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Abstract

We propose a novel framework for abnormal event de-

tection in video that requires no training sequences. Our

framework is based on unmasking, a technique previously

used for authorship verification in text documents, which

we adapt to our task. We iteratively train a binary classi-

fier to distinguish between two consecutive video sequences

while removing at each step the most discriminant features.

Higher training accuracy rates of the intermediately ob-

tained classifiers represent abnormal events. To the best

of our knowledge, this is the first work to apply unmask-

ing for a computer vision task. We compare our method

with several state-of-the-art supervised and unsupervised

methods on four benchmark data sets. The empirical results

indicate that our abnormal event detection framework can

achieve state-of-the-art results, while running in real-time

at 20 frames per second.

1. Introduction

Abnormal event detection in video is a challenging task

in computer vision, as the definition of what an abnormal

event looks like depends very much on the context. For in-

stance, a car driving by on the street is regarded as a normal

event, but if the car enters a pedestrian area, this is regarded

as an abnormal event. A person running on a sports court

(normal event) versus running outside from a bank (abnor-

mal event) is another example. Although what is considered

abnormal depends on the context, we can generally agree

that abnormal events should be unexpected events [10] that

occur less often than familiar (normal) events. As it is gen-

erally impossible to find a sufficiently representative set of

anomalies, the use of traditional supervised learning meth-

ods is usually ruled out. Hence, most abnormal event de-

tection approaches [2, 4, 11, 14, 15, 16, 17, 26, 28] learn

a model of familiarity from a given training video and la-

bel events as abnormal if they deviate from the model. In

this paper, we consider an even more challenging setting,

in which no additional training sequences are available [6].

As in this setting we cannot build a model in advance and

find deviations from it, our approach is completely unsu-

pervised, as we briefly explain next. Our method labels

Figure 1. Our anomaly detection framework based on unmask-

ing [12]. The steps are processed in sequential order from (A)

to (H). Best viewed in color.

a short-lasting event as abnormal if the amount of change

from the immediately preceding event is substantially large.

We quantify the change as the training accuracy of a linear

classifier applied on a sliding window that comprises both

the preceding and the currently examined event, as illus-

trated in Figure 1. We consider that the first half of the

window frames are labeled as normal and take them as ref-

erence. We suppose the second half are labeled as abnor-

mal, but we seek to find if this hypothesis is indeed true.

We extract both motion and appearance features from the

frames, and train a binary classifier with high regulariza-
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tion to distinguish between the labeled frames. We retain

the training accuracy of the classifier and repeat the training

process by eliminating some of the best features. This pro-

cess is known as unmasking [12] and it was previously used

for authorship verification of text documents. To the best

of our knowledge, we are the first to apply unmasking for a

computer vision task. After a certain number of iterations

with unmasking, we can build a profile (plot) with the col-

lected accuracy rates in order to assess if the current event,

represented by the second half of the frames, does contain

enough changes to consider it abnormal. Intuitively, if the

change is significant, the classification accuracy should stay

high even after eliminating a certain amount of discrimi-

nating features. Otherwise, the accuracy should drop much

faster as the discriminating features get eliminated, since the

classifier will have a hard time separating two consecutive

normal events. We estimate the accuracy profile obtained

by unmasking with the mean of the accuracy rates, and con-

sider the mean value to represent the anomaly score of the

frames belonging to the current event.

We perform abnormal event detection experiments on

the Avenue [15], the Subway [1], the UCSD [16] and the

UMN [17] data sets in order to compare our unsupervised

approach with a state-of-the-art unsupervised method [6] as

well as several supervised methods [5, 11, 15, 16, 17, 18,

20, 22, 26, 27]. The empirical results indicate that we ob-

tain better results than the unsupervised approach [6] and,

on individual data sets, we reach or even surpass the accu-

racy levels of some supervised methods [5, 11, 15, 17]. Un-

like the approach of [6], our method can process the video

in real-time at 20 frames per second.

We organize the paper as follows. We present related

work on abnormal event detection in Section 2. We de-

scribe our unsupervised learning framework in Section 3.

We present the abnormal event detection experiments in

Section 4. Finally, we draw our conclusions in Section 5.

2. Related Work

Abnormal event detection is usually formalized as an

outlier detection task [2, 4, 5, 7, 11, 14, 15, 16, 17, 18,

22, 26, 27, 28], in which the general approach is to learn

a model of normality from training data and consider the

detected outliers as abnormal events. Some abnormal event

detection approaches [4, 5, 7, 15, 18] are based on learning

a dictionary of normal events, and label the events not rep-

resented by the dictionary as abnormal. Other approaches

have employed deep features [26] or locality sensitive hash-

ing filters [27] to achieve better results.

There have been some approaches that employ unsuper-

vised steps for abnormal event detection [7, 18, 22, 26], but

these approaches are not fully unsupervised. The approach

presented in [7] is to build a model of familiar events from

training data and incrementally update the model in an un-

supervised manner as new patterns are observed in the test

data. In a similar fashion, Sun et al. [22] train a Growing

Neural Gas model starting from training videos and con-

tinue the training process as they analyze the test videos for

anomaly detection. Ren et al. [18] use an unsupervised ap-

proach, spectral clustering, to build a dictionary of atoms,

each representing one type of normal behavior. Their ap-

proach requires training videos of normal events to con-

struct the dictionary. Xu et al. [26] use Stacked Denois-

ing Auto-Encoders to learn deep feature representations in

a unsupervised way. However, they still employ multiple

one-class SVM models to predict the anomaly scores.

To the best of our knowledge, the only work that does

not require any kind of training data for abnormal event de-

tection is [6]. The approach proposed in [6] is to detect

changes on a sequence of data from the video to see which

frames are distinguishable from all the previous frames. As

the authors want to build an approach independent of tem-

poral ordering, they create shuffles of the data by permuting

the frames before running each instance of the change de-

tection. Our framework is most closely related to [6], but

there are several key differences that put a significant gap

between the two approaches. An important difference is

that our framework is designed to process the video online,

as expected for practical real-world applications. Since the

approach of Del Giorno et al. [6] needs to permute the test

video frames before making a decision, the test video can

only be processed offline. As they discriminate between

the frames in a short window and all the frames that pre-

cede the window, their classifier will require increasingly

longer training times as the considered window reaches the

end of the test video. In our case, the linear classifier re-

quires about the same training time in every location of the

video, as it only needs to discriminate between the first half

of the frames and the second half of the frames within the

current window. Moreover, we train our classifier in several

loops by employing the unmasking technique. Del Giorno

et al. [6] use the same motion features as [15]. We also use

spatio-temporal cubes [15] to represent motion, but we re-

move the Principal Component Analysis (PCA) step for two

reasons. First of all, we need as many features as we can get

for the unmasking technique which requires more features

to begin with. Second of all, training data is required to

learn the PCA projection. Different from [6], we addition-

ally use appearance features from pre-trained convolutional

neural networks [3]. With all these distinct characteristics,

our framework is able to obtain better performance in terms

of accuracy and time, as shown in Section 4.

3. Method

We propose an abnormal event detection framework

based on unmasking, that requires no training data. Our

anomaly detection framework is comprised of eight major
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steps, which are indexed from A to H in Figure 1. We next

provide an overview of our approach, leaving the additional

details about the non-trivial steps for later. We first apply a

sliding window algorithm (step A) and, for each window of

2 ·w frames (step B), we suppose that the first w frames are

normal and the last w frames are abnormal (step C). After

extracting motion or appearance features (step D), we apply

unmasking (steps E to G) by training a classifier and remov-

ing the highly weighted features for a number of k loops.

We take the accuracy rates after each loop (step F) and build

the accuracy profile of the current window (step G). Abnor-

mal events correspond to high (almost constant) accuracy

profiles (depicted in red), while normal events correspond

to dropping accuracy profiles (depicted in blue). We com-

pute the anomaly score for the last w frames as the mean of

the retained accuracy rates (step H).

For the sake of simplicity, there are several important as-

pects that are purposely left out in Figure 1. First of all,

we divide the frames into 2 × 2 spatial bins, thus obtain-

ing four sub-videos, which we process individually through

our detection framework until step G. Hence, for each video

frame, we produce four anomaly scores, having one score

per bin. Before step H, we assign the score of each frame

as the maximum of the four anomaly scores corresponding

to the 2 × 2 bins. Second of all, we apply the framework

independently using motion features on one hand and ap-

pearance features on the other. For each kind of features,

we divide the video into 2 × 2 bins and obtain a single

anomaly score per frame as detailed above. To combine

the anomaly scores from motion and appearance features,

we employ a late fusion strategy by averaging the scores

for each frame, in step H. Third of all, we take windows at

a predefined interval s (stride), where the choice of s can

generate overlapping windows (e.g. s = 1 and w = 10). In

this situation, the score of a frame is obtained by averaging

the anomaly scores obtained after processing every sepa-

rate window that includes the respective frame in its second

half. We apply a Gaussian filter to temporally smooth the fi-

nal anomaly scores. We present additional details about the

motion and appearance features (step D) in Section 3.1, and

about the unmasking approach (steps E to G) in Section 3.2.

3.1. Features

Unlike other approaches [4, 26], we apply the same steps

in order to extract motion and appearance features from

video, irrespective of the data set.

Motion features. Given the input video, we resize all

frames to 160 × 120 pixels and uniformly partition each

frame to a set of non-overlapping 10 × 10 patches. Cor-

responding patches in 5 consecutive frames are stacked to-

gether to form a spatio-temporal cube, each with resolution

10 × 10 × 5. We then compute 3D gradient features on

each spatio-temporal cube and normalize the resulted fea-

ture vectors using the L2-norm. To represent motion, we

essentially employ the same approach as [6, 15], but with-

out reducing the feature vector dimension from 500 to 100

components via PCA. This enables us to keep more features

for unmasking. Since unmasking is about gradually elimi-

nating the discriminant features, it requires more features to

begin with. As [6, 15], we eliminate the cubes that have no

motion gradients (the video is static in the respective loca-

tion). We divide the frames into 2×2 spatial bins of 80×60

pixels each, obtaining at most 48 cubes per bin. Bins are in-

dividually processed through our detection framework. It

is important to mention that each spatio-temporal cube is

treated as an example in step E (Figure 1) of our frame-

work. Although we classify spatio-temporal cubes as [6],

we assign the anomaly score to the frames, not the cubes.

Appearance features. In many computer vision tasks, for

instance predicting image difficulty [9], higher level fea-

tures, such as the ones learned with convolutional neural

networks (CNN) [13] are the most effective. To build our

appearance features, we consider a pre-trained CNN ar-

chitecture able to process the frames as fast as possible,

namely VGG-f [3]. Considering that we want our detec-

tion framework to work in real-time on a standard desktop

computer, not equipped with expensive GPU, the VGG-f [3]

is an excellent choice as it can process about 20 frames per

second on CPU. We hereby note that better anomaly de-

tection performance can probably be achieved by employ-

ing deeper CNN architectures, such as VGG-verydeep [21],

GoogLeNet [23] or ResNet [8].

The VGG-f model is trained on the ILSVRC bench-

mark [19]. It is important to note that fine-tuning the CNN

for our task is not possible, as we are not allowed to use

training data in our unsupervised setting. Hence, we simply

use the pre-trained CNN to extract deep features as follows.

Given the input video, we resize the frames to 224 × 224

pixels. We then subtract the mean imagine from each frame

and provide it as input to the VGG-f model. We remove

the fully-connected layers (identified as fc6, fc7 and soft-

max) and consider the activation maps of the last convolu-

tional layer (conv5) as appearance features. While the fully-

connected layers are adapted for object recognition, the last

convolutional layer contains valuable appearance and pose

information which is more useful for our anomaly detection

task. Ideally, we would like to have at least slightly different

representations for a person walking versus a person run-

ning. From the conv5 layer, we obtain 256 activation maps,

each of 13×13 pixels. As for the motion features, we divide

the activation maps into 2 × 2 spatial bins of 7 × 7 pixels

each, such that the bins have a one-pixel overlap towards the

center of the activation map. For each bin, we reshape the

bins into 49 dimensional vectors and concatenate the vec-

tors corresponding to the 256 filters of the conv5 layer into

a single feature vector of 12544 (7× 7× 256) components.
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The final feature vectors are normalized using the L2-norm.

3.2. Change Detection by Unmasking

The unmasking technique [12] is based on testing the

degradation rate of the cross-validation accuracy of learned

models, as the best features are iteratively dropped from

the learning process. Koppel et al. [12] offer evidence that

this unsupervised technique can solve the authorship veri-

fication problem with very high accuracy. We modify the

original unmasking technique by considering the training

accuracy instead of the cross-validation accuracy, in order

to use this approach for online abnormal event detection in

video. We apply unmasking for each window of 2·w frames

at a stride s, where w and s are some input parameters of

our framework. Our aim is to examine if the last w frames

in a given window represent an abnormal event or not. To

achieve this purpose, we compare them with the first w (ref-

erence) frames in the window. We assume that the first w

frames are labeled as normal and the last w frames are la-

beled as abnormal, and train a linear classifier to distinguish

between them. By training a classifier without unmasking,

we would only be able to determine if the first half of the

window is distinguishable from the second half. Judging

by the classifier’s accuracy rate, we may consider that the

last w frames are abnormal if the accuracy is high and nor-

mal if the accuracy is low. This is essentially the underly-

ing hypothesis of [6], with the difference that they assume

all preceding frames (from the entire test video) as normal.

Nevetheless, we consider only the immediately preceding w

frames as reference for our algorithm to run in real-time. As

the number of normal (reference) samples is much lower,

the classifier might often distinguish two normal events with

high accuracy, which is not desired. Our main hypothesis is

that if two consecutive events are normal, then whatever dif-

ferences there are between them will be reflected in only a

relatively small number of features, despite possible differ-

ences in motion and appearance. Therefore, we need to ap-

ply unmasking in order to determine how large is the depth

of difference between the two events. Similar to [6], we

train a Logistic Regression classifier with high regulariza-

tion. Different from [6], we eliminate the m best features

and repeat the training for a number of k loops, where m

and k are some input parameters of our framework. As the

most discriminant features are gradually eliminated, it will

be increasingly more difficult for the linear classifier to dis-

tinguish the reference examples, that belong to the first half

of the window, from the examined examples, that belong

to the second half. However, if the training accuracy rate

over the k loops drops suddenly, we consider that the last

w frames are normal according to our hypothesis. On the

other hand, if the accuracy trend is to drop slowly, we con-

sider that the analyzed frames are abnormal. Both kinds of

accuracy profiles are shown in step G of Figure 1 for illus-

trative purposes, but, in practice, we actually obtain a single

accuracy profile for a given window. In the end, we average

the training accuracy rates over the k loops and consider the

average value to represent the degree of anomaly of the last

w frames in the window. We thus assign the same anomaly

score to all the examined frames. It is interesting to note

that Del Giorno et al. [6] consider the probability that an

example belongs to the abnormal class, hence assigning a

different score to each example.

4. Experiments

4.1. Data Sets

We show abnormal event detection results on four data

sets. It is important to note that we use only the test videos

from each data set, and perform anomaly detection without

using the training videos to build a model of normality.

Avenue. We first consider the Avenue data set [15], which

contains 16 training and 21 test videos. In total, there are

15328 frames in the training set and 15324 frames in the test

set. Each frame is 640 × 360 pixels. Locations of anoma-

lies are annotated in ground truth pixel-level masks for each

frame in the testing videos.

Subway. One of the largest data sets for anomaly detection

in video is the Subway surveillance data set [1]. It con-

tains two videos, one of 96 minutes (Entrance gate) and

another one of 43 minutes (Exit gate). The Entrance gate

video contains 144251 frames and the Exit gate video con-

tains 64903 frames, each with 512×384 resolution. Abnor-

mal events are labeled at the frame level. In some previous

works [15, 27], the first 15 minutes (22500 frames) in both

videos are kept for training, although others [4] have used

more than half of the video for training.

UCSD. The UCSD Pedestrian data set [16] is perhaps one

of the most challenging anomaly detection data sets. It

includes two subsets, namely Ped1 and Ped2. Ped1 con-

tains 34 training and 36 test videos with a frame resolu-

tion of 238 × 158 pixels. There are 6800 frames for train-

ing and 7200 for testing. Pixel-level anomaly labels are

provided for only 10 test videos in Ped1. All the 36 test

videos are annotated at the frame-level. Ped2 contains 16

training and 12 test videos, and the frame resolution is

360 × 240 pixels. There are 2550 frames for training and

2010 for testing. Although Ped2 contains pixel-level as

well as frame-level annotations for all the test videos, most

previous works [5, 15, 18, 26, 27] have reported the pixel-

level performance only for Ped1. The videos illustrate var-

ious crowded scenes, and anomalies are bicycles, vehicles,

skateboarders and wheelchairs crossing pedestrian areas.

UMN. The UMN Unusual Crowd Activity data set [17]

consists of three different crowded scenes, each with 1453,

4144, and 2144 frames, respectively. The resolution of each

frame is 320 × 240 pixels. In the normal settings people

walk around in the scene, and the abnormal behavior is de-
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Features Bins Unmasking Stride Frame AUC Pixel AUC Feature Extraction Prediction

Time (FPS) Time (FPS)

VGG-f fc7 1× 1 no 1 78.3% 95.0% 21.4 376.2

VGG-f fc6 1× 1 no 1 78.4% 95.0% 20.7 376.3

VGG-f conv5 1× 1 no 1 78.6% 95.0% 20.1 59.8

VGG-f conv5 1× 1 yes 1 81.1% 95.3% 20.1 9.8

VGG-f conv5 2× 2 yes 1 82.5% 95.4% 20.1 9.4

VGG-f conv5 2× 2 yes 2 82.5% 95.4% 20.1 18.3

VGG-f conv5 2× 2 yes 5 82.4% 95.4% 20.1 42.2

VGG-f conv5 2× 2 yes 10 82.0% 95.3% 20.1 78.1

3D gradients 2× 2 yes 5 79.8% 95.1% 726.3 34.9

3D gradients + conv5 (late fusion) 2× 2 yes 5 82.6% 95.4% 19.6 19.3

Table 1. Abnormal event detection results using various features, bins and window strides in our framework. The frame-level and the

pixel-level AUC measures are computed on five test videos randomly chosen from the Avenue data set. For all models, the window size

is 10 and the regularization parameter is 0.1. The number of frames per second (FPS) is computed by running the models on a computer

with Intel Core i7 2.3 GHz processor and 8 GB of RAM using a single core.

fined as people running in all directions.

4.2. Evaluation

We employ ROC curves and the corresponding area un-

der the curve (AUC) as the evaluation metric, computed

with respect to ground truth frame-level annotations, and,

when available (Avenue and UCSD), pixel-level annota-

tions. We define the frame-level and pixel-level AUC

as [5, 6, 15, 16] and others. At the frame-level, a frame

is considered a correct detection if it contains at least one

abnormal pixel. At the pixel-level, the corresponding frame

is considered as being correctly detected if more than 40%

of truly anomalous pixels are detected. We use the same

approach as [6, 15] to compute the pixel-level AUC. The

frame-level scores produced by our framework are assigned

to the corresponding spatio-temporal cubes. The results

are smoothed with the same filter used by [6, 15] in order

to obtain our final pixel-level detections. Although many

works [5, 7, 15, 16, 26, 27] include the Equal Error Rate

(EER) as evaluation metric, we agree with [6] that metrics

such as the EER can be misleading in a realistic anomaly

detection setting, in which abnormal events are expected to

be very rare. Thus, we do not use the EER in our evaluation.

4.3. Implementation Details

We extract motion and appearance features from the

test video sequences. We use the code available online at

https://alliedel.github.io/anomalydetection/ to compute the

3D motion gradients. For the appearance features, we con-

sider the pre-trained VGG-f [3] model provided in MatCon-

vNet [25]. To detect changes, we employ the Logistic Re-

gression implementation from VLFeat [24]. In all the ex-

periments, we set the regularization parameter of Logistic

Regression to 0.1, and we use the same window size as [6],

namely w = 10. We use the same parameters for both mo-

tion and appearance features.

In Table 1, we present preliminary results on five test

videos from the Avenue data set to motivate our parameter

and implementation choices. Regarding the CNN features,

we show that slightly better results can be obtained with the

conv5 features rather than the fc6 or fc7 features. An im-

provement of 2.5% is obtained when we include unmask-

ing. In the unmasking procedure, we use k = 10 loops

and eliminate the best m = 50 features (top 25 weighted

as positive and top 25 weighted as negative). A perfor-

mance gain of 1.4% can also be achieved when we divide

the frames into 2 × 2 bins instead of processing the entire

frames. As for the stride, we present results with choices for

s ∈ {1, 2, 5, 10}. The time increases as we apply unmask-

ing and spatial bins, but we can compensate by increasing

the stride. We can observe that strides up to 10 frames do

not imply a considerable decrease in terms of frame-level or

pixel-level AUC. Thus, we can set the stride to 5 for an op-

timal trade-off between accuracy and speed. We show that

very good results can also be obtained with motion features.

In the end, we combine the two kinds of features and reach

our best frame-level AUC (82.6%). For the speed evalua-

tion, we independently measure the time required to extract

features and the time required to predict the anomaly scores

on a computer with Intel Core i7 2.3 GHz processor and 8

GB of RAM using a single core. We present the number

of frames per second (FPS) in Table 1. Using two cores,

one for feature extraction and one for change detection by

unmasking, our final model is able to process the videos at

nearly 20 FPS. For the rest of the experiments, we show re-

sults with both kinds of features using a stride of 5 and bins

of 2× 2, and perform change detection by unmasking.

4.4. Results on the Avenue Data Set

We first compare our unmasking framework based on

several types of features with an unsupervised approach [6]

as well as a supervised one [15]. The frame-level and pixel-

level AUC metrics computed on the Avenue data set are pre-

sented in Table 2. Compared to the state-of-the-art unsuper-
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Method Frame AUC Pixel AUC

Lu et al. [15] 80.9% 92.9%

Del Giorno et al. [6] 78.3% 91.0%

Ours (conv5) 80.5% 92.9%

Ours (3D gradients) 80.1% 93.0%

Ours (late fusion) 80.6% 93.0%

Table 2. Abnormal event detection results in terms of frame-level

and pixel-level AUC on the Avenue data set. Our unmasking

framework is compared with a state-of-the-art unsupervised ap-

proach [6] as well as a supervised one [15].

Figure 2. Frame-level anomaly detection scores (between 0 and 1)

provided by our unmasking framework based on the late fusion

strategy, for test video 4 in the Avenue data set. The video has 947

frames. Ground-truth abnormal events are represented in cyan,

and our scores are illustrated in red. Best viewed in color.

Figure 3. True positive (top row) versus false positive (bottom row)

detections of our unmasking framework based on the late fusion

strategy. Examples are selected from the Avenue data set. Best

viewed in color.

vised method [6], our framework brings an improvement of

2.3%, in terms of frame-level AUC, and an improvement

of 2.0%, in terms of pixel-level AUC. The results are even

more impressive, considering that our framework processes

the video online, while the approach proposed in [6] works

only in offline mode. Moreover, our frame-level and pixel-

level AUC scores reach about the same level as the super-

vised method [15]. Overall, our results on the Avenue data

set are noteworthy.

Figure 2 illustrates the frame-level anomaly scores, for

test video 4 in the Avenue data set, produced by our un-

masking framework based on combining motion and ap-

pearance features using a late fusion strategy. According

to the ground-truth anomaly labels, there are two abnormal

events in this video. In Figure 2, we notice that our scores

correlate well to the ground-truth labels, and we can eas-

ily identify both abnormal events by setting a threshold of

around 0.5, without including any false positive detections.

Method Frame AUC

Entrance gate Exit gate

Cong et al. [5] 80.0% 83.0%

Del Giorno et al. [6] 69.1% 82.4%

Ours (conv5) 69.5% 84.7%

Ours (3D gradients) 71.3% 86.3%

Ours (late fusion) 70.6% 85.7%

Table 3. Abnormal event detection results in terms of frame-level

AUC on the Subway data set. Our unmasking framework is com-

pared with a state-of-the-art unsupervised approach [6] as well as

a supervised one [5].

Figure 4. True positive (top row) versus false positive (bottom row)

detections of our unmasking framework based on the late fusion

strategy. Examples are selected from the Subway Entrance gate.

Best viewed in color.

However, using this threshold there are some false positive

detections on other test videos from the Avenue data set. We

show some examples of true positive and false positive de-

tections in Figure 3. The true positive abnormal events are

a person running and a person throwing an object, while

false positive detections are a person holding a large object

and a person sitting on the ground.

4.5. Results on the Subway Data Set

On the Subway data set, we compare our unmasking

framework with two approaches, an unsupervised one [6]

and a supervised one [5]. The comparative results are pre-

sented in Table 3. On this data set, we generally obtain

better results by using motion features rather than appear-

ance features. Our late fusion strategy is not able to bring

any improvements. Nevertheless, for each and every type

of features, we obtain better results than the state-of-the-art

unsupervised approach [6]. When we combine the features,

our improvements are 1.5% on the Entrance gate video and

3.3% on the Exit gate video. Remarkably, we even obtain

better results than the supervised method [5] on the Exit

gate video. On the other hand, our unsupervised approach,

as well as the approach of Del Giorno et al. [6], obtains

much lower results on the Entrance gate video.

Although there are many works that used the Subway

data set in the experiments [4, 5, 7, 15, 27], most of these

works [7, 15, 27] did not use the frame-level AUC as eval-

uation metric. Therefore, we excluded these works from
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Method Ped1 Ped2

Frame Pixel Frame

AUC AUC AUC

Kim et al. [11] 59.0% 20.5% 69.3%

Mehran et al. [17] 67.5% 19.7% 55.6%

Mahadevan et al. [16] 81.8% 44.1% 82.9%

Cong et al. [5] - 46.1% -

Saligrama et al. [20] 92.7% - -

Lu et al. [15] 91.8% 63.8% -

Ren et al. [18] 70.7% 56.2% -

Xu et al. [26] 92.1% 67.2% 90.8%

Zhang et al. [27] 87.0% 77.0% 91.0%

Sun et al. [22] 93.8% 65.1% 94.1%

Ours (conv5) 68.4% 52.5% 82.1%

Ours (3D gradients) 67.8% 52.3% 81.3%

Ours (late fusion) 68.4% 52.4% 82.2%

Table 4. Abnormal event detection results in terms of frame-level

and pixel-level AUC on the UCSD data set. Our unmasking frame-

work is compared with several state-of-the-art supervised meth-

ods [5, 11, 15, 16, 17, 18, 20, 22, 26, 27].

our comparison presented in Table 3. However, there is a

recent work [4] that provides the frame-level AUC, but it

uses only 47% of the Entrance gate video for testing. For

a fair comparison, we evaluated our unmasking framework

based on the late fusion strategy in their setting, and ob-

tained a frame-level AUC of 78.1%. Our score is nearly

14.6% lower than the score of 92.7% reported in [4], con-

firming that there is indeed a significant performance gap

between supervised and unsupervised methods on the En-

trance gate video. Nevertheless, in Figure 4, we can observe

some interesting qualitative results obtained by our frame-

work on the Entrance gate video. The true positive abnor-

mal events are a person sidestepping the gate and a person

jumping over the gate, while false positive detections are

two persons walking synchronously and a person running

to catch the train.

4.6. Results on the UCSD Data Set

Del Giorno et al. [6] have excluded the UCSD data set

from their experiments because nearly half of the frames

in each test video contain anomalies, and, they expect ab-

normal events to be rare in their setting. Although we be-

lieve that our approach would perform optimally in a sim-

ilar setting, we still compare our unsupervised approach

with several state-of-the-art methods that require training

data [5, 11, 15, 16, 17, 18, 20, 22, 26, 27]. In Table 4,

we present the frame-level and pixel-level AUC for Ped1,

and the frame-level AUC for Ped2. In terms of frame-level

AUC, we obtain better results than two supervised meth-

ods [11, 17]. In terms of pixel-level AUC, we obtain better

results than four methods [5, 11, 16, 17]. On Ped1, our

results are only 3 or 4% lower than to those reported by

Ren et al. [18], while more recent supervised approaches

achieve much better results [22, 27]. As most of the previ-

Figure 5. Frame-level ROC curves of our framework versus [11,

15, 16, 17, 26, 27] on UCSD Ped1. Best viewed in color.

Figure 6. Pixel-level ROC curves of our framework versus [5, 11,

15, 16, 17, 26, 27] on UCSD Ped1. Best viewed in color.

Figure 7. True positive (top row) versus false positive (bottom row)

detections of our unmasking framework based on the late fusion

strategy. Examples are selected from the UCSD data set. Best

viewed in color.

ous works, we have included the frame-level and pixel-level

ROC curves for Ped1, to give the means for a thorough com-

parison with other approaches. Figure 5 shows the frame-

level ROC corresponding to the frame-level AUC of 68.4%

reached by our unmasking framework based on late fusion,

while Figure 6 shows the pixel-level ROC corresponding to

the pixel-level AUC of 52.4% obtained with the same con-
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Method Frame AUC

Scene All

1 2 3 scenes

Mehran et al. [17] - - - 96.0%

Cong et al. [5] 99.5% 97.5% 96.4% 97.8%

Saligrama et al. [20] - - - 98.5%

Zhang et al. [27] 99.2% 98.3% 98.7% 98.7%

Sun et al. [22] 99.8% 99.3% 99.9% 99.7%

Del Giorno et al. [6] - - - 91.0%

Ours (conv5) 98.9% 86.5% 98.5% 94.5%

Ours (3D gradients) 99.7% 84.9% 97.4% 94.0%

Ours (late fusion) 99.3% 87.7% 98.2% 95.1%

Table 5. Abnormal event detection results in terms of frame-level

AUC on the UMN data set. Our unmasking framework is com-

pared with several state-of-the-art supervised methods [5, 17, 20,

22, 27] as well as an unsupervised approach [6].

Figure 8. Frame-level anomaly detection scores (between 0 and 1)

provided by our unmasking framework based on the late fusion

strategy, for the first scene in the UMN data set. The video has

1453 frames. Ground-truth abnormal events are represented in

cyan, and our scores are illustrated in red. Best viewed in color.

Figure 9. True positive (top row) versus false positive (bottom row)

detections of our unmasking framework based on the late fusion

strategy. Examples are selected from the UMN data set. Best

viewed in color.

figuration for our approach. Some qualitative results of our

unsupervised framework based on late fusion are illustrated

in Figure 7. The true positive abnormal events are a car

intruding a pedestrian area and a bicycle rider intruding a

pedestrian area, while false positive detections are a bicy-

cle rider and two persons walking synchronously and two

persons walking in opposite directions.

4.7. Results on the UMN Data Set

On the UMN data set, we compare our unmasking

framework with a state-of-the-art unsupervised method [6]

and several supervised ones [5, 17, 20, 22, 27]. In Table 5,

we present the frame-level AUC score for each individual

scene, as well as the average score for all the three scenes.

Compared to the unsupervised approach of Del Giorno et

al. [6], we obtain an improvement of 4.1%. On the first

scene, our performance is on par with the supervised ap-

proaches [5, 22, 27]. As illustrated in Figure 8, our ap-

proach is able to correctly identify the two abnormal events

in the first scene without any false positives, by applying a

threshold of around 0.5. On the last scene, the performance

of our unmasking framework based on late fusion is less

than 2% lower than the best supervised approach [22]. Fur-

thermore, we are able to surpass the performance reported

in [5] for the third scene, by 1.8%. Our results are much

worse on the second scene. We believe that the changes

in illumination when people enter the room have a nega-

tive impact on our approach. The impact becomes more

noticeable when we employ motion features alone, as the

frame-level AUC is only 84.9%. Since the CNN features are

more robust to illumination variations, we obtain a frame-

level AUC of 86.5%. These observations are also applicable

when we analyze the false positive detections presented in

Figure 9. Indeed, the example in the bottom left corner of

Figure 9 illustrates that our method triggers a false detec-

tion when a significant amount of light enters the room as

the door opens. The true positive examples in Figure 9 rep-

resent people running around in all directions.

5. Conclusion and Future Work

In this work, we proposed a novel framework for abnor-

mal event detection in video that requires no training se-

quences. Our framework is based on unmasking [12], a

technique that has never been used in computer vision, as

far as we know. We have conducted abnormal event detec-

tion experiments on four data sets in order to compare our

approach with a state-of-the-art unsupervised approach [6]

and several supervised methods [5, 11, 15, 16, 17, 18, 20,

22, 26, 27]. The empirical results indicate that our approach

gives better performance than the unsupervised method [6]

and some of the supervised ones [5, 11, 17]. Unlike Del

Giorno et al. [6], we can process the video online, without

any accuracy degradation.

We have adopted a late fusion strategy to combine mo-

tion and appearance features, but we did not observe any

considerable improvements when using this strategy. In fu-

ture work, we aim at finding a better way of fusing motion

and appearance features. Alternatively, we could develop

an approach to train (unsupervised) deep features on a re-

lated task, e.g. action recognition, and use these features to

represent both motion and appearance information.
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