train classifiers to target a pre-

defined set of style categories. While the attribute mod-

els are trained on a disjoint pool of attribute labeled im-

ages, our style model runs on predicted attributes; annota-

tors do not touch the images on which we perform discov-

ery. Our unsupervised strategy saves manual effort. More

importantly, it also addresses challenges specific to visual

styles—namely, their ever-evolving nature, the difficulty in

enumerating them with words, and their soft boundaries.

3.3. Fine­grained localized fashion attributes

We next discuss our approach to infer attributes in full-

body fashion images. We consider both global and local-

Figure 4: Attributes present for an outfit in the localized vocabu-

lary (top) or global vocabulary (bottom).

ized attributes. Global attributes indicate the presence of

a property somewhere on the body (e.g., floral), whereas

a localized attribute links it specifically to a body region

(e.g., floral-shirt and floral-skirt are distinct words). Fig-

ure 4 shows an example image and the attributes from ei-

ther vocabulary that are present, as well as the body region

association for the localized ones.

Vocabulary and data collection As input to our style dis-

covery model, we need a rich attribute vocabulary that is

both localized and fine-grained. In existing fashion datasets,

the attributes lack one or both of these aspects [4, 5, 9, 40]

or are not publicly available [25]. Thus, we curate a new

dataset for attribute training.

For the vocabulary, we build on the 53 attributes enumer-

ated in [25]. First we remove those too subtle for most anno-

tators to discern (chiffon; jewel collar). Then we add miss-

ing but frequently appearing attributes (e.g., pink; polka-

dot). Finally, we expand the set so that color, material, and

pattern are localized to each body region. This yields 195

total attributes (see Supp for details).

To gather images, we use keyword search with the at-

tribute name on Google, then manually prune those where

the attribute is absent. This yields 70 to 600 positive

training images per attribute. We also gather 2000 ran-

dom street images from chictopia.com (manually pruned for

false-negatives) to serve as negative examples. In total, the

new dataset has 18,878 images.1

Training with multilabel outfits The clothing outfit im-

ages are multilabel in terms of their attributes. To circum-

vent the expense of labeling all 19K images for all 195 at-

tributes, and to deal appropriately with highly localized at-

tributes, we develop a piecewise training procedure. First

we group the attributes into six types: pattern, material,

shape, collar type, clothing article, and color. The types

1vision.cs.utexas.edu/projects/StyleEmbedding/
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Figure 5: We intersect the article and color labels to generate the

final blazer-color-blue, pants-color-red prediction.

have 105, 15, 20, 8, 27, 13 attributes, respectively.2 Then

we train separate convolutional neural networks (CNN) per

type. This allows us to directly use the positive examples

for each attribute, and all others from other keywords as

negatives, while still yielding predictions at test time that

are multilabel. We find it is also important during training

to have negatives with none of the named attributes present,

since such outfits are rather common.

Our attribute learning framework accounts for the chal-

lenge that many attributes occupy a small portion of a fash-

ion image. First, we detect people using faster-RCNN [30],

and extract a crop from the detected person bounding box

according to whether the image is a training image for an

upper or lower body attribute. We give the network both

the whole-body person box and the crop as two instances

with the same attribute label, allowing it to leverage any

useful cues. We fine-tune our attribute prediction networks

(one per type for the first four types) on ResNet-50 [13] pre-

trained with ImageNet [8].

For both the clothing article and color types, we

train a segmentation network. For both, we fine-tune

DeepLab’s [6] repurposed VGG-16 network and apply

DenseCRF [22]. The networks target 27 pixel-wise clothing

article labels and 13 pixel-wise color labels from the Fash-

ionista data [38], respectively. At test time, we i) record the

detected clothing article names, and ii) intersect the color

and clothing semantic segmentations to produce article-

specific color attributes, e.g., shirt-color-blue (Fig. 5).

The resulting attribute classifiers offer a fairly reliable

basis for style discovery. For the validation split of our 19K

image dataset, they attain 90% average precision. Figure 6

shows attribute predictions on novel test images.

3.4. Using the style­coherent embedding

Our method produces a style-coherent representation for

fashion images. Our experiments consider three tasks lever-

aging this representation, defined next.

Retrieval of style-related images For retrieval, the sys-

tem is given a query image and must return database images

2Attributes within pattern and collar types are mutually exclusive, thus

their multilabeling can be done efficiently. We obtain complete 20-label

and 15-label multilabeling for types material and shapes.

Upper Lower Hosiery Global

blue short dr. blue floral blue

purple loose dr. translucent purple

white flat dr. dress white

white dr. shoe beige

blue dr. stocking cardigan

purple dr. red

floral floral dr. floral

blue tight dr. dress

green flat dr. blue

beige blue dr. green

green dr. beige

beige dr.

Figure 6: Example of predicted attributes on a HipsterWars [20]

(top) image and a DeepFashion [26] (bottom) image (dr.=dress)

that illustrate similar style. Here we simply use our learned

embedding to retrieve images close to a query image, i.e.,

nearest neighbors in the space of θq for query image q.

Our embedding retrieves images that maintain style co-

herence with the query. While conventional embeddings

(e.g., CNNs) can return the examples closest in appear-

ance, our embedding can return those that are close in style.

Whereas the former is preferable when doing street-to-shop

visual matching [19, 15, 18, 25], the latter is preferable for

many browsing scenarios, e.g., to view recommendations

related to past purchases.

Mixing and “traversing between” styles A new task

supported by our approach is to mix fashion styles. In

this scenario, a user identifies T styles of interest S :=
{S1, . . . , ST }, St ∈ {1, . . . ,K}, and queries for images

that exhibit a blend of those styles. For example, the user

could manually select styles of interest by viewing images

associated with each discovered style, or the styles for mix-

ing could be automatically discovered based on the dom-

inant styles in his photo album or shopping history. We

measure the relevance of an image Ii as:

MixRelevance(θi,S) = min
t∈S

θit, (2)

where θi is the style embedding for Ii. The min assures that

an image is only as relevant to the requested style mix as it

is close to its most distant style. Similarly, we can offer new

browsing capabilities by depicting a gradual transition from

one style to another (see Figure 9).

Summarizing styles A third application uses our style-

coherent embedding to summarize the styles in an im-

age collection. Given images {I1, . . . , IN}, we calculate

the relative influence of each style k as Influence(Sk) =
∑N

i=1 θik. With these frequencies we can visualize the col-

lection compactly by sampling images dominant for each

influential style (Figure 11 in our experiment section).
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Pinup

PinupPinup

Pinup Goth Goth

GothGoth

Preppy

Preppy

Preppy

Preppy Hipster

Hipster

Hipster

Bohemian Bohemian

BohemianBohemian

Preppy

Figure 7: Top images for the five discovered style topics with PolyLDA. Labels indicate human-assigned styles from HipsterWars [20],

which are not seen by our algorithm. Our approach successfully discovers the five human-perceived styles. Please see Supp for more

examples and baseline cluster results.

Avg AP NMI

MonoLDA 0.48 0.30

PolyLDA 0.53 0.31

Table 1: Mono vs. poly LDA discovery accuracy judged against

the manual style labels of HipsterWars, using GT attributes.

4. Experiments

We first show that our discovered topics align with

human-perceived styles (Section 4.1). Then, we apply the

embedding for retrieval (Section 4.2), mixing (Section 4.3),

and summarizing styles (Section 4.4).

Datasets We use two datasets: (i) HipsterWars [20],

which has 1,893 images, each labeled by one of 5 style la-

bels: Hipster, Preppy, Goth, Pinup, Bohemian; (ii) Deep-

Fashion [26], from which we take all 108,145 images that

have at least one of the 230 style labels and a fully-visible

person. Because the 230 style labels in DeepFashion are

noisy labels, we collapse them into 42 higher level styles by

affinity propagation [11] using cosine similarity to measure

co-occurrence of styles in an outfit (see Supp). We use the

attribute networks trained with our new 19K image dataset

(Section 3.3) to predict the attributes in the HipsterWars and

DeepFashion images.

Baselines We compare with four baseline: (i)

StyleNet [33]: a state-of-the-art feature for clothing

that fine-tunes a CNN using 123 metadata labels (e.g., red-

sweater) on images from the Fashion 144K dataset [32], (ii)

vanilla ResNet-50 [13]: the last layer of a state-of-the-art

CNN pretrained for ImageNet, (iii) Attr-ResNet: ResNet-

50 fine-tuned to classify the same 148 attributes3 used by

our method with the same training data, and (iv) Attributes:

indicator vectors using the same attributes as our model.

3The attributes in types: pattern, material, shape, collar type; we did

not include clothing article and color because they are predicted differ-

ently, from a segmentation network.

4.1. Consistency with human labeled styles

First we analyze how well our discovered styles align

with human perception, as captured by the datasets’ style

labels (never seen by our approach). We use two metrics: (i)

Normalized Mutual Information (NMI), which captures the

overall alignment of topics with ground truth (GT) styles;

and (ii) averaged maximal average precision (AP) per style,

which uses each topic’s probability as a relevance score for

a style to sort all images, then records the AP per topic

per style. The best (max) AP a style has in all topics is

that style’s final score. We average the max AP scores of

all styles (5 in HipsterWars and 200+ in DeepFashion) to

get “avg maximal AP”. To extract clusters for the baseline

representations we use K-means clustering. We also tried

GMM and AP-clustering and found the clustering algorithm

itself has negligible impact on their results. For all meth-

ods, we set the number of clusters/topics to be the number

of style labels in the respective dataset.

First we examine the impact of our polylingual model.

Table 1 shows the results for both LDA variants on Hip-

sterWars. Here we use ground truth attributes, in order to

evaluate the LDA models independent of attribute predic-

tion quality. We see that the polylingual model has an ad-

vantage, and thus adopt it as our model for all experiments.

Next we quantify discovery accuracy for our approach

against the baselines. Table 2 shows the results on both

datasets. For the attribute-indicator baseline and our ap-

proach, we show results with predicted and ground truth

attributes in order to separate the success of discovery from

the success of attribute prediction.4 Overall, PolyLDA is

the strongest. Both PolyLDA and Attributes perform bet-

ter with perfect attributes, reinforcing that attribute preci-

sion is an important ongoing research challenge [40, 5, 4].

However, even with predicted attributes, we outperform all

baselines on both datasets for both metrics. Despite having

been pretrained to capture noisy fashion labels, the StyleNet

CNN [33] does not discover the human-perceived styles as

4DeepFashion has GT for only global attributes.
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well, though it does soundly outperform the vanilla ResNet

baseline. Attr-ResNet falls in between StyleNet and vanilla

ResNet, as expected. The absolute accuracy on DeepFash-

ion is much lower for all methods, a function of its larger

size and more varied and noisy style labels. Whereas the

Hipster style labels are manually curated through a rigor-

ous crowdsourcing procedure [20], the DeepFashion style

labels are gleaned from text meta-data [26].

Figure 7 shows the most central images for our discov-

ered styles on HipsterWars (see Supp for DeepFashion).

The qualitative examples reinforce the quantitative result

above. Our model discovers the human-perceived styles

better than the CNN and attributes clusters (see Supp). Our

style-coherent embedding better tolerates superficial visual

differences in intra-style images.

4.2. Style­coherent retrieval

Having shown that the discovered styles are meaning-

ful, next we evaluate the style embedding for retrieval. In

this task, a user queries by example for images related by

style, e.g., for recommendation or catalog browsing rela-

tive to some currently viewed item (query). Recall, this is

distinct from instance retrieval for near-duplicates. Thus,

we evaluate performance simultaneously by style coherence

and diversity or novelty. Diversity refers to the retrieved

images’ mutual visual dissimilarity with each other, and

novelty refers to their collective dissimilarity to the query.

The goal is to obtain retrieval results that maintain style co-

herence while avoiding redundancy. For style coherence,

we evaluate NDCG [27] against ground truth style labels.

For diversity/novelty, we learn a metric to mimic human-

perceived dissimilarity, following [21]. In particular, we

collect 350 triplets labeled by 5 human annotators and learn

a ranking function [17] on top of the attribute and CNN de-

scriptors that respects human-given judgments.

Figure 8 shows the results for both datasets. For Hip-

sterWars (top), we treat each image as a query in turn, and

for DeepFashion (bottom) we sample 2,000 of the 108,145

images as queries. Our model offers a good combination of

coherency and diversity/novelty. On HipsterWars, it main-

tains diversity/novelty while maintaining a similar or better

level of coherence as the baselines. As before, predicted at-

tributes diminish coherence, yet the topic model coherence

appears to degrade more gracefully.

4.3. Mixing styles

Next we consider mixing styles. Since evaluation

of mixing requires images labeled for multiple human-

perceived styles as well as instances exhibiting exclusively

one style, we collect a ground truthed test set of 177

Web images using the HipsterWars style names (see Supp).

While our mixing approach (Sec 3.4) can blend arbitrary

selected styles, for sake of evaluation we focus on blend-
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Figure 8: Style retrieval on HipsterWars (top) and DeepFashion

(bottom). * denotes use of GT attributes. The ideal method would

sit in the top right corner of the plots. Our embedding offers a

good trade-off in style coherency and diversity/novelty.

HipsterWars DeepFashion

Avg AP NMI Avg AP NMI

StyleNet [33] 0.39 0.20 0.0501 0.0011

ResNet [13] 0.30 0.16 0.0524 0.0004

Attr-ResNet 0.35 0.18 0.0615 0.0002

Attributes 0.28 / 0.32 0.19 / 0.28 0.0560 / 0.1294 0.0017 / 0.0082

PolyLDA 0.50 / 0.53 0.21 / 0.31 0.0647 / 0.1762 0.0116 / 0.0227

Table 2: Discovery accuracy for both datasets. Attributes and

PolyLDA show result if using either predicted attributes (first) or

ground truth attributes (second).

ing pairs of GT-labeled styles, then score the AP against the

ground truth, i.e., images exhibiting both the initial selected

styles. For the baselines, we use their clusters analogously

to our topics, creating K-dim embeddings that record the

distance of the image to each cluster’s centroid. We use

K = 25 topics/clusters; K ∈ (15, 30) gives similar results.

Table 3 shows the results. On the whole, our approach

does better than the baselines, and in most cases this is true

even using predicted attributes. This result highlights the

power of the topic model over the raw attributes, which are

too low-level for adequate mixing.

Figure 10 shows example images predicted as strong ex-

emplars for two style blends. Figure 9 shows an example

gradually mixing from a source style to a target style.

4.4. Style summaries

Finally, we demonstrate the power of our model to orga-

nize galleries of outfits. As proof of concept, we select two

users from chictopia.com, and download 200 photos from

each of their albums. Figure 11 shows the results. We show

snapshots from their albums along with summary piecharts
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Figure 9: Visualization generated by mixing our style topics, gradually traversing from one style (Bohemian) to another (Hipster).

(a) Hipster×Bohemian

(b) Hipster×Goth

Figure 10: Top retrievals for two mixes. Incorrect images are la-

beled with red actual labels: Hipster, Goth, Preppy.

Preppy× Hipster× Preppy× Goth× Bohemian×
Goth Goth Hipster Bohemian Hipster

StyleNet [33] 0.133 0.187 0.128 0.141 0.113
ResNet [13] 0.267 0.172 0.162 0.197 0.097
Attributes 0.175 / 0.136 0.172 / 0.115 0.050 / 0.096 0.185 / 0.132 0.090 / 0.198
PolyLDA 0.178 / 0.303 0.424 / 0.180 0.191 / 0.266 0.130 / 0.281 0.139 / 0.394

Table 3: Accuracy (AP) of retrieving a mixture of styles.

computed by our approach to highlight the dominant styles.

Gray pie slices indicate insignificant styles for a user. Our

summaries convey the user’s tastes in a glance. In contrast,

the status quo would entail manually paging through all 200

photos in the album in an arbitrary order.

5. Conclusion

This work explores unsupervised discovery of complex

styles in fashion. We develop an approach based on polylin-

gual topic models to model the composition of outfits from

visual attributes. The resulting styles offer a fine-grained

representation valuable for organizing unlabeled fashion

photos beyond their superficial visual ties (e.g., same lit-

eral garments or attributes). While by necessity our results

rely on external style labels for evaluation, we stress that the

Figure 11: Style summarization for two users. Left is the user’s

album, right is the visual style summary breaking down the main

trends discovered in the album.

generality of the discovered styles is an asset, and they of-

fer representational power beyond what traditional (super-

vised) classification schemes can do. Our example results

highlighting blended styles, trajectories between styles, and

style summaries suggest a few such applications of interest.

Acknowledgements: We thank Suyog Jain and Chao-

Yuan Wu for helpful discussions. This research is supported

in part by NSF IIS-1065390 and a gift from Amazon.

4210



References

[1] Z. Al-Halah, R. Stiefelhagen, and K. Grauman. Fashion for-

ward: Forecasting visual style in fashion. In ICCV, 2017.

2

[2] R. Barthes. The language of fashion. A&C Black, 2013. 2,

4

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet

allocation. JMLR, 2003. 2, 3

[4] L. Bossard, M. Dantone, C. Leistner, C. Wengert, T. Quack,

and L. Van Gool. Apparel classification with style. In ACCV,

2012. 2, 4, 6

[5] H. Chen, A. Gallagher, and B. Girod. Describing clothing by

semantic attributes. In ECCV, 2012. 1, 2, 4, 6

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In ICLR, 2015. 5

[7] Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and

S. Yan. Deep domain adaptation for describing people based

on fine-grained clothing attributes. In CVPR, 2015. 2

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A Large-Scale Hierarchical Image Database.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2009. 5

[9] W. Di, C. Wah, A. Bhardwaj, R. Piramuthu, and N. Sundare-

san. Style finder: Fine-grained clothing style detection and

retrieval. In CVPR, 2013. 2, 4

[10] L. Fei-Fei and P. Perona. A bayesian hierarchical model for

learning natural scene categories. In CVPR, 2005. 2

[11] B. J. Frey and D. Dueck. Clustering by passing messages

between data points. Science, 2007. 6

[12] J. Fu, J. Wang, Z. Li, M. Xu, and H. Lu. Efficient clothing

retrieval with semantic-preserving visual phrases. In ACCV,

2012. 2

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 5, 6, 7, 8

[14] Y. Hu, X. Yi, and L. Davis. Collaborative fashion recom-

mendation: A functional tensor factorization approach. In

ACM MM, 2015. 1

[15] J. Huang, R. Feris, Q. Chen, and S. Yan. Cross-domain im-

age retrieval with a dual attribute-aware ranking network. In

ICCV, 2015. 2, 5

[16] T. Iwata, S. Watanabe, and H. Sawada. Fashion coordinates

recommender system using photographs from fashion mag-

azines. In IJCAI, 2011. 1, 2

[17] T. Joachims. Training linear svms in linear time. In ACM

SIGKDD, 2006. 7

[18] Y. Kalantidis, L. Kennedy, and L.-J. Li. Getting the look:

Clothing recognition and segmentation for automatic product

suggestions in everyday photos. In ICMR, 2013. 1, 2, 5

[19] M. H. Kiapour, X. Han, and S. Lazebnik. Where to buy it:

Matching street clothing photos in online shops. In ICCV,

2015. 1, 2, 5

[20] M. H. Kiapour, K. Yamaguchi, A. Berg, and T. Berg. Hip-

ster wars: Discovering elements of fashion styles. In ECCV,

2014. 1, 2, 5, 6, 7

[21] A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch:

Image search with relative attribute feedback. In CVPR,

2012. 7
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