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Abstract

We present a scene parsing method that utilizes global

context information based on both the parametric and non-

parametric models. Compared to previous methods that

only exploit the local relationship between objects, we train

a context network based on scene similarities to generate

feature representations for global contexts. In addition,

these learned features are utilized to generate global and

spatial priors for explicit classes inference. We then design

modules to embed the feature representations and the priors

into the segmentation network as additional global context

cues. We show that the proposed method can eliminate false

positives that are not compatible with the global context

representations. Experiments on both the MIT ADE20K and

PASCAL Context datasets show that the proposed method

performs favorably against existing methods.

1. Introduction

Scene parsing is one of the fundamental and challeng-

ing problems in computer vision, which can be applied to a

wide range of applications such as autonomous driving [5]

and image editing [27]. The goal of this task is to assign

a semantic class to each pixel in an image. Different from

semantic segmentation where a significant amount of pixels

are labeled as the background, most pixels in the scene pars-

ing datasets are labeled with either thing classes (e.g., per-

son and car) or stuff classes (e.g., wall, ground, and field).

One major limitation of existing scene parsing meth-

ods is that local information only provides limited cues

for inferring the label of a single pixel or patch. For ex-

ample, in Figure 1(a), when observing a patch filled with

gray pixels from the beach sand, it is difficult to infer

whether the patch belongs to the class of road, wall, or

sand, even for human eyes. Thus, most existing context-

based methods combine one or multiple models that can

perform long-range inference through pairwise relation-

ships, e.g., Markov Random Field (MRF), Conditional Ran-

dom Field (CRF), or global attributes such as scene cate-

gories and spatial locations [11, 15] Non-parametric meth-

ods [18, 25, 9, 24, 26, 30] can be seen as context models

focusing on image matching via feature descriptors. By re-

(a) input (b) ground truth

(c) without global context (d) with global context

Figure 1. Given an image (a), the proposed method improves

the results of FCN-8s [12] (c) by exploiting the global context in-

formation. Our result (d) shows that the algorithm can eliminate

the false positives that are not compatible with the scene category

(e.g., some sand regions in (c) are predicted as mountain in a beach

scene). (b) shows the ground truth pixel labels.

trieving a small set of similar images from the annotated

dataset, these methods construct dense correspondences be-

tween the input image and the retrieved images on the pixel

or superpixel level. A final prediction map can be obtained

through a simple voting or solving an MRF model. How-

ever, the performance of such exemplar-based approaches

highly depends on the quality of the image retrieval module

based on hand-crafted features. If the retrieved set does not

contain one or more semantic classes of the input image,

these non-parametric approaches are not expected to parse

the scenes well.

Recently, CNN based methods such as the fully convo-

lutional neural network (FCN) [20] have achieved the state-

of-the-art results in semantic segmentation. These algo-

rithms improve the scene parsing task compared to conven-

tional non-parametric approaches. The performance gain
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mainly comes from multiple convolutional and non-linear

activation layers that can learn data-specific local features

to classify each pixel on a local region (i.e., receptive field).

However, most FCN-based methods still do not utilize an

explicit context model, and the receptive field of one pixel

classifier is fixed in a given network architecture.

In this paper, we propose an algorithm to embed global

contexts into the segmentation network by feature learning

and non-parametric prior encoding. Different from previous

approaches that only consider the contexts within the input

image, our method exploits the scene similarities between

images without knowing scene categories. The key idea is

to use a Siamese network [4] for learning global context

representations in an unsupervised manner.

We then propose to use the learned representations to

exploit global contexts using global context feature encod-

ing and non-parametric prior encoding. For global context

feature encoding, we propagate the learned representations

through the segmentation network. For non-parametric

prior encoding, we generate both global and spatial priors

by retrieving annotated images via global context features

and combine them with our segmentation network. Since

we do not perform dense alignment as most existing non-

parametric methods [18, 25], our non-parametric module is

computationally efficient. Instead of using the original im-

ages from the whole training set, which requires large stor-

age at the testing phase, our image retrieval module only

needs the pre-computed compact feature representations of

images. We evaluate the proposed algorithm on the MIT

ADE20K [35] and PASCAL Context dataset [21] with com-

parisons to the state-of-the-art methods.

The contributions of this work are as follows:

• We design a Siamese network to learn representations

for global contexts and model scene similarities be-

tween images in an unsupervised manner, with a focus

on images that share rare object/surface categories.

• We propose two methods to exploit global contexts by

feature learning and non-parametric prior encoding.

• We show that the parametric segmentation network,

context encoding, and non-parametric prior encoding

can be efficiently integrated via the proposed global

context embedding scheme for effective scene parsing

without introducing much computational overhead.

2. Related Work

Numerous methods have been developed to exploit scene

contexts for vision tasks. In [11], the Thing and Stuff

model that exploits the relationship between objects and

surfaces is proposed to eliminate false positives of object

detectors. In [30, 9], the initial prediction of adjacent su-

perpixels is used as the local context descriptor to refine

the superpixel matching process iteratively. Most meth-

ods based on FCN [20] exploit context information by

constructing MRFs or CRFs on top of the network out-

put [34, 3, 19, 17, 36]. A recent study shows that the per-

formance of FCN-based models can be improved by apply-

ing dilated convolution [32]. The key insight is that dilated

convolution allows the network to “see” more, i.e., enlarg-

ing the receptive field, and therefore more context infor-

mation is perceived. However, these models only consider

the local context information within the input image. Our

proposed context model is related to the global context de-

scriptors in [30, 24] which refine the scene retrieval mod-

ule in the non-parametric label transfer. In this work, we

use the global descriptor to improve the pixel classifier di-

rectly. Recently, one concurrent work [33] proposes to ex-

ploit the global context through pyramid pooling. Different

from [33], we train our context network with an explicit dis-

tance metric.

Our prior encoding approach is closely related to the

non-parametric approaches for scene parsing [18, 25, 9,

24, 26, 30]. These methods typically consist of three major

stages: scene retrieval, dense alignment, and MRF/CRF op-

timization. In the scene retrieval stage, a global descriptor

is used to retrieve a small set of images from the annotated

dataset based on different features, e.g., GIST and HoG

features [18], dense-SIFT [30], superpixels and hybrid fea-

tures [25, 9, 24, 26]. However, these hand-crafted features

are less effective in describing small objects. In this work,

we propose to replace the global descriptor with the deep

features trained by the Siamese network [4] to enhance the

semantic embedding. The dense alignment can be achieved

via the SIFT-Flow [18], superpixel matching [25, 30, 9, 24],

or exemplar-based classifier [26]. However, the explicit

dense alignment requires heavy computational loads. In this

work, we generate the prior information without alignment

and pass the priors through convolutional layers. It allows

the segmentation network to learn how to combine the prior

information with local prediction in an end-to-end fashion.

As a core module in our method, the Siamese net-

work [4] can learn the pair-wise relationship between im-

ages. The network transforms a classification network to

multiple branches with shared parameters. Such network

structures have been used for re-identification problems

[31, 1] and unsupervised visual learning [8, 29, 16].

3. Algorithmic Overview

Figure 2 shows the overview of the proposed algorithm.

We first propagate an input image through two networks:

segmentation network and global context network. The seg-

mentation network (e.g., FCN [20] or DeepLab [3]) gener-

ates the initial parsing results. The global context network

is designed based on a CNN classification network (e.g.,

AlexNet [14] or VGG [23]) without the last fully-connected

and softmax layers. The global context network outputs a

fixed length feature vector that embeds the global context
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Figure 2. Algorithmic overview. We propagate an input image through two networks: segmentation network for initial local label prediction

and global context network for generating global context features. We exploit the learned features with context feature encoding and non-

parametric prior encoding. These two modules can be easily applied to existing segmentation networks. After applying our methods to the

segmentation network, the final scene parsing results are obtained through a softmax operation and a bilinear upsampling.

information of the input image. The context embedded fea-

tures are then combined with the feature maps of the seg-

mentation network, passing through the feature encoding

network to exploit additional information.

In addition to feature encoding, we propose a prior en-

coding module to combine the non-parametric prior infor-

mation. We obtain the spatial and global prior informa-

tion by retrieving the K-nearest annotated images from the

training set using the learned context embedded features.

These priors estimate the label distribution of the retrieved

images. We then encode the prior information to the seg-

mentation network using the proposed prior encoding net-

work. To match the size of the input image, we apply the bi-

linear upsampling on the output of the prior encoding mod-

ule as the final parsing results.

4. Training Global Context Network

To obtain the global context information, a straightfor-

ward approach is to generate scene labels on the image

level, e.g., bedroom, school, or office. However, it requires

additional annotations. Moreover, unlike object categories,

scene categories are often ambiguous, and the boundaries

between some categories are difficult to draw, e.g., a scene

consists of both the street view and the outdoor dining

area. Thus, instead of explicitly inferring the scene cate-

gories, we propose to embed the global context into a fixed-

dimensional semantic space through the global context net-

work. The objective of the global context network is to cap-

ture the scene information of the desired semantic embed-

ding properties. For example, the feature distance from a

bedroom scene to a living room scene should be smaller

than that to a beach scene. We observe that semantically

similar scenes share more common classes, e.g. wall, chair,

and sofa for indoor scenes. Toward this end, we design a

distance metric, denoted as ground truth distance, to evalu-

ate the semantic distance between a pair of images based on

their annotated pixel labels. The ground truth distance pro-

vides rich context information for the scene parsing task,

and our objective is to utilize such context information in

the testing phase without knowing pixel labels. Therefore,

we propose to train a global context network to generate the

global context features by learning from the ground truth

distance. We demonstrate that the distances between trained

global context features have the similar semantic embed-

ding of the ground truth distance.

Ground Truth Distance. The ground truth distance de-

scribes the semantic distance between two images with an-

notated pixel labels. We denote it as dgt(yi,yj), where yi

and yj are the annotated ground truth labels of two images.

To compute the ground truth distance, we first construct

a spatial pyramid on each annotated image. In the spatial

pyramid, we compute the Chi-square distance between the

label histograms of two corresponding blocks at the same

location from two images. We obtain the ground truth dis-

tance by summing up the distance of all blocks, i.e.,

dgt(yi,yj) =
∑

s∈S

∑

c∈C

χ2(hi(s, c), hj(s, c)), (1)

where hi(s, c) is the number of pixels belonging to class c
at location s in the spatial pyramid.

The purpose of constructing the spatial pyramid is to es-

timate the scene similarity between images with consider-

ation of the spatial scene layout. In this work, we use a

two-level spatial pyramid where the first level contains only

one block and the second level contains 9 blocks by divid-

ing the image into a 3 × 3 grid. We observe that there

is no significant difference with more levels of the spatial

pyramid. We choose the Chi-square distance defined by

χ2(a, b) = (a − b)2/(a + b) for computing the distance

between histograms since the normalization term can remit
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Figure 3. We refine the ground truth distance metric through rare

class enhancement. Given a query image, we show the retrieval set

obtained by using the ground truth distance (a), and with rare class

enhancement (b). Samples of rare classes can be better retrieved

with the enhanced metric.

the situation that major classes with a large amount of pixels

dominate the distance function.

Rare Class Enhancement. In large-scale vision tasks,

e.g., object detection [22] and scene parsing [30, 35], the

distribution of annotated class samples is usually highly

unbalanced with a long-tail distribution. The unbalanced

samples between classes make most learning based meth-

ods prone to disregarding the rare/small classes to achieve

higher overall accuracy. In addition, samples of rare classes

only appear in certain specific scene categories, e.g., tent

and microwave, and provide strong cues for the global con-

text inference. In other words, when samples from a rare

class appear in a scene, local informative regions should be

weighted more than the overall global configuration.

We re-weight the histogram hi(s, c) in the ground truth

distance dgt by dividing how often the class c appears in the

dataset, i.e.,

hr
i (s, c) = hi(s, c)/f(c), (2)

where f(c) is the amount of images in which class c
presents with at least one pixel within the dataset. Figure

3 shows an example of the proposed rare class enhance-

ment by comparing the retrieval results using the ground

truth distance.

Siamese Network Training. Given the ground truth dis-

tance function dgt between images, we learn a feature space

to predict the similar distance embedding. Motivated by

recent methods that utilize the Siamese network to learn

pairwise relationships [8, 16, 29], we train the global con-

text network with a Siamese structure to predict the scene

similarity between image pairs, as shown in Figure 4. The

design of the global context network is based on the VGG-

16 [23] model that takes a single image as input. We remove

the last fully-connected layer, making fc7 layer as the out-

put feature. The Siamese network consists of two identical

4096

4096

512

2

VGG-16

Shared Parameters

Positive Negative

Figure 4. Siamese training of the global context network. The

global context network is a VGG-16 network that outputs a 4096-

dimensional feature vector. We train the global context network

using Siamese structure, in which there are two identical networks

with shared parameters. The output feature vectors of the two

branches are concatenated and passed through additional fully-

connected layers and a softmax layer. The target labels are 1 for

positive pairs and 0 for negative pairs.

global context branches. On top of the two branch network,

two additional fully-connected layers with softmax output

are implemented as a binary classifier.

By using Siamese structure training, we transform the

distance regression task into a binary classification problem.

For each pair of input images, the network classifies it as

either positive (semantically similar) or negative (semanti-

cally distant) pair. To extract the positive and negative pairs,

we first form a fully-connected graph where each node is an

image in the annotated dataset, and the edge weight is the

ground truth distance function dgt(yi,yj).
We construct an affinity matrix as

Agt[i, j] =

{

1, j ∈ KNN(i,Ka)

0, otherwise
, (3)

where KNN(i,Ka) denotes the set that contains Ka-nearest

neighbors of node i with respect to the the ground truth dis-

tance dgt(yi,yj).
Since Ka in the nearest neighbor search is relatively

small compared to the number of nodes, most entries in

Agt are zeros and treated as negative pairs. However, it is

impractical to train the Siamese network using all the neg-

ative pairs. Therefore, we need to sample negative pairs

during training. A straightforward method is random sam-

pling. Nevertheless, not all the negative pairs are equally

informative. A pair with large ground truth distance can be

considered as an easy sample that does not help the network

to learn discriminative features. Toward this end, we apply

a simple strategy to mine the hard-negative pairs by only

sampling negative pairs from the Ka + 1 nearest neighbor

to N -th nearest neighbor, where N is larger than Ka. In

this work, we set the N as half the amount of images in the

training dataset.
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Figure 5. Comparison of retrieval results using ground truth dis-

tance and Euclidean distance between trained global context fea-

tures. The retrieval results using our global context features is

simliar to the ones using the designed ground truth distance.

Figure 5 shows the retrieval results using the ground

truth distance and Euclidean distance of trained features.

The results show that the trained global context features can

represent similar semantics from the ground truth distance

using the Siamese network training.

5. Non-parametric Prior Generation

Scene Retrieval. Motivated by the non-parametric work on

scene parsing [18, 25, 9, 24, 26, 30], we propose a method

to utilize non-parametric prior in the segmentation network.

Given a query image, we use a global descriptor to retrieve

a small set of semantically similar images from the train-

ing dataset. Compared to other methods that use hand-

crafted features, we use the learned global context features

as the image descriptor. Specifically, given a query image

xi with its global context features fi, we retrieve an image

set {x1,x2, . . . ,xKp
} by performing Kp-nearest-neighbors

search with the Euclidean distance between the context fea-

tures. Note that we use Kp here to differentiate with the Ka

in the Siamese training. Figure 5 also shows some exam-

ple retrieval sets using both the ground truth distance and

the Euclidean distance between trained features. Since the

retrieval images are semantically close to the query image,

the annotated pixel labels in the retrieval set should also be

similar to the query image and thus can be used to help the

parsing process of the query image.

While most previous methods use dense alignment to

transfer the retrieved labels as the parsing result directly, we

propagate the prior probability through a convolution layer

to jointly predict the results with the segmentation network.

To design the prior, we observe that the stuff classes such

as sky and ground do have strong spatial dependency (i.e.,

sky is usually on the top and ground at the bottom of most

images), while things classes such as chair and person can

appear at most image locations depending on the camera

view angle. Therefore, we propose to exploit two forms of

prior information: spatial prior and global prior. The spa-

tial prior estimates how likely the stuff classes presenting at

each spatial location, while global prior estimates the prob-

ability of existence for things classes on the image level.

Spatial Prior. Given a query image, we obtain the re-

trieval set {x1,x2, . . . ,xKp
} with their annotated images

{y1,y2, . . . ,yKp
}. All the annotated images are first re-

scaled to the same resolution and divided equally into S×S
grids. Then we estimate the spatial prior as

Ps[c, p, q] =
1

Kp

∑

k∈1...Kp

N(yk[p, q], c), (4)

where N(yk[p, q], c) represents how many pixels are la-

beled as class c within the specific block at the spatial coor-

dinate (p, q) ∈ S2 in the labeled image yk. We can observe

that Ps is an C × S × S tensor, in which each location is a

probability distribution with respect to all classes.

The spatial prior can be seen as a simplified version of lo-

cal belief in the conventional non-parametric methods. We

estimate the probability in a lower resolution using spatial

grids instead of superpixels, and we do not perform dense

alignment such as SIFT-Flow [18] or superpixel match-

ing [25] on the retrieval images to generate a detailed pre-

diction. This is because that our method already has the

accurate local belief provided by the segmentation network,

while the spatial prior information can provide a more con-

sistent global configuration and eliminate false positives of

local predictions. In addition, since we pass the prior in-

formation along with the deep features through convolution

layers, the prior information can be propagated through the

convolution operation, letting the network learn how to ex-

ploit additional cues through back propagation.

Global Prior. For things classes, we propose to utilize an-

other prior information that is invariant with the spatial loca-

tion and only estimates the existence of the object classes.

We denote such global prior as Pg which can be simply
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Figure 6. Proposed encoding structures. (a) shows the structure to encode the features generated by the global context network. We first

pass the global context features through a fully-connected layer to output features with the same number of channels as the last layer of

the segmentation network. We then add the features to the output of the segmentation network at each spatial location. (b) demonstrates

how we encode the non-parametric prior information. For the spatial prior sampled with an S × S grid, we re-scale it to the same spatial

dimension as the segmentation network output, then we propagate the priors through a convolutional layer. Finally, we add the outputs

of the convolutional layer to the segmentation network output. For the global prior, we encode it using the same structure with feature

encoding.

computed as

Pg[c] =
∑

k∈1...Kp

N(yk, c)/(hk × wk ×Kp), (5)

where N(yk, c) denotes the number of pixels in k-th re-

trieval image belonging to class c. We only compute the

global prior on the things classes (e.g., person, animal, and

chair) since the prior information of most stuff classes can

be described accurately through the spatial prior in (4).

6. Global Context Embedding with Networks

With global context features generated by the global con-

text network (Section 4) and the non-parametric prior infor-

mation (Section 5), we present how we apply both sets of

context information for scene parsing.

Figure 6 shows the two modules that encode the global

context features and non-parametric priors, respectively. To

encode features, a naive approach is to duplicate the con-

text features at each spatial location and concatenate them

with feature maps of the last layer in the segmentation net-

work. However, considering the convolutional layer with

the kernel size of 1 × 1, it is mathematically equivalent

to passing the context embedded features through a fully-

connected layer, which has the same output channel number

as the feature map of the segmentation network. Then the

output vector is added to each spatial location in the seg-

mentation network as a bias term before the non-linearity

function. This modification can save memory for storing

the duplicate feature vectors and accelerate the computing

process. Furthermore, it makes the module easily applica-

ble to any network without network surgery if it needs to be

initialized from a pre-trained model.

For the prior encoding network, we encode the global

prior using the same structure in the feature encoding net-

work. Since the spatial prior is not a 1-dimensional vec-

tor, we first perform in-network resizing on the spatial prior

with a bilinear kernel to match the feature map size. After

resizing, we propagate the spatial prior through a convolu-

tional layer and add the output to the feature map of the

segmentation network.

7. Experimental Results

Implementation Details. We use the caffe toolbox [13]

to train our models with TitanX GPUs with the mini-batch

stochastic gradient descent. To learn the global context net-

work, we train the network in Figure 4 with mini-batch

size 16. Each mini-batch contains 8 positive and 8 nega-

tive pairs. We set the nearest neighbor number Ka in equa-

tion (3) as 10 for generating the positive pairs. The initial

learning rate is set to 0.001 which is reduced to 0.0001 af-

ter 100, 000 iterations. The momentum is set as 0.9 with

weight decay 0.0005. We initialize the model with the pre-

trained VGG-16 model [23] on ImageNet and train it for

150, 000 iterations.

For the full system training as depicted in Figure 2,

we perform experiments using two baseline models: FCN-

8s [20] and DeepLab-ResNet101 [3]. For FCN-8s, we train

the network with unnormalized softmax with fixed learning

rate 1e−10. The model is initialized with the pre-trained

VGG-16 model on ImageNet. We apply the heavy-learning

scheme in [20] where we set batch size to 1 and momentum

to 0.99. For DeepLab-ResNet101, we follow the learning

rate policy in their paper where initial learning rate is set

to 2.5e−4 and is lowered by the polynomial scheme with

power 0.9 and max iteration 160000.

We set input crop size as 384 for FCN and 385 for

DeepLab since it requires the input edges to be in the form

of 32N + 1. For data augmentation, we use random-
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Figure 7. Representative scene parsing results from the ADE20k dataset.

Table 1. Ka in constructing affinity matrix with Kp = 5

Ka 5 10 15 20

F2 0.5527 0.5601 0.5589 0.5594

Table 2. Kp in prior generation with Ka = 10

Kp 1 3 5 10

F2 0.4420 0.5390 0.5601 0.5228

mirroring for both baseline models. When training the

DeepLab network, we additionally apply random scaling

with a choice of 5 scales {0.5, 0.75, 1.0, 1.25, 1.5} for

each iteration, and crop the image to the input size with

a random position. Note that we also perform the same

scaling and cropping on the spatial prior. For DeepLab,

since it consists of 3 branches with different resolution, we

apply the encoding module separately on all the branches

and resize the spatial prior accordingly. For evaluation,

the test image is resized to have the longer edge as 513
(384 for FCN), and we do not perform multi-scale testing.

We also apply dense CRF as the post-processing module

but find there is no significant improvement (±0.5%) since

the CRF can only improve the boundary alignment. Also,

it will take another 10-40 seconds to optimize the dense

CRF for one image. The code and model are available at

https://github.com/hfslyc/GCPNet

Hyperparameters. We analyze two important hyper pa-

rameters in the proposed method: 1) Ka for constructing

affinity matrix in the global context network training in (3);

2) Kp as the amount of retrieved images for generating the

priors in (4) and (5). We choose both values based on the

quality of the scene retrieval results in Table 1 and Table 2.

The retrieved images should contain most classes that

appear in the query image (high recall) and few irrelevant

classes. Thus, we treat the retrieval results as a multi-label

classification problem and evaluate the F2 score with dif-

ferent parameters on the ADE20K validation set, where

Fβ = (1+β2)·precision·recall/(β2 ·precision+recall).
We choose F2 since we prefer results with the higher recall.

Table 1 shows the results with different values of Ka.

The global context network performs well for a wide range

of values of Ka, and we choose Ka = 10 with the highest

F2 score. Table 2 shows the sensitivity analysis on Kp. The

proposed method performs best when Kp is set to 5.

Quantitative Evaluation of Global Context Features.

To validate our learned global context features, we com-

pare the results using our features to the ones that directly

use fc7 of the VGG-16 network pre-trained on ImageNet

with the F2 score in Table 1. The one using VGG-16 fea-

tures only achieves 0.2524 with Kp = 5, which is substan-

tially lower than our global context features (0.5601). It

shows that the global context features can learn useful scene

semantic information from the proposed siamese training.

Figure 8 shows one example of the retrieval results with

these two features.

Complexity Analysis For evaluating a single test image,

our method takes 1.4 seconds: 0.4s (NN search) + 0.3s

(prior generation) + 0.7s (Network forward) on a single

GPU. The prior encoding module (NN search + prior gener-

ation) introduces 0.7s overhead on CPU, which can be min-

imized via GPU acceleration. Our module is efficient com-
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query image
retrieval set using global context features

annotation
retrieval set using VGG-16 features pretrained on ImageNet

Figure 8. Comparison of retrieval results between VGG-16 feature

and our trained global context feature. We note that none of the

results using the VGG-16 features contains the “bed” label.

pared to other non-parametric methods such as [18, 25],

since we perform retrieval at the image level with pre-

computed context features while others perform it either at

the pixel or superpixel level.

MIT ADE20K Dataset. We first validate our methods on

the recently published MIT ADE20K dataset [35]. The

dataset consists of 20,000 image in the train set and 2,000

images in the validation set. There are total 150 semantic

classes, in which 35 classes belong to stuff classes, and 115

classes belong to things classes. The dataset is considered

as one of the most challenging scene parsing datasets due to

its scene variety and numerous annotated object instances.

We first train the global context network on the train set

with Ka as 10 to retrieve positive pairs. The negative pairs

are sampled with the strategy mentioned in Section 4 where

N is set to 10000. The spatial and global prior is generated

with the nearest neighbor parameter Kp as 5 and spatial grid

50× 50. We compare our method with several state-of-the-

art models: FCN [20], DilatedNet [32], DeepLab [3] and

the cascade model presented along with the dataset [35]. We

show the performance comparison in Table 3. By applying

the feature encoding and the prior encoding on the FCN-

8s model, we get 3.09% and 3.53% mean-IU improvement,

respectively. We also apply our modules on the DeepLab

model [3] based on ResNet-101 [10]. By applying the fea-

ture encoding, we have 3.12% mean-IU improvement over

the baseline. Prior encoding brings similar improvement

with 3.42% difference. We also combine both modules and

perform joint training and achieve 38.37% mean-IU with

4.43% improvement over the baseline model. We also show

the qualitative comparison of our modules in Figure 7. In

addition, if we define the most frequent 30 classes as the

common classes and the rest of them as the rare classes,

the average improvement of mean IU is 3.13% for com-

mon classes and 4.64% for rare classes. This shows that our

Table 3. Results on the MIT ADE20k validation set.

Methods Pixel Accuracy Mean IU

FCN-8s [35] 71.32 29.39

DilatedNet [35] 73.55 32.31

Cascade-DilatedNet [35] 74.52 34.9

FCN-8s + Feature 74.47 32.48

FCN-8s + Prior 75.00 32.92

DeepLab [3] 75.80 33.94

DeepLab + Feature 77.47 37.06

DeepLab + Prior 77.94 37.46

DeepLab + Feature + Prior 77.76 38.37

Table 4. Results on the PASCAL-Context validation set.

Methods Pixel Accuracy Mean IU

O2P [2] N/A 18.1

CFM [7] N/A 34.4

FCN-8s [20] N/A 37.78

CRF-RNN [34] N/A 39.28

BoxSup [6] N/A 40.5

HO CRF [28] N/A 41.3

DeepLab 71.57 44.38

DeepLab + Feature + Prior 73.80 46.52

method can improve both common and rare classes without

sacrificing the other.

PASCAL Context Dataset. We also evaluate our method

on the PASCAL Context dataset [21]. It consists of 60

classes with 4998 images in the train set and 5105 images

in the val set. The performance comparison is shown in Ta-

ble 4. We apply both global context feature encoding and

prior encoding on top of the baseline model. Different from

the models on the MIT ADE20k dataset, we generate the

spatial and global prior information on both stuff and things

classes. Both the baseline and our models are trained 20000

iterations with batch size 10. Our method achieves 73.80%
pixel accuracy and 46.52% mean IU, which has the favor-

able performance against state-of-the-art methods.

8. Conclusion
We present a novel scene parsing system that exploits the

global context embedding representation. Through learn-

ing from the scene similarity, we generate a global context

representation for each image to aid the segmentation net-

work. We show that the proposed algorithm, which consists

of feature encoding and non-parametric prior encoding, can

be applied to most state-of-the-art segmentation networks.

Based on the proposed method, we achieve significant im-

provement on both the challenging MIT ADE20K dataset

and the PASCAL Context dataset.
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