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Abstract

Deep learning has achieved great success in face recog-

nition, however deep-learned features still have limited in-

variance to strong intra-personal variations such as large

pose changes. It is observed that some facial attributes

(e.g. eyebrow thickness, gender) are robust to such varia-

tions. We present the first work to systematically explore

how the fusion of face recognition features (FRF) and fa-

cial attribute features (FAF) can enhance face recognition

performance in various challenging scenarios. Despite the

promise of FAF, we find that in practice existing fusion meth-

ods fail to leverage FAF to boost face recognition perfor-

mance in some challenging scenarios. Thus, we develop

a powerful tensor-based framework which formulates fea-

ture fusion as a tensor optimisation problem. It is non-

trivial to directly optimise this tensor due to the large num-

ber of parameters to optimise. To solve this problem, we

establish a theoretical equivalence between low-rank ten-

sor optimisation and a two-stream gated neural network.

This equivalence allows tractable learning using standard

neural network optimisation tools, leading to accurate and

stable optimisation. Experimental results show the fused

feature works better than individual features, thus proving

for the first time that facial attributes aid face recognition.

We achieve state-of-the-art performance on three popular

databases: MultiPIE (cross pose, lighting and expression),

CASIA NIR-VIS2.0 (cross-modality environment) and LFW

(uncontrolled environment).

1. Introduction

Face recognition has advanced dramatically with the ad-

vent of bigger datasets, and improved methodologies for

generating features that are variant to identity but invari-

ant to covariates such as pose, expression and illumination.

Deep learning methodologies [41, 40, 42, 32] have proven

particularly effective recently, thanks to end-to-end repre-

Figure 1: A sample attribute list is given (col.1) which per-

tains to the images of the same individual at different poses

(col.2). While the similarity scores for each dimension vary

in the face recognition feature (FRF) set (col.3), the face at-

tribute feature (FAF) set (col.4) remains very similar. The

fused features (col.5) are more similar and a higher similar-

ity score (0.89) is achieved.

sentation learning with a discriminative face recognition ob-

jective. Nevertheless, the resulting features still show im-

perfect invariance to the strong intra-personal variations in

real-world scenarios. We observe that facial attributes pro-

vide a robust invariant cue in such challenging scenarios.

For example gender and ethnicity are likely to be invariant

to pose and expression, while eyebrow thickness may be

invariant to lighting and resolution. Overall, face recogni-

tion features (FRF) are very discriminative but less robust;

while facial attribute features (FAF) are robust but less dis-

criminative. Thus these two features are potentially com-

plementary, if a suitable fusion method can be devised. To

the best of our knowledge, we are the first to systematically

explore the fusion of FAF and FRF in various face recog-

nition scenarios. We empirically show that this fusion can

greatly enhance face recognition performance.
Though facial attributes are an important cue for face

recognition, in practice, we find the existing fusion meth-

ods including early (feature) or late (score) fusion cannot

reliably improve the performance [34]. In particular, while
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offering some robustness, FAF is generally less discrimina-

tive than FRF. Existing methods cannot synergistically fuse

such asymmetric features, and usually lead to worse perfor-

mance than achieved by the stronger feature (FRF) only. In

this work, we propose a novel tensor-based fusion frame-

work that is uniquely capable of fusing the very asymmet-

ric FAF and FRF. Our framework provides a more powerful

and robust fusion approach than existing strategies by learn-

ing from all interactions between the two feature views. To

train the tensor in a tractable way given the large number

of required parameters, we formulate the optimisation with

an identity-supervised objective by constraining the tensor

to have a low-rank form. We establish an equivalence be-

tween this low-rank tensor and a two-stream gated neural

network. Given this equivalence, the proposed tensor is eas-

ily optimised with standard deep neural network toolboxes.

Our technical contributions are:

• It is the first work to systematically investigate and ver-

ify that facial attributes are an important cue in various

face recognition scenarios. In particular, we investi-

gate face recognition with extreme pose variations, i.e.

±90◦ from frontal, showing that attributes are impor-

tant for performance enhancement.

• A rich tensor-based fusion framework is proposed.

We show the low-rank Tucker-decomposition of this

tensor-based fusion has an equivalent Gated Two-

stream Neural Network (GTNN), allowing easy yet

effective optimisation by neural network learning.

In addition, we bring insights from neural networks

into the field of tensor optimisation. The code is

available: https://github.com/yanghuadr/

Neural-Tensor-Fusion-Network

• We achieve state-of-the-art face recognition perfor-

mance using the fusion of face (newly designed ‘Lean-

Face’ deep learning feature) and attribute-based fea-

tures on three popular databases: MultiPIE (controlled

environment), CASIA NIR-VIS2.0 (cross-modality

environment) and LFW (uncontrolled environment).

2. Related Work

Face Recognition. The face representation (feature) is

the most important component in contemporary face recog-

nition system. There are two types: hand-crafted and deep

learning features.
Widely used hand-crafted face descriptors include Local

Binary Pattern (LBP) [26], Gabor filters [23], etc. Com-

pared to pixel values, these features are variant to identity

and relatively invariant to intra-personal variations, and thus

they achieve promising performance in controlled environ-

ments. However, they perform less well on face recognition

in uncontrolled environments (FRUE). There are two main

routes to improve FRUE performance with hand-crafted

features, one is to use very high dimensional features (dense

sampling features) [5] and the other is to enhance the fea-

tures with downstream metric learning.

Unlike hand-crafted features where (in)variances are en-

gineered, deep learning features learn the (in)variances

from data. Recently, convolutional neural networks (CNNs)

achieved impressive results on FRUE. DeepFace [44], a

carefully designed 8-layer CNN, is an early landmark

method. Another well-known line of work is DeepID [41]

and its variants DeepID2 [40], DeepID2+ [42]. The DeepID

family uses an ensemble of many small CNNs trained in-

dependently using different facial patches to improve the

performance. In addition, some CNNs originally designed

for object recognition, such as VGGNet [38] and Incep-

tion [43], were also used for face recognition [29, 32]. Most

recently, a center loss [47] is introduced to learn more dis-

criminative features.

Facial Attribute Recognition. Facial attribute recog-

nition (FAR) is also well studied. A notable early study [21]

extracted carefully designed hand-crafted features includ-

ing aggregations of colour spaces and image gradients, be-

fore training an independent SVM to detect each attribute.

As for face recognition, deep learning features now outper-

form hand-crafted features for FAR. In [24], face detection

and attribute recognition CNNs are carefully designed, and

the output of the face detection network is fed into the at-

tribute network. An alternative to purpose designing CNNs

for FAR is to fine-tune networks intended for object recog-

nition [56, 57]. From a representation learning perspective,

the features supporting different attribute detections may be

shared, leading some studies to investigate multi-task learn-

ing facial attributes [55, 30]. Since different facial attributes

have different prevalence, the multi-label/multi-task learn-

ing suffers from label-imbalance, which [30] addresses us-

ing a mixed objective optimization network (MOON).

Face Recognition using Facial Attributes. Detected

facial attributes can be applied directly to authentication.

Facial attributes have been applied to enhance face verifica-

tion, primarily in the case of cross-modal matching, by fil-

tering [19, 54] (requiring potential FRF matches to have the

correct gender, for example), model switching [18], or ag-

gregation with conventional features [27, 17]. [21] defines

65 facial attributes and proposes binary attribute classifiers

to predict their presence or absence. The vector of attribute

classifier scores can be used for face recognition. There has

been little work on attribute-enhanced face recognition in

the context of deep learning. One of the few exploits CNN-

based attribute features for authentication on mobile devices

[31]. Local facial patches are fed into carefully designed

CNNs to predict different attributes. After CNN training,

SVMs are trained for attribute recognition, and the vector of

SVM scores provide the new feature for face verification.
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Fusion Methods. Existing fusion approaches can be

classified into feature-level (early fusion) and score-level

(late fusion). Score-level fusion is to fuse the similarity

scores after computation based on each view either by sim-

ple averaging [37] or stacking another classifier [48, 37].

Feature-level fusion can be achieved by either simple fea-

ture aggregation or subspace learning. For aggregation ap-

proaches, fusion is usually performed by simply element

wise averaging or product (the dimension of features have

to be the same) or concatenation [28]. For subspace learn-

ing approaches, the features are first concatenated, then the

concatenated feature is projected to a subspace, in which the

features should better complement each other. These sub-

space approaches can be unsupervised or supervised. Un-

supervised fusion does not use the identity (label) informa-

tion to learn the subspace, such as Canonical Correlational

Analysis (CCA) [35] and Bilinear Models (BLM) [45]. In

comparison, supervised fusion uses the identity information

such as Linear Discriminant Analysis (LDA) [3] and Local-

ity Preserving Projections (LPP) [9].

Neural Tensor Methods. Learning tensor-based compu-

tations within neural networks has been studied for full [39]

and decomposed [16, 52, 51] tensors. However, aside from

differing applications and objectives, the key difference is

that we establish a novel equivalence between a rich Tucker

[46] decomposed low-rank fusion tensor, and a gated two-

stream neural network. This allows us achieve expressive

fusion, while maintaining tractable computation and a small

number of parameters; and crucially permits easy optimisa-

tion of the fusion tensor through standard toolboxes.

Motivation. Facial attribute features (FAF) and face

recognition features (FRF) are complementary. However

in practice, we find that existing fusion methods often can-

not effectively combine these asymmetric features so as to

improve performance. This motivates us to design a more

powerful fusion method, as detailed in Section 3. Based on

our neural tensor fusion method, in Section 5 we system-

atically explore the fusion of FAF and FRF in various face

recognition environments, showing that FAF can greatly en-

hance recognition performance.

3. Fusing attribute and recognition features

In this section we present our strategy for fusing FAF

and FRF. Our goal is to input FAF and FRF and output the

fused discriminative feature. The proposed fusion method

we present here performs significantly better than the exist-

ing ones introduced in Section 2. In this section, we detail

our tensor-based fusion strategy.

3.1. Modelling

Single Feature. We start from a standard multi-class clas-

sification problem setting: assume we have M instances,

and for each we extract a D-dimensional feature vector (the

FRF) as {x(i)}Mi=1. The label space contains C unique

classes (person identities), so each instance is associated

with a corresponding C-dimensional one-hot encoding la-

bel vector {y(i)}Mi=1. Assuming a linear model W the pre-

diction ŷ(i) is produced by the dot-product of input x(i) and

the model W,

ŷ(i) = x(i)TW. (1)

Multiple Feature. Suppose that apart from the D-

dimensional FRF vector, we can also obtain an instance-

wise B-dimensional facial attribute feature z(i). Then the

input for the ith instance is a pair: {x(i), z(i)}. A simple ap-

proach is to redefine x(i) := [x(i), z(i)], and directly apply

Eq. (1), thus modelling weights for both FRF and FAF fea-

tures. Here we propose instead a non-linear fusion method

via the following formulation

ŷ(i) = W ×1 x
(i) ×3 z

(i) (2)

where W is the fusion model parameters in the form of a

third-order tensor of size D × C × B. Notation × is the

tensor dot product (also known as tensor contraction) and

the left-subscript of x and z indicates at which axis the ten-

sor dot product operates. With Eq. (2), the optimisation

problem is formulated as:

min
W

1

M

M∑

i=1

ℓ
(

W ×1 x
(i) ×3 z

(i),y(i)
)

(3)

where ℓ(·, ·) is a loss function. This trains tensor W to fuse

FRF and FAF features so that identity is correctly predicted.

3.2. Optimisation

The proposed tensor W provides a rich fusion model.

However, compared with W, W is B times larger (D × C

vs D×C×B) because of the introduction of B-dimensional

attribute vector. It is also almost B times larger than train-

ing a matrix W on the concatenation [x(i), z(i)]. It is there-

fore problematic to directly optimise Eq. (3) because the

large number of parameters of W makes training slow and

leads to overfitting. To address this we propose a tensor de-

composition technique and a neural network architecture to

solve an equivalent optimisation problem in the following

two subsections.

3.2.1 Tucker Decomposition for Feature Fusion

To reduce the number of parameters of W , we place a struc-

tural constraint on W . Motivated by the famous Tucker de-

composition [46] for tensors, we assume that W is synthe-

sised from

W = S×1U
(D)×2U

(C)×3U
(B). (4)

Here S is a third order tensor of size KD × KC × KB ,

U(D) is a matrix of size KD ×D, U(C) is a matrix of size
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KC×C, and U(B) is a matrix of size KB×B. By restricting

KD ≪ D, KC ≪ C, and KB ≪ B, we can effectively

reduce the number of parameters from (D × C × B) to

(KD ×KC ×KB +KD ×D+KC ×C +KB ×B) if we

learn {S,U(D),U(C),U(B)} instead of W .
When W is needed for making the predictions, we can

always synthesise it from those four small factors. In the

context of tensor decomposition, (KD,KC ,KB) is usually

called the tensor’s rank, as an analogous concept to the rank

of a matrix in matrix decomposition.
Note that, despite of the existence of other tensor de-

composition choices, Tucker decomposition offers a greater

flexibility in terms of modelling because we have three

hyper-parameters KD,KC ,KB corresponding to the axes

of the tensor. In contrast, the other famous decomposition,

CP [10] has one hyper-parameter K for all axes of tensor.
By substituting Eq. (4) into Eq. (2), we have

ŷ(i) = W ×1 x
(i) ×3 z

(i)

= S×1U
(D)×2U

(C)×3U
(B) ×1 x

(i) ×3 z
(i) (5)

Through some re-arrangement, Eq. (5) can be simplified as

ŷ(i) = S×1(U
(D)x(i))×2U

(C)×3(U
(B)z(i)) (6)

Furthermore, we can rewrite Eq. (6) as,

ŷ(i) = ((U(D)x(i))⊗ (U(B)z(i)))ST
(2)

︸ ︷︷ ︸

fused feature

U(C) (7)

where ⊗ is Kronecker product. Since U(D)x(i) and

U(B)B(i) result in KD and KB dimensional vectors re-

spectively, (U(D)x(i)) ⊗ (U(B)z(i)) produces a KDKB

vector. S(2) is the mode-2 unfolding of S which is a

KC ×KDKB matrix, and its transpose ST
(2) is a matrix of

size KDKB ×KC .

The Fused Feature. From Eq. (7), the explicit fused

representation of face recognition (x(i)) and facial at-

tribute (z(i)) features can be achieved. The fused feature

((U(D)x(i)) ⊗ (U(B)z(i)))ST
(2), is a vector of the dimen-

sionality KC . And matrix U(C) has the role of “clas-

sifier” given this fused feature. Given {x(i), z(i),y(i)},

the matrices {U(D),U(B),U(C)} and tensor S are com-

puted (learned) during model optimisation (training). Dur-

ing testing, the prediction ŷ(i) is achieved with the learned

{U(D),U(B),U(C),S} and two test features {x(i), z(i)}
following Eq. (7).

3.2.2 Gated Two-stream Neural Network (GTNN)

A key advantage of reformulating Eq. (5) into Eq. (7) is that

we can now find a neural network architecture that does ex-

actly the computation of Eq. (7), which would not be obvi-

ous if we stopped at Eq. (5). Before presenting this neural

Figure 2: Gated two-stream neural network to implement

low-rank tensor-based fusion. The architecture computes

Eq. (7), with the Tucker decomposition in Eq. (4). The

network is identity-supervised at train time, and feature in

the fusion layer used as representation for verification.

network, we need to introduce a new deterministic layer (i.e.

without any learnable parameters).

Kronecker Product Layer takes two arbitrary-length in-

put vectors {u,v} where u = [u1, u2, · · · , uP ] and

v = [v1, v2, · · · , vQ], then outputs a vector of length

PQ as [u1v1, u1v2, · · · , u1vQ, u2v1, · · · , uP vQ].

Using the introduced Kronecker layer, Fig. 2 shows the

neural network that computes Eq. (7). That is, the neural

network that performs recognition using tensor-based fu-

sion of two features (such as FAF and FRF), based on the

low-rank assumption in Eq. (4). We denote this architecture

as a Gated Two-stream Neural Network (GTNN), because

it takes two streams of inputs, and it performs gating [36]

(multiplicative) operations on them.

The GTNN is trained in a supervised fashion to predict

identity. In this work, we use a multitask loss: softmax loss

and center loss [47] for joint training. The fused feature in

the viewpoint of GTNN is the output of penultimate layer,

which is of dimensionality Kc.

So far, the advantage of using GTNN is obvious. Direct

use of Eq. (5) or Eq. (7) requires manual derivation and im-

plementation of an optimiser which is non-trivial even for

decomposed matrices (2d-tensors) [20]. In contrast, GTNN

is easily implemented with modern deep learning packages

where auto-differentiation and gradient-based optimisation

is handled robustly and automatically.

3.3. Discussion

Compared with the fusion methods introduced in Sec-

tion 2, we summarise the advantages of our tensor-based

fusion method as follows:
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Figure 3: LeanFace. ‘C’ is a group of convolutional layers. Stage 1: 64 @ 5× 5 (64 feature maps are sliced to two groups of 32 ones,

which are fed into maxout function.) ; Stage 2: 64 @ 3× 3, 64 @ 3× 3, 128 @ 3× 3, 128 @ 3× 3; Stage 3: 196 @ 3× 3, 196 @ 3× 3,

256 @ 3× 3, 256 @ 3× 3, 320 @ 3× 3, 320 @ 3× 3; Stage 4: 512 @ 3× 3, 512 @ 3× 3, 512 @ 3× 3, 512 @ 3× 3; Stage 5: 640 @

5× 5, 640@ 5× 5. ‘P’ stands for 2× 2 max pooling. The strides for the convolutional and pooling layers are 1 and 2, respectively. ‘FC’

is a fully-connected layer of 256D.

High Order Non-Linearity. Unlike linear methods

based on averaging, concatenation, linear subspace learning

[8, 27], or LDA [3], our fusion method is non-linear, which

is more powerful to model complex problems. Further-

more, comparing with other first-order non-linear methods

based on element-wise combinations only [28], our method

is higher order: it accounts for all interactions between each

pair of feature channels in both views. Thanks to the low-

rank modelling, our method achieves such powerful non-

linear fusion with few parameters and thus it is robust to

overfitting.
Scalability. Big datasets are required for state-of-the-

art face representation learning. Because we establish the

equivalence between tensor factorisation and gated neural

network architecture, our method is scalable to big-data

through efficient mini-batch SGD-based learning. In con-

trast, kernel-based non-linear methods, such as Kernel LDA

[34] and multi-kernel SVM [17], are restricted to small

data due to their O(N2) computation cost. At runtime, our

method only requires a simple feed-forward pass and hence

it is also favourable compared to kernel methods.
Supervised method. GTNN is flexibly supervised by

any desired neural network loss function. For example, the

fusion method can be trained with losses known to be ef-

fective for face representation learning: identity-supervised

softmax, and centre-loss [47]. Alternative methods are ei-

ther unsupervised [8, 27], constrained in the types of super-

vision they can exploit [3, 17], or only stack scores rather

than improving a learned representation [48, 37]. There-

fore, they are relatively ineffective at learning how to com-

bine the two-source information in a task-specific way.
Extensibility. Our GTNN naturally can be extended to

deeper architectures. For example, the pre-extracted fea-

tures, i.e., x and z in Fig. 2, can be replaced by two full-

sized CNNs without any modification. Therefore, poten-

tially, our methods can be integrated into an end-to-end

framework.

4. Integration with CNNs: architecture

In this section, we introduce the CNN architectures used

for face recognition (LeanFace) designed by ourselves and

facial attribute recognition (AttNet) introduced by [50, 30].

LeanFace. Unlike general object recognition, face

recognition has to capture very subtle difference between

people. Motivated by the fine-grain object recognition in

[4], we also use a large number of convolutional layers at

early stage to capture the subtle low level and mid-level in-

formation. Our activation function is maxout, which shows

better performance than its competitors [50]. Joint supervi-

sion of softmax loss and center loss [47] is used for training.

The architecture is summarised in Fig. 3.

AttNet. To detect facial attributes, our AttNet uses the ar-

chitecture of Lighten CNN [50] to represent a face. Specifi-

cally, AttNet consists of 5 conv-activation-pooling units fol-

lowed by a 256D fully connected layer. The number of con-

volutional kernels is explained in [50]. The activation func-

tion is Max-Feature-Map [50] which is a variant of maxout.

We use the loss function MOON [30], which is a multi-task

loss for (1) attribute classification and (2) domain adaptive

data balance. In [24], an ontology of 40 facial attributes are

defined. We remove attributes which do not characterise a

specific person, e.g., ‘wear glasses’ and ‘smiling’, leaving

17 attributes in total.

Once each network is trained, the features extracted from

the penultimate fully-connected layers of LeanFace (256D)

and AttNet (256D) are extracted as x and z, and input to

GTNN for fusion and then face recognition.

5. Experiments

We first introduce the implementation details of our

GTNN method. In Section 5.1, we conduct experiments

on MultiPIE [7] to show that facial attributes by means of

our GTNN method can play an important role on improv-
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Table 1: Network training details

Image

size

Batch

size
LR 1 DF 2 Epoch

Train

time

LeanFace 128

x 128
256

0.001 0.1 54 91h

AttNet 0.05 0.8 99 3h

1 Learning rate (LR)
2 Learning rate drop factor (DF).

ing face recognition performance in the presence of pose,

illumination and expression, respectively. Then, we com-

pare our GTNN method with other fusion methods on CA-

SIA NIR-VIS 2.0 database [22] in Section 5.2 and LFW

database [12] in Section 5.3, respectively.

Implementation Details. In this study, three networks

(LeanFace, AttNet and GTNN) are discussed. LeanFace

and AttNet are implemented using MXNet [6] and GTNN

uses TensorFlow [1]. We use around 6M training face

thumbnails covering 62K different identities to train Lean-

Face, which has no overlapping with all the test databases.

AttNet is trained using CelebA [24] database. The input

of GTNN is two 256D features from bottleneck layers (i.e.,

fully connected layers before prediction layers) of LeanFace

and AttNet. The setting of main parameters are shown in

Table 1. Note that the learning rates drop when the loss

stops decreasing. Specifically, the learning rates change 4

and 2 times for LeanFace and AttNet respectively. Dur-

ing test, LeanFace and AttNet take around 2.9ms and 3.2ms

to extract feature from one input image and GTNN takes

around 2.1ms to fuse one pair of LeanFace and AttNet fea-

ture using a GTX 1080 Graphics Card.

5.1. Multi­PIE Database

Multi-PIE database [7] contains more than 750,000 im-

ages of 337 people recorded in 4 sessions under diverse

pose, illumination and expression variations. It is an

ideal testbed to investigate if facial attribute features (FAF)

complement face recognition features (FRF) including tra-

ditional hand-crafted (LBP) and deeply learned features

(LeanFace) to improve the face recognition performance –

particularly across extreme pose variation.

Settings. We conduct three experiments to investigate

pose-, illumination- and expression-invariant face recogni-

tion. Pose: Uses images across 4 sessions with pose vari-

ations only (i.e., neutral lighting and expression). It covers

pose with yaw ranging from left 90◦ to right 90◦. In com-

parison, most of the existing works only evaluate perfor-

mance on poses with yaw range (-45◦, +45◦). Illumination:

Uses images with 20 different illumination conditions (i.e.,

frontal pose and neutral expression). Expression: Uses im-

ages with 7 different expression variations (i.e., frontal pose

and neutral illumination). The training sets of all settings

consist of the images from the first 200 subjects and the re-

maining 137 subjects for testing. Following [59, 14], in the

test set, frontal images with neural illumination and expres-

sion from the earliest session work as gallery, and the others

are probes.

Pose. Table 2 shows the pose-robust face recognition

(PRFR) performance. Clearly, the fusion of FRF and FAF,

namely GTNN (LBP, AttNet) and GTNN (LeanFace, At-

tNet), works much better than using FRF only, showing the

complementary power of facial features to face recognition

features. Not surprisingly, the performance of both LBP

and LeanFace features drop greatly under extreme poses, as

pose variation is a major factor challenging face recognition

performance. In contrast, with GTNN-based fusion, FAF

can be used to improve both classic (LBP) and deep (Lean-

Face) FRF features effectively under this circumstance, for

example, LBP (1.3%) vs GTNN (LBP, AttNet) (16.3%),

LeanFace (72.0%) vs GTNN (LeanFace, AttNet) (78.3%)

under yaw angel −90◦. It is noteworthy that despite their

highly asymmetric strength, GTNN is able to effectively

fuse FAF and FRF. This is elaborately studied in more detail

in Sections 5.2-5.3.

Compared with state-of-the-art methods [14, 59, 11, 58,

15] in terms of (-45◦, +45◦), LeanFace achieves better per-

formance due to its big training data and the strong gener-

alisation capacity of deep learning. In Table 2, 2D meth-

ods [14, 59, 15] trained models using the MultiPIE images,

therefore, they are difficult to generalise to images under

poses which do not appear in MultiPIE database. 3D meth-

ods [11, 58] highly depend on accurate 2D landmarks for

3D-2D modelling fitting. However, it is hard to accurately

detect such landmarks under larger poses, limiting the ap-

plications of 3D methods.

Illumination and expression. Illumination- and

expression-robust face recognition (IRFR and ERFR) are

also challenging research topics. LBP is the most widely

used handcrafted features for IRFR [2] and ERFR [33]. To

investigate the helpfulness of facial attributes, experiments

of IRFR and ERFR are conducted using LBP and Lean-

Face features. In Table 3, GTNN (LBP, AttNet) signifi-

cantly outperforms LBP, 80.3% vs 57.5% (IRFR), 77.5%

vs 71.7% (ERFR), showing the great value of combining fa-

cial attributes with hand-crafted features. Attributes such as

the shape of eyebrows are illumination invariant and others,

e.g., gender, are expression invariant. In contrast, LeanFace

feature is already very discriminative, saturating the perfor-

mance on the test set. So there is little room for fusion of

AttrNet to provide benefit.

5.2. CASIA NIR­VIS 2.0 Database

The CASIA NIR-VIS 2.0 face database [22] is the largest

public face database across near-infrared (NIR) images and

visible RGB (VIS) images. It is a typical cross-modality or

heterogeneous face recognition problem because the gallery

and probe images are from two different spectra. The
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Table 2: Face recognition rate (%) on different poses on Multi-PIE

Method -90◦ -75◦ -60◦ (-45◦, 45◦) +60◦ +75◦ +90◦

SPAE [14] - 91.4 -

RL [59] - 98.3 -

MvDN [15] - 99.3 -

U3DMM [11] - 97.8 -

E3DMM [58] - 98.6 -

LBP 1.3 2.3 1.7 43.0 0.7 0.3 0.7

LeanFace 72.0 94.3 99.0 100 98.3 89.0 61.0

AttNet 6.0 9.7 11.7 56.1 11.3 8.0 5.0

GTNN (LBP, AttNet) 16.3 14.3 15.0 69.3 6.7 4.3 3.3

GTNN (LeanFace, AttNet) 78.3 97.3 99.7 100 98.0 94.3 68.0

Table 3: Average face recognition rate (%) on different illu-

minations and expressions on Multi-PIE

Method Illumination Expression

LBP 57.5 71.7

LeanFace 100 99.8

AttNet 53.8 48.8

GTNN (LBP, AttNet) 80.3 77.5

GTNN (LeanFace, AttNet) 100 100

gallery and probe images are VIS and NIR images respec-

tively. It simulates the scenario of face recognition in a dark

environment, where only NIR images are available for prob-

ing. This database consists of 17,580 images of 725 subjects

which exhibit intra-personal variations such as pose and ex-

pression. Similar to most face databases, CASIA NIR-VIS

2.0 includes two views: view 1 for training and view 2 in-

cluding 10 folds for performance evaluation. Following the

standard evaluation protocol, the rank 1 identification rate

of 10 folds is reported.

Comparison with State-of-the-art. As shown in Ta-

ble 4, LeanFace and Light CNN [49] already achieve very

impressive performance due to their big training data and

effective deep learning architectures. It is noteworthy that

the gallery and probe are VIS and NIR images respec-

tively, while LeanFace and Light CNN are trained using

only VIS images. Their efficacy here shows that CNNs

trained using big data learn a sufficiently robust face rep-

resentation which bridges the gap between VIS and NIR.

CNN architectures + big VIS training images greatly out-

performs hand-crafted features + explicit cross modality

learning models [25, 13, 53], suggesting that explicit cross-

modal learning might be unnecessary for VIS-NIR. Com-

paring with the CNNs, LeanFace works better than Light

CNN because it uses (1) larger training data (6M vs 5M)

(2) better loss functions (softmax + centerloss vs softmax)

and (3) deeper architectures. GTNN (LeanFace and AttNet)

works better than LeanFace, 99.94% vs 97.27%, meaning

that facial attributes are complementary with the LeanFace

feature in NIR-VIS cross-modality face recognition.

Table 4: Comparison with State-of-the-art on CASIA NIR-

VIS 2.0 face database

Method Acc.(%)

C-CBFD+LDA [25] 81.8
Dictionary Learning [13] 78.46

Gabor+RBM [53] 86.16
Light CNN [49] 91.88

LeanFace 97.27

AttNet 2.38

GTNN (LeanFace, AttNet) 99.94

Comparison with other fusion methods. In the pre-

vious experiment, GTNN successfully fused LeanFace and

AttNet, despite their extreme asymmetry in individual

strength. In this experiment, we verify that this is a non-

trivial achievement, by comparing with other popular fusion

methods, shown in Table 5.
Simple concatenation and average fusion achieve the

same accuracy 97.27% as using LeanFace feature only.

Clearly, the stronger feature (i.e., LeanFace) dominates the

fused feature. Another three unsupervised fusion methods:

score fusion, CCA [35] and BLM [45] achieve the accuracy

between using LeanFace only and AttNet only. This out-

come of a weaker feature making the fused feature worse is

common when fusing very asymmetric features. The three

supervised fusion methods achieve higher accuracy than

LeanFace, showing the importance of label information for

fusion. Supervised fusion methods can also be viewed as

metric learning, which has been proven effective for various

face recognition scenarios [9, 3, 44]. Nevertheless, the pro-

posed GTNN (99.94%) works better than LDA (98.33%)

and LPP (98.58%) due to its stronger non-linear modelling

capacity. Finally, we reiterate that GTNN has the potential

to work with CNNs for end-to-end training, while LDA and
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LPP cannot.

Table 5: Comparison with fusion methods on NIR-VIS 2.0

Method Acc. (%)

Raw Feature
LeanFace 97.27

AttNet 2.38

Unsupervised

Fusion

Concatenation 97.27

Average 97.27

Score 64.24

CCA [35] 93.80

BLM [45] 90.57

Supervised

Fusion

LDA [3] 98.33

LPP [9] 98.58

GTNN 99.94

5.3. LFW Database

Face recognition in uncontrolled environments (FRUE)

is widely studied in recent years. LFW [12] is the most

widely used FRUE benchmark which contains 13,233 im-

ages of 5,749 subjects. For evaluation, LFW is divided into

10 predefined splits for cross validation. We follow the stan-

dard ‘Unrestricted, Labelled Outside Data Results’ protocol

[12] for testing. To train the fusion methods, we use 0.1M

images of 1.5K subjects (non-overlapping with LFW sub-

jects) from our training data for LeanFace.

Comparison with State-of-the-art. LeanFace achieves

very promising face recognition rate 99.57%, benefiting

from its effective architecture (Fig. 3) and larger train-

ing data. Although LeanFace almost saturates the LFW

database, the fusion of attribute feature further reduces

the error rate by 19%. Our full method (GTNN Fu-

sion) achieves state-of-the-art face recognition rate on

LFW. Compared with the two best models (FaceNet [32],

DeepID2+ [42]), we do not use network ensemble, while

DeepID2+ makes use of an ensemble of 25 CNNs. Facenet

uses more than 100M images for training, while we only use

6M images. In addition, Facenet uses triplet loss for met-

ric learning, which is very difficult to sample hard training

image triplet, while we use center-loss [47] which does not

need to do such sampling. Note that the LFW official web-

site publishes some other promising results that are mostly

from industry. However, their methodological details are

not published, therefore, we do not compare with them.

Comparison with other fusion methods. In this ex-

periment, the performance of LeanFace only is comparable

to AttNet only (99.57% v.s. 79.07%), unlike their perfor-

mance in the NIR-VIS experiment (97.27% v.s. 2.38%).

However, LeanFace has already achieved very high recog-

nition rate, almost saturating the benchmark, making it chal-

lenging to further improve the performance. In Table 7, all

alternative methods fail to improve the fused performance

Table 6: Comparisons with the state-of-the-art on LFW

Method Err.Rate(%) Acc. (%)

DeepFace [44] 2.65 97.35

VGGFace [29] 1.05 98.95

Center loss [47] 0.72 99.28

DeepID2+ [42] 0.53 99.47

FaceNet [32] 0.37 99.63

LeanFace 0.43 99.57

AttNet 20.93 79.07

GTNN (LeanFace, AttNet) 0.35 99.65

Table 7: Comparison with fusion methods on LFW

Method Err.Rate(%) Acc. (%)

Raw Feature
LeanFace 0.43 99.57

AttNet 20.93 79.07

Unsupervised

Fusion

Concatenation 0.43 99.57

Average 0.43 99.57

Score 4.31 95.69

CCA [35] 0.77 99.23

BLM [45] 0.43 99.57

Supervised

Fusion

LDA [3] 0.43 99.57

LPP [9] 0.43 99.57

GTNN 0.35 99.65

beyond that of the dominant LeanFace feature. Even the

supervised methods LDA and LPP fail to improve as Lean-

Face is already strong. Score-fusion and CCA [35] make

the performance worse compared to LeanFace. Unlike all

the alternatives, GTNN further improves the performance

because of its powerful non-linear modelling capacity.

6. Conclusion

We considered the problem of enhancing face recogni-

tion by incorporating predicted attributes. This provides

additional robustness to complicated intra-personal varia-

tions in face recognition. We presented a powerful non-

linear tensor-based fusion method that can synergistically

combine attribute-derived features with both hand-crafted

and deep conventional features. Our method is both easy to

implement and efficient to train due to our establishment of

a correspondence to a specific neural network architecture.
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