
Centered Weight Normalization

in Accelerating Training of Deep Neural Networks

Lei Huang† Xianglong Liu†∗ Yang Liu† Bo Lang† Dacheng Tao‡

†State Key Laboratory of Software Development Environment, Beihang University, P.R.China
‡UBTECH Sydney AI Centre, School of IT, FEIT, The University of Sydney, Australia

{huanglei, xlliu, blonster, langbo}@nlsde.buaa.edu.cn, dacheng.tao@sydney.edu.au

Abstract

Training deep neural networks is difficult for the patho-

logical curvature problem. Re-parameterization is an effec-

tive way to relieve the problem by learning the curvature

approximately or constraining the solutions of weights with

good properties for optimization. This paper proposes to re-

parameterize the input weight of each neuron in deep neural

networks by normalizing it with zero-mean and unit-norm,

followed by a learnable scalar parameter to adjust the norm

of the weight. This technique effectively stabilizes the dis-

tribution implicitly. Besides, it improves the conditioning

of the optimization problem and thus accelerates the train-

ing of deep neural networks. It can be wrapped as a linear

module in practice and plugged in any architecture to re-

place the standard linear module. We highlight the benefits

of our method on both multi-layer perceptrons and convolu-

tional neural networks, and demonstrate its scalability and

efficiency on SVHN, CIFAR-10, CIFAR-100 and ImageNet

datasets.

1. Introduction

Recently, deep neural networks have achieved grand

success across a broad range of applications, e.g., im-

age classification, speech recognition and object detection

[33, 35, 14, 36, 7, 25]. Neural networks typically are com-

posed of stacked layers, and the transformation between

layers consists of linear mapping with learnable parameters,

in which each neuron computes a weighted sum over its in-

puts and adds a bias term, and followed by an element-wise

nonlinear activation. The stacked structure endows a neu-

ral network learning feature hierarchies with features from

higher levels formed by the composition of lower level fea-

tures. Further, deep architectures provide neural network-

s powerful representation capacity of learning complicated

functions that can represent high-level abstractions.

∗Corresponding author

While the deep and complex structure enjoys appeal-

ing advantages, it also makes learning difficult. Indeed,

many explanations for the difficulty of deep learning have

been explored, such as the problem of vanishing and ex-

ploding gradients [2] , internal covariate shift [16], and

the pathological curvature [20]. To address these prob-

lems, various studies such as finely weight initialization

[19, 9, 13, 29, 21], normalization of internal activation

[16, 4], and sophistic optimization methods have been pro-

posed accordingly [20, 12, 11].

Our work is dedicated to the problem of pathological

curvature [20], i.e. the condition number of the Hessian ma-

trix of the objective function is low at the optimum region-

s [28], which makes learning extremely difficult via first

order stochastic gradient descent. Several studies [12, 11]

recently have attempted to use the pre-conditioning tech-

niques to improve the conditioning of the cost curvature.

However, these methods introduce too much overhead and

are not convenient to be applied.

An alternative track to facilitate the optimization

progress is the transformation of parameterization space of

a model [1], which is called re-parameterization. The mo-

tivation of re-parameterization is that there may be various

equivalent ways to parameterize the same model, some of

which are much easier to optimize than others [28]. There-

fore, exploring good ways of parameterizing neural net-

works [6, 28] are essentially important in training deep neu-

ral networks.

Inspired by the practical trick that weights are sampled

from a distribution with zero mean and a standard deviation

for initialization [19, 9, 13], in this paper we propose to con-

strain the input weight of each neuron with zero mean and

unit norm by re-parameterization during the course of train-

ing, followed by a learnable scalar parameter to adjust the

norm of the input weight. We use proxy parameters and per-

form gradient updating on these proxy parameters by back-

propagating the gradient information through the normal-

ization process (Figure 1). By introducing this process, the

summed input of each neuron is more likely to possess the

12803

properties of zero mean and stable variance. Besides, this

technique can effectively improve the conditioning of the

optimization problem and thus can accelerate the training

of deep neural networks.

We wrap the proposed re-parameterization method into

a linear module in practice, which can be plugged in any

architecture as a substitute for the standard linear module.

The technique we present is generic and can be applied

to a broad range of models. Our method is also orthogo-

nal and complementary to recent advances in deep learn-

ing, such as Adam optimization [17] and batch normaliza-

tion [16]. We conduct comprehensive experiments on Yale-

B, SVHN, CIFAR-10, CIFAR-100 and ImageNet datasets

over multi-layer perceptron and convolutional neural net-

work architectures. The results show that centered weight

normalization draws its strength in improving the perfor-

mance of deep neural networks. Our code is available at

https://github.com/huangleiBuaa/CenteredWN.

2. Related work

Training deep neural network via first order stochastic

gradient descent is difficult in practice, mainly due to the

pathological curvature problem. Several works have tried

the preconditioning techniques to accelerate the training.

Martens and Sutskever [20] developed a second-order opti-

mization method based on the Hessian-free approach. Oth-

er studies [12, 11] explicitly pre-multiply the cost gradient

by an approximate inverse of the Fisher information ma-

trix, thereby expecting to obtain an approximate natural

gradient. The approximate inverse can be obtained by us-

ing Cholesky factorization [12] or Kronecker-factored ap-

proximation [11]. These methods usually introduce much

overhead. Besides, their optimization procedures are usu-

ally coupled with the preconditioning, and thus can not be

easily applied.

Some works addressed the benefits of centered activa-

tions [36] and gradients [26]. They show that these transfor-

mations make the Fisher information matrix approximate

block diagonal, and improve the optimization performance.

Batch normalization [16] further standardizes the activa-

tion with centering and scaling based on mini-batch, and

includes normalization as a part of the model architecture.

Ba et al. [4] computed the layer normalization statics over

all the hidden units in the same layers, targeting at the sce-

nario that the size of mini-batch is limited. These methods

focus on normalizing the activation of the neurons explicit-

ly while our method works by re-parameterizing the model,

and is expected to achieve better conditioning and stabilize

the activations implicitly.

Re-parameterization is an effective technique to facili-

tate the optimization progress [6, 28]. Guillaume et al. [6]

tried to estimate the expected projection matrix, and implic-

itly whitening the activations. However, the operation of

=

. . .
. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1. An illustrative example of layered neural networks with

re-parameterization (for brevity, we leave out the bias nodes). The

proposed re-parameterization method finely constructs a transfor-

mation ψ over the proxy parameter v to ensure that the trans-

formed weight w has certain beneficial properties for the training

of neural network. Gradient updating is executed on the proxy pa-

rameter v by back-propagating the gradient information through

the normalization process.

updating the projection matrix is still coupled with the opti-

mization. Salimans and Kingma [28] designed weight nor-

malization [28] as a part of the model architecture. The pro-

posed weight normalization addresses the normalization of

the input weight for each neuron and decouples the length of

those weight vectors from their directions. Our work further

powers weight normalization by centering the input weight,

and we argue that it can ulteriorly improve the conditioning

and speed up the training for deep neural networks.

There exist studies constructing orthogonal matrix in

recurrent neural networks (RNN) [2, 37, 8] by using re-

parameterization to avoid the gradient vanish and explosion

problem. However, these methods are limited for the hid-

den to hidden transformation in RNN, because they require

the weight matrix to be square matrix. Other alternative

methods [5, 38] focus on reducing the storage and compu-

tation costs by re-parameterization. Different from them,

our work aims to design a general re-parameterized linear

module to accelerate training and improve the performance

of deep neural networks, and make it an alternative for the

standard linear module.

3. Centered weight normalization

We follow the matrix notation that the vector is in col-

umn form, except that the derivative is a row vector. Given

training data D = {(xi,yi), i = 1, 2, ...,M} where x de-

notes the input and y the target. A neural network is a func-

tion f(x; θ) parameterized by θ that is expected to fit well

the training data and have good generalization for the test

data. The function f(x; θ) adopted by neural network usu-

ally consists of stacked layers. The transformation between

layers consists of a linear mapping zl = (Wl)Thl−1 + bl

with learnable parameters Wl ∈ R
d×n and bl ∈ R

n, and

followed by an element-wise nonlinearity: hl = ϕ(sl),
where l ∈ {1, 2, ..., L} indexes the layer and L denotes the

2804

total number of layers. By convention, h0 corresponds to

the input x and hL corresponds to the output of the net-

work f(x; θ). For clarification, we refer to z and h as pre-

activation and activation respectively. Under the denotation,

the learnable parameters are θ = {Wl,bl|l = 1, 2, . . . , L}.

Training the neural networks can be viewed as tuning the

parameters to minimize the discrepancy between the desired

output y and the predicted output f(x; θ). This discrepancy

is usually described by a loss function L(y, f(x; θ)), and

thus the objective is to optimize the parameters θ by mini-

mizing the loss as follows:

θ∗ = argmin
θ

E(x,y)∈D[L(y, f(x; θ))]. (1)

Stochastic gradient descent (SGD) has proved to be an

effective way to train deep networks, in which the gradien-

t of the loss function with respect to the parameters∂L
∂θ

is

approximated by the mini-batch x1...m of size m at each

iteration, by computing ∂L
∂θ

= 1
m
Σm

i=1
∂L(yi,f(xi;θ))

∂θ
.

3.1. Methodology

Despite the fact that SGD can guarantee a local optimum,

it is also well known the practical success of SGD is highly

dependent on the curvature of the objective to be optimized.

Deep neural network usually exhibits pathological curva-

ture problem, which makes the learning difficult. An alter-

native track to relieve the pathological curvature issue and

thus facilitate the optimization progress is the transforma-

tion of parameterization space of a network model, which

is called re-parameterization.

In the literatures, there exist practical tricks for weight

initialization where weights are sampled from a distribu-

tion with zero-mean and a standard deviation [19, 9, 13].

These initialization techniques effectively can avoid expo-

nentially reducing/magnifying the magnitudes of input sig-

nals or back-propagation signals in the initial phases, by

constructing stable and proper variances of the activations

among different layers. Motivated by this observation, we

propose to constrain the input weight of each neuron with

zero mean and unit norm during the course of training by

re-parameterization, which enjoys stable and fast training

of deep neural networks.

For simplicity, we start by considering one certain neu-

ron i in layer l, whose pre-activation zli = (wl
i)

Th(l−1)+bli.
We denote wl

i as the input weight of the neuron, as shown

in Figure 1. We have left out the superscript l and subscript

i for brevity in the following discusses.

Standardize weight We first re-parameterize the input

weight w of each neuron and make sure that it has the fol-

lowing properties: (1) zero-mean, i.e. wT1 = 0 where 1 is

a column vector of all ones; (2) unit-norm, i.e. ‖w‖ = 1
where ‖w‖ denotes the Euclidean norm of w. To achieve

Algorithm 1 Forward pass of linear mapping with centered

weight normalization.

1: Input: the mini-batch input data X ∈ R
d×m and

parameters to be learned: g ∈ R
n×1, b ∈ R

n×1,

V ∈ R
d×n.

2: Output: pre-activation Z ∈ R
n×m.

3: compute centered weight: V̂ = V − 1
d
1d(1

T
d V).

4: for i = 1 to n do

5: calculate normalized weight with respect to the i-th

neuron: wi =
v̂i

‖v̂i‖

6: end for

7: calculate: Ẑ = WTX.

8: calculate pre-activation: Z = (g1T
m)⊙ Ẑ+ b1T

m.

the goal, we express the input weight w in terms of the prox-

y parameter v (Figure 1) using

w =
v − 1

d
1(1Tv)

‖v − 1
d
1(1Tv)‖

(2)

where d is the dimension of the input weight, and the s-

tochastic gradient descent or other alternative techniques

such as Adam [17] can be directly applied to the optimiza-

tion with respect to the proxy parameter v. We refer to the

proposed re-parametrization as centered weight normaliza-

tion, that is, we center and scale the proxy parameter v to

ensure that the input weight w has the desired zero-mean

and unit-norm properties as discussed before.

In our centered weight normalization, the parameter up-

dating is completed based on the proxy parameters, and

thus the gradient signal should back-propagate through the

normalization process. Specifically, given the derivative of

∂L/∂w, we can get the derivative of loss with respect to the

proxy parameter v as follows:

∂L

∂v
=

1

‖v̂‖
[
∂L

∂w
− (

∂L

∂w
w)wT −

1

d
(
∂L

∂w
1)1T] (3)

where v̂ = v − 1
d
1(1Tv) is the centered auxiliary parame-

ter.

Adjustable weight scale Our method can be viewed ef-

fectively as a solution to the constrained optimization prob-

lem over neural networks:

θ∗ = argminθ E(x,y)∈D[L(y, f(x; θ))]

s.t. wT1 = 0 and ‖w‖ = 1 (4)

where w indicates the input weight for each neuron in each

layer. Therefore, we regularize the network with 2n con-

straints in each layer where n is the number of filters in cer-

tain layer and the optimization is over the embedded sub-

manifold of the original weight space. While these con-

straints provide regularization, they also may reduce the

2805

Algorithm 2 Back-propagation pass of linear mapping with

centered weight normalization.

1: Input: pre-activation derivative {∂L
∂Z

∈ R
n×m}. Oth-

er auxiliary variables from respective forward pass: V̂,

W, Ẑ, X, g.

2: Output: the gradients with respect to the inputs { ∂L
∂X

∈

R
d×m} and learnable parameters: ∂L

∂g
∈ R

1×n,∂L
∂b

∈

R
1×n, ∂L

∂V
∈ R

d×n.

3:
∂L
∂g

= 1T
m(∂L

∂Z
⊙ Ẑ)T

4:
∂L
∂b

= 1T
m

∂L
∂Z

T

5:
∂L
∂Ẑ

= ∂L
∂Z

⊙ (g1T
m)

6:
∂L
∂X

= W ∂L
∂Ẑ

7:
∂L
∂W

= X∂L
∂Ẑ

T

8: for i = 1 to n do

9:
∂L
∂vi

= 1
‖v̂i‖

(∂L
∂wi

− (∂L
∂wi

wi)w
T
i − 1

d
(∂L
∂wi

1d)1
T
d)

10: end for

representation capacity of the networks. To address it, we

simply introduce a learnable scalar parameter g to fine tune

the norm of w. Similar idea has been introduced in [28],

and proved useful in practice. We initialize it to 1, and ex-

pect the network learning process can find a proper scalar

under the supervision signals. To summarize, we rewrite

the pre-activation z of each neuron in the following way

z = g(
v − 1

d
1(1Tv)

‖v − 1
d
1(1Tv)‖

)Th+ b. (5)

Wrapped module with re-parameterization We can

wrap our proposed method as a common module and plug-

in it in the neural networks as a substitute for the ordinary

linear module. To achieve this goal, the key is to implemen-

t the forward and back-propagation passes. Based on Eqn.

(5), it is readily to extend for multiple output neurons of size

n. We describe the details of the forward pass in Algorithm

1, and the back-propagation pass in Algorithm 2. In the al-

gorithms, the ‘⊙’ operator represents element-wise matrix

multiplication, 1d indicates a column vector of all ones of

size d, and X ∈ R
d×m is the mini-batch input data feeded

into this module, where d is the dimension of the input and

m is the size of the mini-batch. vi is the i-th column of V,

and W = (w1,w2, ...,wn).

Convolutional layer For the convolutional layer, the

weight of each feature map is wc ∈ R
d×Fh×Fw where Fh

and Fw indicate the height and width of the filter, and d is

the number of the input feature maps. We unroll wc as a

FhFwd dimension vector w, then the same normalization

can be directly executed over the unrolled w.

3.2. Analysis and discussions

Next, we will show our centered weight normalization

enjoys certain appealing properties. It can stabilize the dis-

tribution of pre-activation z with respect to each neuron. To

illustrate this point, we introduce the following proposition

where we omit the bias term b to simplify the discussion.

Proposition 1. Let z = wTh, where wT1 = 0 and ‖w‖ =
1. Assume h has Gaussian distribution with the mean:

Eh[h] = μ1, and covariance matrix: cov(h) = σ2I, where

μ ∈ R and σ2 ∈ R. We have Ez[z] = 0, var(z) = σ2.

The proof of this proposition is provided in the supple-

mentary materials. Such a proposition tells us that for each

neuron the pre-activation z has zero-mean and the same

variance as the activations fed in, when the assumption is

satisfied. This property does not strictly hold in practice due

to the issue of nonlinearities in the hidden layers, however,

we still empirically find that our proposed centered weight

normalization approximately holds.

Note that our method is similar to batch normalization

[16]. However, batch normalization focuses on normalizing

the pre-activation compulsively such that the pre-activation

of current mini-batch data is zero-mean and unit-variance,

which is a data dependent normalization. Our method nor-

malizes the weights and is expected to have the effect of

zero-mean and stable variance implicitly, which is a data

independent normalization. Actually, our method can work

well by combining batch normalization as described in sub-

sequent experiments.

Besides the good property guaranteed by Proposition

1, another remarkable observation is that the proposed re-

parameterization method can make the optimization prob-

lem easier, which is supported by the following proposition.

Proposition 2. Regarding to the proxy parameter v, cen-

tered weight normalization makes that the gradient ∂L
∂v

has

following properties: (1) zero-mean, i.e. ∂L
∂v

· 1 = 0; (2)

orthogonal to the parameters w, i.e. ∂L
∂v

·w = 0.

The derivative of Proposition 2 is also given in the sup-

plementary materials. The zero-mean property of ∂L/∂v
usually has an effect that the leading eigenvalue of the Hes-

sian is smaller, and therefore the optimization problem is

likely to become better-conditioned [30]. This promises the

network to learn at a higher rate, and hence converge much

faster. Meanwhile, the gradient is orthogonal to the param-

eters w, and therefore is orthogonal to v̂. Following the

analysis in [28], the gradient ∂L/∂v can self-stabilize it-

s norm, which thus makes optimization of neural networks

robust to the value of the learning rate.

Computation complexity Given mini-batch input data

{X ∈ R
d×m}, regarding n neurons, both the forward pass

(Algorithm 1) and back-propagation pass (Algorithm 2) of

2806

0 200 400 600
−1

−0.5

0

0.5

updates (x10)

m
e
a
n

plain−L1

plain−L2

CWN−L1

CWN−L2

(a)

0 200 400 600
0

1

2

3

4

updates (x10)
v
a
r
i
a
n
c
e

plain−L1

plain−L2

CWN−L1

CWN−L2

(b)

0 20 40 60
10

0

10
20

10
40

10
60

10
80

updates (x100)

c
o
n
d
i
t
i
o
n

n
u
m
b
e
r

o
f

F
I
M

plain

NNN

WN

CWN

(c)

0 2000 4000 6000
0

1

2

3

4

updates

t
r
a
i
n
i
n
g

l
o
s
s

plain

NNN

WN

CWN

(d)

Figure 2. A case study on Yale-B dataset (‘-Ll’ indicates the l-th layer). With respect to the training updates, we analyze (a) the mean

over the mini-batch data and all neurons; (b) the variance calculated over the mini-batch data and all neurons; (c) the condition number

(log-scale) of relative FIM in the second last layer; and (d) the training loss.

the centered weight normalization have the computational

complexity of O(mnd+ nd). This means that our centered

weight normalization has the same computational complex-

ity as the standard linear module, since the extra cost O(nd)
of centered weight normalization is negligible to O(mnd).

For a convolution layer with filters W ∈ R
n×d×Fh×Fw ,

given m mini-batch data {xi ∈ R
d×h×w, i = 1, 2, ...,m},

where h and w represent the height and width of the feature

map, the computational complexity of the standard convo-

lution layer is O(nmdhwFhFw), and while our proposed

method is O(mndhwFhFw + ndFhFw). The extra cost

O(ndFhFw) of the proposed normalization is also negligi-

ble compared to the convolution operation.

4. Experiments

In this section, we begin with a set of ablation study to

support the preliminary analysis of the proposed method.

Then in the following three subsections, we show the ef-

fectiveness of our proposed method on the general network

architectures, including (1) Multi-Layer Perceptron (MLP)

architecture for face and digit recognition tasks; and (2)

Convolutional Neural Network (CNN) models for large s-

cale image classification.

Experimental protocols For all experiments, we adop-

t ReLUs [22] as the nonlinear activation and the negative

log-likelihood as the loss function, where (x, y) represents

the (input image, target class) pair. We choose the random

weight initialization by default as described in [19] if we

do not specify weight initialization methods. For the exper-

iments on MLP architecture, the input images are resized

and transformed to 1,024 dimensional vectors in gray scale,

with mean subtracted and variance divided.

4.1. Case study

As discussed in Section 3.2, the proposed Centered

Weight Normalization (CWN) method can stabilize the

distribution of the pre-activations during training under

certain assumptions. A network with the proposed re-

parameterization technique is likely to become better-

conditioned. In this part, we conduct experiments to vali-

date the conclusions empirically.

We conduct the experiments on Yale-B dataset1 for face

recognition task. Yale-B dataset has 2,414 images with 38

classes. We randomly sample 380 images (i.e., 10 images

per class) as the test set and the others as training set, where

all images are resized as 32× 32 pixels. We train a 5-layer

MLP with {128, 64, 48, 48} neurons in the hidden layers.

We compare our CWN with the plain network without re-

parameterization (named ‘plain’ for short). In the training,

we use stochastic gradient descent with batch size of 32.

For each method, the best results by tuning different learn-

ing rates in {0.1, 0.2, 0.5, 1} are reported.

Stabilize activation We investigate the mean and vari-

ance of pre-activations in each layer during the course of

training. Figure 2 (a) and (b) respectively show the mean

and variance from the first and second layers, with respect

to different rounds of training updates. The mean and vari-

ance are calculated over the mini-batch data and all neuron-

s2 in the corresponding layers. We find that the distribution

of pre-activation in plain network varies remarkably. For in-

stance, the mean decreases and the variance increases grad-

ually, even though the network nearly converges to the mini-

mal loss. The unstable distribution of pre-activation may re-

sult in an unstable learning, as shown in Figure 2 (d), where

the loss of plain network fluctuates sharply. By comparing

the loss curve of CWN and the others, we find that the pre-

activation of the network with CWN re-parameterization

has a stable mean and variance as shown in Figure 2 (a) and

(b). Especially, in the first layer the pre-activation is nearly

zero-mean, which empirically supports the fact in Proposi-

tion 1. These beneficial properties make the network with

CWN re-parameterization converge to an optimum regions

in a stable and fast way.

Conditioning analysis The condition number of

the Fisher Information Matrix (FIM) is a good in-

dicator to show whether the optimization prob-

lem is easy to solve. FIM is defined as Fθ =

Ex∼π{Ey∼P (y|x,θ)[(
∂ logP (y|x,θ)

∂θ
)(∂ logP (y|x,θ)

∂θ
)T]},

1http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
2We also observe the mean and variance of the randomly selected neu-

rons in each layer, which also have the similar behaviours.

2807

0 50 100 150 200
0

0.2

0.4

0.6

0.8

epochs

t
r
a
i
n
i
n
g

e
r
r
o
r

plain
NNN
WN
CWN

(a) training error

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

epochs
t
e
s
t

e
r
r
o
r

plain
NNN
WN
CWN

(b) test error

Figure 3. Performances evaluation on MLP architecture over

permutation-invariant SVHN.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

epochs

e
r
r
o
r

BN
NNN+BN
WN+BN
CWN+BN
CWN

(a) combining batch normalization

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

epochs

e
r
r
o
r

plain
NNN
WN
CWN

(b) using Adam optimization

Figure 4. Comparison of different methods by (a) combining batch

normalization and (b) using Adam optimization on permutation-

invariant SVHN. We evaluate training error (solid lines) and test

error (lines marked with plus) with respect to the training epochs.

and its condition number is cond(Fθ) = |λ(Fθ)|max

|λ(Fθ)|min

where |λ(Fθ)|max and |λ(Fθ)|min are the maximum and

minimum of the absolute values of Fθ’ eigenvalues. We

evaluated the condition number of relative FIM [32] with

respect to the last two layers, regarding the feasibility in

computation. We compared our methods with ‘plain’ and

the other two re-parameterization methods: Natural Neural

Network (NNN) [6] and Weight Normalization (WN) [28].

The results of the second last layer are shown in Figure 2

(c) and the last layer also has similar results, from which we

can find that CWN, WN, NNN achieve better conditioning

compared to ‘plain’, and thus converges faster as shown in

Figure 2 (d). This indicates that re-parameterization serves

as an effective way to make the optimization problem easier

if good properties are designed carefully. Compared to WN,

our proposed CWN method further significantly improves

the conditioning and speed up convergence. This observa-

tion is consistent with our analysis in Section 3.2 that the

proposed zero-mean property of input weight contributes

to making the optimization problem easier. At the testing

stage, the proposed CWN method achieves the lowest test

error as shown in Table 3, which means that CWN not only

accelerates and stabilizes training, but also has great poten-

tial to improve generalization of the neural network.

4.2. MLP architecture

In this part, we comprehensively evaluate our proposed

method on MLP architecture. We investigate both the train-

ing and test performances on SVHN [23]. SVHN consist-

s of 32 × 32 color images of house numbers collected by

Google Street View. It has 73,257 train images and 26,032

test images. We train a 6 layers MLP with 128 neurons cor-

Table 1. Comparison of test errors (%) averaged over 5 indepen-

dent runs on Yale-B and permutation-invariant SVHN.

plain NNN WN CWN

Yale-B 6.16 6.58 4.68 4.20

SVHN 18.98 17.99 17.12 16.16

respondingly in each hidden layer. Note that here we mainly

focus on validating the effectiveness of our proposed meth-

ods on MLP architecture, and under this situation, SVHN

dataset is permutation invariant.

We employ the stochastic gradient descent algorith-

m with mini-batch of size 1024. Hyper-parameters

are selected by grid search, based on the test er-

ror on validation set (5% samples of the training set)

with the following grid specifications: learning rates in

{0.1, 0.2, 0.5, 1}; the natural re-parameterization interval T
in {20, 50, 100, 200, 500} and the revised term ε within the

range of {0.01, 0.01, 0.1, 1} for NNN method.

Figure 3 shows the training and test error with respect

to the number of epochs. We can find that WN, NNN and

CWN converge faster compared to ‘plain’, which indicates

that re-parameterization serves as an effective way to accel-

erate the training. Among all re-parametrization methods,

CWN converges fastest. Besides, we observe that both the

training and test error of CWN do not fluctuate after a few

number of epochs in the training, which means that CWN is

much more stable when it reaches the optimal regions. We

can conjecture that the following functions of CWN as dis-

cussed in Section 3.2 contributes to this phenomenon: (1)

CWN can stabilize the distribution of pre-activation; (2) the

gradient ∂L/∂v of CWN can self-stabilize its norm. Table

3 presents the test error for different methods, where we fur-

ther find that CWN achieves the best performances. These

observations together show the great potential of CWN in

improving the generalization of the neural network.

Combining batch normalization Batch normalization

[16] has shown to be very helpful for speeding up the train-

ing of deep networks. Combined with batch normalization,

previous re-parameterization methods [6] have shown suc-

cess in improving the performance. Here we show that over

the networks equipped with batch normalization, our pro-

posed CWN still outperforms others in all cases. In this

experiment, Batch Normalization (BN) is plugged in be-

fore the nonlinearity in neural networks as suggested in

[16]. With batch normalization, we build different net-

works using the re-parameterized linear mapping including

WN, NNN and CWN, named ‘WN+BN’, ‘NNN+BN’ and

‘CWN+BN’ respectively.

Figure 4 (a) shows their experimental results on SVHN

dataset. We find that ‘WN+BN’ and ‘NNN+BN’ have no

advantages compared to ‘BN’, while ‘CWN+BN’ signifi-

cantly speeds up the training and achieves better test per-

2808

Table 2. Comparison of test errors (%) averaged over 5 inde-

pendent runs on Yale-B and permutation-invariant SVHN with

Xavier-Init and He-Init.

Xavier-Init He-Init

method Yale-B SVHN Yale-B SVHN

plain 6.47 17.78 5.47 18.35

NNN 5.47 17.83 5.58 18.14

WN 4.68 17.74 5.58 18.06

CWN 3.84 16.38 4.21 16.71

formance. Indeed, batch normalization is invariant to the

weights scaling as analyzed in [24] and [4]. However, batch

normalization is not re-centering invariant [4]. Therefore,

our CWN can further improve the performance of batch nor-

malization by centering the weights.

Amazingly, CWN itself achieves remarkably better per-

formance in terms of both the training speed and the

test error than BN, and even better than ‘CWN+BN’.

This is mainly due to the following reasons. Batch nor-

malization can well stabilize the distribution of the pre-

activation/activation, however it also introduces noises

stemming from the forceful transformation based on mini-

batch. Besides, during test the means and variances are es-

timated based on the moving averages of mini-batch means

and variances [16, 3, 4]. These flaws may have a detrimental

effect on models. Our CWN can stabilize the distribution of

pre-activation implicitly and is deterministic without intro-

ducing stochastic noise. Moreover, the properties described

in Proposition 2 can improve the conditioning, self-stabilize

the gradient’s norm, and thus achieve better performance.

Adam optimization We consider an alternative optimiza-

tion method, Adam [17], to evaluate the performance. The

initial learning rate is set to {0.001, 0.002, 0.005, 0.01}, and

the best results for all methods on SVHN dataset are shown

in Figure 4 (b). Again, we find that CWN can reach the

lowest errors at both training and test stages.

Different initialization We also have tried different ini-

tialization methods: Xavier-Init [9] and He-Init [13]. The

experimental setup is the same as in previous experiments.

The final test errors both on Yale-B and SVHN datasets are

shown in Table 2. We get similar conclusions as the ran-

dom initialization [19] in previous experiments that CWN

achieves the best test performance.

4.3. CNN architectures on CIFAR dataset

In this part, we highlight that the proposed centered

weight normalization method also works well on several

popular state-of-the-art CNN architectures3, including VG-

G [31], GoogLeNet [34], and residual network [14, 15]. We

3The details of the used CNN architectures are shown in the supple-

mentary materials.

Table 3. Comparison of test errors (%) averaged over 3 inde-

pendent runs on 56 layers residual network over CIFAR-10 and

CIFAR-100 datasets.

Methods CIFAR-10 CIFAR-100

plain 7.34 ± 0.52 29.38 ± 0.14

WN 7.58 ± 0.40 29.85 ± 0.66

CWN 6.85 ± 0.26 29.23 ± 0.14

evaluate it over CIFAR-10 and CIFAR-100 datasets [18],

which consists of 50,000 training images and 10,000 test

images from 10 and 100 classes respectively. Each input

image consists of 32× 32 pixels.

VGG-A We first evaluate the proposed methods on the

VGG-A architecture [31] where we set the number of neu-

rons to 512 in the fully connected layer and use batch nor-

malization in the first fully connected layer. The exper-

iments run on CIFAR-10 dataset and we preprocess the

dataset by subtracting the mean and dividing the variance.

We employ the stochastic gradient descent as the op-

timization method with mini-batch size of 256, and use

momentum of 0.9, weight decay of 0.0005. The learn-

ing rate decays with each K iterations halving the learn-

ing rate. We initialize the learning rate lr = {0.5, 1, 2, 4},

and K = {1000, 2000, 4000, 8000}. The hyper-parameters

are chosen over the validation set of 5,000 examples from

the training set by grid search. We report the results of

‘plain’, WN and CWN in Figure 5 (a). It is easy to see that

with the proposed CWN the training converges much faster

and promises the lowest test error of 13.06%, compared

to WN of 15.89% and ‘plain’ of 14.33%. Note that here

WN obtains even worse performance compared to ‘plain’,

which is mainly because that WN can not ensure the pre-

activations nearly zero-mean, and thus degenerate the per-

formance when the network is deep.

GoogleLeNet We conduct the experiments on Google-

LeNet. Here GoogleLeNet is equipped with the batch nor-

malization [16], plugged after the linear mappings. The

dataset is preprocessed as described in [10] with global con-

trast normalization and ZCA whitening. We follow the sim-

ple data augmentation that 4 pixels are padded on each side,

and a 32 × 32 crop is randomly sampled from the padded

image or its horizontal flip. The models are trained with

a mini-batch size of 64, momentum of 0.9 and weight de-

cay of 0.0005. The learning rate starts from 0.1 and ends

at 0.001, and decays every two epochs with exponentially

decaying until the end of the training with 100 epochs. The

results on CIFAR-100 are reported in Figure 5 (b), from

which we can find that CWN obtains slight speedup com-

pared to WN and ‘plain’. Moreover, CWN can attain the

lowest test error of 24.45%, compare to ‘plain’ of 25.52%
and WN of 25.39%. We also obtain similar observations on

CIFAR-10 (see the supplementary materials).

2809

0 20 40 60
0

0.2

0.4

0.6

0.8

epochs

e
r
r
o
r

plain
WN
CWN

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

epochs

e
r
r
o
r

plain
WN
CWN

(b)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

epochs

e
r
r
o
r

plain
WN
CWN

(c)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

epochs

e
r
r
o
r

plain
WN
CWN

(d)

Figure 5. Performance comparison on various architecture over CIFAR datasets. We evaluate the training error (solid lines) and test error

(lines marked with plus) with respect to the training epochs. (a) VGG-A architecture over CIFAR-10; (b) GoogLeNet architecture over

CIFAR-100; (c) residual network architecture over CIFAR-10; (d) residual network architecture over CIFAR-100.

Residual network We also apply our CWN module to the

residual network [14] with 56 layers. We follow the same

experimental protocol as described in [14] and the publicly

available Torch implementation for residual network 4. Fig-

ure 5 (c) and (d) show the training error and test error with

respect to epochs on CIFAR-10 and CIFAR-100 dataset re-

spectively, and the test errors after training are shown in Ta-

ble 3. We can find that CWN converges slightly faster than

WN and ‘plain’ and achieves the best test performance.

Computational cost We implement our CWN module

based on Torch, and the re-parameterization is wrapped in

the fastest SpatialConvolution of cudnn package 5. We com-

pared the wall clock time of CWN module with the standard

convolution of cudnn. We use 3 × 3 convolution, 32 × 32
feature map with size 128 and mini-batch size of 64. The re-

sults are averaged over 100 runs. CWN costs 18.1ms while

the standard one takes 17.3ms.

4.4. Large scale classification on ImageNet dataset

To show the scalability of our proposed method, we ap-

ply it to the large-scale ImageNet-2012 dataset [27] using

the GoogLeNet architecture. ImageNet-2012 includes im-

ages of 1,000 classes, and is split into training sets with

1.2M images, validation set with 50k images, and test set

with 100k images. We employ the validation set as the test

set, and evaluate the classification performance based on

top-1 and top-5 error. We use single scale and single crop

test for simplifying discussion. Here we again use stochas-

tic gradient descent with mini-batch size of 64, momentum

of 0.9 and weight decay of 0.0001. The learning rate starts

from 0.1 and ends at 0.0001, and decays with exponentially

decaying until the end of the training with 90 epochs. The

top-5 training and test error curves are shown in Figure 6

and the final test errors are shown in Table 4, where we can

find that the deep network with CWN can converge to a low-

er training error faster, and obtain lower test error. We argue

that our CWN module draws its strength in improving the

performance of deep neural networks.

4https://github.com/facebook/fb.resnet.torch
5https://developer.nvidia.com/cudnn

0 20 40 60 80
0

0.2

0.4

0.6

0.8

epochs
t
r
a
i
n

e
r
r
o
r

plain
WN
CWN

(a) training error

0 20 40 60 80
0

0.2

0.4

0.6

0.8

epochs

t
e
s
t

e
r
r
o
r

plain
WN
CWN

(b) test error

Figure 6. Top-5 training and test error curves on GoogLeNet ar-

chitecture over ImageNet-2012 dataset.

Table 4. Comparison of test errors (%) on GoogLeNet over

ImageNet-2012 dataset.

Methods Top-1 error Top-5 error

plain 30.78 11.14

WN 28.64 9.7

CWN 26.1 8.35

5. Conclusions

In this paper we introduced a new efficient re-

parameterization method named centered weight normal-

ization, which improves the conditioning and accelerates

the convergence of the deep neural networks training. We

validate its effectiveness in image classification tasks over

both multi-layer perceptron and convolutional neural net-

work architectures. The re-parameterization method is able

to stabilize the distribution and accelerate the training for

a number of popular networks. More importantly, it has

very low computational overhead and can be wrapped as a

linear module suitable for different types of networks. We

argue that the centered weight normalization module owns

the potential to replace the standard linear module, and con-

tributes to new deep architectures with easier optimization

and better generalization.

Acknowledgement

This work was partially supported by NSFC-61370125,

NSFC-61402026, SKLSDE-2017ZX-03, FL-170100117,

DP-140102164, LP-150100671 and the Innovation Foun-

dation of BUAA for PhD Graduates.

2810

References

[1] S.-I. Amari. Natural gradient works efficiently in learning.

Neural Comput., 10(2):251–276, Feb. 1998. 1

[2] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution

recurrent neural networks. In ICML, 2016. 1, 2

[3] D. Arpit, Y. Zhou, B. U. Kota, and V. Govindaraju. Normal-

ization propagation: A parametric technique for removing

internal covariate shift in deep networks. In ICML, 2016. 7

[4] L. J. Ba, R. Kiros, and G. E. Hinton. Layer normalization.

CoRR, abs/1607.06450, 2016. 1, 2, 7

[5] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D. Fre-

itas. Predicting parameters in deep learning. In Advances

in Neural Information Processing Systems 26, pages 2148–

2156, 2013. 2

[6] G. Desjardins, K. Simonyan, R. Pascanu, and

K. Kavukcuoglu. Natural neural networks. In NIPS,

2015. 1, 2, 6

[7] Z. Ding, M. Shao, and Y. Fu. Deep robust encoder through

locality preserving low-rank dictionary. In ECCV, pages

567–582, 2016. 1

[8] V. Dorobantu, P. A. Stromhaug, and J. Renteria. Dizzyrn-

n: Reparameterizing recurrent neural networks for norm-

preserving backpropagation. CoRR, abs/1612.04035, 2016.

2

[9] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

2010. 1, 3, 7

[10] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C.

Courville, and Y. Bengio. Maxout networks. In ICML, 2013.

7

[11] R. B. Grosse and J. Martens. A kronecker-factored approxi-

mate fisher matrix for convolution layers. In ICML, 2016. 1,

2

[12] R. B. Grosse and R. Salakhutdinov. Scaling up natural gra-

dient by sparsely factorizing the inverse fisher matrix. In

ICML, 2015. 1, 2

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 1, 3, 7

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 7, 8

[15] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. CoRR, abs/1603.05027, 2016. 7

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 1, 2, 4, 6, 7

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014. 2, 3, 7

[18] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009. 7

[19] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Effiicient

backprop. In Neural Networks: Tricks of the Trade, 1998. 1,

3, 5, 7

[20] J. Martens and I. Sutskever. Training deep and recurrent net-

works with hessian-free optimization. In Neural Networks:

Tricks of the Trade (2nd ed.). 2012. 1, 2

[21] D. Mishkin and J. Matas. All you need is a good init. In

ICLR, 2016. 1

[22] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010. 5

[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS Workshop on Deep Learning and Un-

supervised Feature Learning, 2011. 6

[24] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Sre-

bro. Data-dependent path normalization in neural networks.

CoRR, abs/1511.06747, 2015. 7

[25] G. Qi. Hierarchically gated deep networks for semantic seg-

mentation. In CVPR, pages 2267–2275, 2016. 1

[26] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made

easier by linear transformations in perceptrons. In AISTATS,

2012. 2

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 8

[28] T. Salimans and D. P. Kingma. Weight normalization: A

simple reparameterization to accelerate training of deep neu-

ral networks. In NIPS, 2016. 1, 2, 4, 6

[29] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact so-

lutions to the nonlinear dynamics of learning in deep linear

neural networks. CoRR, abs/1312.6120, 2013. 1

[30] N. N. Schraudolph. Accelerated gradient descent by factor-

centering decomposition. Technical report, 1998. 4

[31] K. Simonyan and A. Zisserman. Very deep convolution-

al networks for large-scale image recognition. CoRR, ab-

s/1409.1556, 2014. 7

[32] K. Sun and F. Nielsen. Relative natural gradient for learning

large complex models. CoRR, abs/1606.06069, 2016. 6

[33] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In NIPS,

pages 1988–1996, 2014. 1

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CoRR, abs/1409.4842,

2014. 7

[35] Y. Tian, P. Luo, X. Wang, and X. Tang. Deep learning strong

parts for pedestrian detection. In ICCV, pages 1904–1912,

2015. 1

[36] S. Wiesler, A. Richard, R. Schlüter, and H. Ney. Mean-

normalized stochastic gradient for large-scale deep learning.

In ICASSP, 2014. 1, 2

[37] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas.

Full-capacity unitary recurrent neural networks. In NIPS,

pages 4880–4888. 2016. 2

[38] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. J. Smola,

L. Song, and Z. Wang. Deep fried convnets. In ICCV, 2015.

2

2811

