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Abstract

Video scene parsing is challenging due to the following

two reasons: firstly, it is non-trivial to learn meaningful

video representations for producing the temporally consis-

tent labeling map; secondly, such a learning process be-

comes more difficult with insufficient labeled video training

data. In this work, we propose a unified framework to ad-

dress the above two problems, which is to our knowledge

the first model to employ predictive feature learning in the

video scene parsing. The predictive feature learning is car-

ried out in two predictive tasks: frame prediction and pre-

dictive parsing. It is experimentally proved that the learned

predictive features in our model are able to significantly

enhance the video parsing performance by combining with

the standard image parsing network. Interestingly, the per-

formance gain brought by the predictive learning is almost

costless as the features are learned from a large amount

of unlabeled video data in an unsupervised way. Extensive

experiments over two challenging datasets, Cityscapes and

Camvid, have demonstrated the effectiveness of our model

by showing remarkable improvement over well-established

baselines.

1. Introduction

Video scene parsing aims to predict per-pixel semantic

labels for every frame in scene videos recorded in uncon-

strained environments. It has drawn increasing attention as

it benefits many important applications like drones naviga-

tion, autonomous driving and virtual reality.

In recent years, remarkable success has been made by

deep convolutional neural network (CNN) models in image

parsing tasks [3, 5, 22, 30, 31, 36, 47, 50, 18, 48]. Some

of the frame parsing models1are then proposed to be used

for parsing scene videos frame by frame. However, such

frame parsing models suffer from noisy and inconsistent la-

1For clarity, we use frame parsing model/network to indicate conven-

tional image parsing model/network which takes a single frame as input.
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Figure 1: Illustration of the proposed PEARL. PEARL solves the

video scene parsing problem through predictive feature learning

that includes frame prediction (yellow arrows) and predictive pars-

ing which learn temporal-aware features across frames to augment

image features (also learned in PEARL). PEARL produces accu-

rate and temporally consistent parsing results (top-right) compared

with standard frame parsing results (bottom-right).

beling results across frames, since the important temporal

context cues are ignored. For example, in the second row of

Figure 2, the top-left region of building in the frame T is in-

correctly classified as car, which is temporally inconsistent

with the parsing result of its preceding frames. More impor-

tantly, current CNN models are hungry for data and finely

annotated video data for training are rather labor-intensive

to collect and limited. Even in the very recent scene pars-

ing dataset Cityscapes [4], there are only 2,975 finely an-

notated training samples vs. overall 180,000 video frames.

Deep CNN models are prone to over-fitting when trained

using a small training data set and thus generalize badly in

real applications.

To tackle these two problems, we propose a novel

Parsing with prEdictive feAtuRe Learning (PEARL)

model, which is both annotation-efficient and effective for

the video scene parsing task. The basic idea of PEARL is

illustrated in Figure 1. Through predictive learning with

a GAN-like architecture, PEARL learns powerful temporal

representations to capture rich video dynamics as well as

high-level video contexts which are critical for video scene

parsing. By effectively utilizing the predictive features of

both semantic and temporal information, PEARL substan-
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Figure 2: Illustration of the working principle of PEARL on video scene parsing. Top: a five-frame sequence to be parsed. Second

row: frame parsing produced by the state-of-the-art image parsing model [3] which takes a single frame as input. Since such a model is

unable to model temporal context, severe noise and inconsistency across frames can be observed within the red boxes. Third row: results

from predictive parsing. The regions showing inconsistency in the second row are classified consistently across frames using the learned

predictive features. Besides, the motion trajectories of moving objects (cars) are correctly captured (see yellow boxes). Note for each

frame to be parsed, the input for predictive parsing is its preceding frames which are not fully presented for brevity. Bottom: labeling

maps produced by PEARL with better accuracy and temporal consistency. PEARL combines the advantages of conventional frame parsing

model (the second row) and predictive parsing (the third row).

tially improves the video scene parsing performance over

the standard frame parsing models. Attractively, our pre-

dictive learning process is annotation-efficient as it learns

features from unlabeled videos data which are nearly un-

limited. To the best of our knowledge, PEARL is the first

predictive learning model for the video scene parsing task.

To make the working principle clearer, we illustrate prac-

tical examples in Figure 2. Concretely, PEARL conducts

two complementary predictive learning phases for video

scene parsing. In phase I, as shown in the top row of Figure

2, given historical frames T -4 to T -1, PEARL learns to pre-

dict the future frame T using a GAN-like architecture. Such

a process enables PEARL to learn discriminative video rep-

resentations to capture rich temporal cues across frames.

In phase II, PEARL further adapts its predictive learning

component trained in phase I to the predictive parsing task,

i.e. predicting the labeling maps of annotated frames only

using their preceding frames. Through such a predictive

parsing task, PEARL injects semantic information to those

frame-prediction features learned in phase I, thus provid-

ing features more powerful for video scene parsing. At the

same time, we apply this predictive learning network to-

gether with a standard frame parsing network, which are

both end-to-end trained for video scene parsing. The predic-

tive learning network can provide powerful high-level tem-

poral representations to augment the standard frame-parsing

network which is unable to model temporal information in

videos. Consequently, the integrated model finally produces

more accurate and temporally consistent parsing results (as

shown in the bottom row of Figure 2).

We conduct extensive experiments on two challenging

scene parsing datasets and compare PEARL with strong

baselines built upon state-of-the-art VGG16 and Res101

image parsing models. Our model achieves the best results

on both datasets. We also compare PEARL with optical

flow methods. Extensive experiments demonstrate that it

can learn stronger video dynamics features than simple op-

tical flow and largely boost the performance of video scene

parsing without requiring extra supervision information.

To summarize, we make the following contributions to

video scene parsing:

• To the best of our knowledge, PEARL is the first sys-

tematic predictive learning model for video scene pars-

ing. The proposed model presents a strong ability

to learn temporal representations and high-level video

context from unlabeled video data.

• We develop an effective model to utilize the predictive
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learning features to produce temporally smooth and

structure preserving parsing maps for video frames.

• Our model achieves state-of-the-art performance on

two challenging datasets, i.e., Cityscapes and Camvid.

2. Related Work

Recent image scene parsing progress is mostly stim-

ulated by various new CNN architectures, including the

fully convolutional architecture (FCN) with multi-scale or

larger receptive fields [5, 22, 36, 49] and the combina-

tion of CNN with graphical models [3, 30, 48, 50, 31].

There are also some recurrent neural networks based mod-

els [12, 17, 28, 34, 41]. However, without incorporating

the temporal information, directly applying them to every

frame of a video leads to parsing results that commonly lack

cross-frame consistency.

To utilize temporal consistency across frames, the mo-

tion and structure features in 3D data are employed by [6,

37, 46]. In addition, [9, 14, 16, 25] use CRF to model tem-

poral context. However, those methods suffer from high

computation cost as they need to perform expensive infer-

ence of CRF. Some other methods [11, 32] employ optical

flow to capture the temporal consistency. Different from the

above works that heavily depend on labeled data for super-

vised learning, our proposed model takes advantage of both

the labeled and unlabeled video sequences to learn richer

temporal context information.

Generative adversarial networks are firstly introduced

in [8] to generate natural images from random noise, and

have been widely used in many fields including image syn-

thesis [8], future prediction [23, 26, 42, 43] and semantic

inpainting [27]. Our model also uses the adversarial loss

to learn more robust video representations in frame predic-

tions. Our model is more related to [23, 26, 24] which per-

forms frame prediction. However, different from [23, 26,

24], PEARL tackles the video scene parsing problem by uti-

lizing the temporal information learned in frame prediction.

3. Parsing with Predictive Feature Learning

PEARL aims to address two challenges in video scene

parsing: 1) how to learn effective video representations to

guarantee cross-frame smoothness and structure preserving

in parsing results; 2) how to build effective parsing models

even in presence of insufficient labeled training data.

PEARL solves these two problems through a novel pre-

dictive feature learning strategy. The predictive feature

learning is performed on partially labeled videos, which are

denoted as {X ,Y}, where X = {Xi, i = 1, . . . , N} de-

notes the raw video frames and Y = {Yj , j = 1, . . . ,M}
denotes the pixel-wise annotations for a subset of X . Here

M ≪ N as only a small portion of the video frames are

annotated. Yj(u, v) ∈ {1, · · · , C} denotes the ground truth
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Figure 3: The framework of our proposed parsing with predictive

feature learning model (PEARL). The core component is the novel

predictive learning network. There are two predictive learning

phases in PEARL, the working flows of which are highlighted in

red and blue, respectively. In phase I (red), the predictive learning

network (used as “G”) is pre-trained in the video frame prediction

under the GAN-like architecture [8]. In phase II, the predictive

learning network is transferred to the predictive parsing task and

jointly trained end-to-end with a standard frame parsing network.

The symbol ⊕ denotes “concatenation”.

class at pixel location (u, v) in which C is the number of

classes. Correspondingly, let X̂i and Ŷi denote predicted

frames and predicted labeling maps respectively. We use

P s
i = {Xi−k}

s
k=1 to denote the s preceding frames ahead

of Xi. For the first several frames in a video, we define their

preceding set as Xi−k = X1 if i ≤ k.

3.1. Model Overview

The framework of the proposed PEARL model is illus-

trated in Figure 3. The core component is the novel predic-

tive learning network. Abstractly, the predictive learning

network learns temporal representations through predicting

the pixel values or labeling maps of future frames. There

are two learning phases in PEARL (highlighted by red and

blue colors respectively). In phase I (unsupervised predic-

tive learning), we pre-train a predictive learning network

within a video frame prediction task to capture the variabil-

ity of content and dynamics of videos. This learning pro-

cess is performed in an unsupervised manner with the GAN-

like architecture. In phase II (predictive learning for video

scene parsing), the predictive learning network is further

trained to predict the labeling maps of future frames, and at

the same time used to augment the standard frame parsing

network to produce more accurate and temporally consis-

tent parsing results. To summarize, the predictive learning

network plays two important roles: on one hand, it learns
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meaningful temporal-aware features from unlabled video

data which addresses the problem of insufficient labeled

training data; on the other hand, the learned features convey

temporal context cues to the frame parsing network, thus

enabling PEARL to produce temporally consistent parsing

results on video frames.

3.2. Unsupervised Predictive Learning

In phase I, PEARL performs unsupervised predictive

learning in a video frame prediction task using a GAN-like

architecture which is highlighted in red in Figure 3. The

learning process involves two components, i.e., the predic-

tive learning network (which plays as the generator, denoted

as G) to produce frame prediction X̂i = G(P s
i ) based on

preceding video frames P s
i , and the discriminator (denoted

as D) which plays against G by identifying the predicted

frame X̂i and the real one Xi. The predictive learning net-

work first maps the input video sequence to temporal rep-

resentations via the feature encoder CNN1 which are then

spatially enlarged via up-sampling layers and finally fed to

a convolutional layer to produce the pixel-wise RGB val-

ues. Since deep CNNs, e.g. VGGNet [35] and ResNet [10]

are generally designed to take images as input, we adapt

them to video inputs by using group convolution [13] for the

first convolutional layer (thus no extra parameter is added),

where the group number is equal to that of input frames.

The predictive learning network G and D are alterna-
tively trained to predict frames. Denote the learnable pa-
rameters of D and G as WD and WG respectively. The
objective for training D is to classify the input Xi into class
1 and the input D(G(P s

i )) into class 0 while keeping WG

fixed. The loss function we use to train D is

min
WD

ℓD , − log(1−D(G(P s
i );WD))− logD(Xi;WD).

G learns to predict future frames that look both similar
to the corresponding real frame and sufficiently authentic to
fool the strong competitor D. The objective loss for training
G is the combination of reconstruction loss (the first term)
and adversarial loss (the second term) while keeping WD

fixed:

min
WG

ℓG = ‖Xj − X̂j‖2 − λadv logD(G(P s
i ;WG)). (1)

Note the GAN model used here is different from vanilla

GAN [8] and tailored for video scene parsing. The key dif-

ference lies in the generator G, i.e. the predictive learn-

ing network that takes the past frame sequence as tempo-

rally conditioned input, instead of crafting new samples

completely from random noise as vanilla GANs. There-

fore, such a temporally conditioned generator could gener-

ate temporally consistent future frames w.r.t. the input past

frames. More importantly, G can learn representations con-

taining temporal cues desired for solving video scene pars-

ing problems.

As illustrated in Figure 4, the predictive learning net-

 (Ground-truth) 4-T 3-T 2-T 1-T T Frame prediction 

Figure 4: Example frame predictions from the predictive learn-

ing network on Cityscapes val set. In each row, the first four im-

ages are input to the predictive learning network. The fifth image

(green) is the frame to be predicted. The last image is the predicted

frame.

work produces real-looking frame predictions by learning

both the content and dynamics in videos. By comparing

with the ground truth frames, the predictions resemble both

the structures of objects/stuff, e.g. building/vegetation and

the motion trajectories of objects, e.g. cars, demonstrating

that the predictive learning network learns robust and gen-

eralized temporal representations from video data.

In our experiments, we use a GoogLeNet [38] as D and

G is modified from Res101 or VGG16. They are all trained

from scratch using unlabeled video data. More details are

given in Sec. 4.1.

3.3. Predictive Learning for Video Scene Parsing

The above predictive learning network is then used to

augment the standard frame parsing network. To adapt the

features learned in phase I to video scene parsing problems,

we further adapt the predictive learning network to the pre-

dictive parsing task i.e., predicting the labeling map of Xi

which has pixel-wise annotations only given its preceding

frames P s
i .

As illustrated in Figure 3 (highlighted in blue), the pre-

dictive features output by CNN1 are integrated in PEARL

with a standard frame parsing network through a transform

layer (i.e. a shallow CNN). Such a frame parsing net-

work also consists of three components, a feature encoder

(CNN2) followed by up-sampling layers and the output con-

volutional layer. Through the transform layer, the predictive

learning network communicates its learned temporal repre-

sentations to the frame parsing network. Combining these

two types of features offers two appealing properties, i.e.,

descriptiveness for the temporal context in videos and dis-

criminability for local pixels within a single frame. Con-

sequently, PEARL is benefited from the predictive features

and the local discriminative features, and can produce more

accurate video scene parsing results.

Formally, the objective function of training PEARL is

defined as the summation of the loss (ℓP ) on the predictive

learning network and the loss (ℓI ) on the frame parsing net-

work:
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min
W,Φ

L = ℓI + λP ℓP , (2)

ℓI = −
∑

(u,v)∈Xj

fYj(u,v)(W,Xj , TP ), (3)

ℓP = −
∑

(p,q)∈Xj

hYj(u,v)(Φ, P
s
j ), (4)

where Φ and W denote the learnable parameters in the pre-

dictive learning network and the frame parsing network,

respectively. TP is the transformed feature output by the

transform layer. fYj(u,v)(·) and hYj(u,v)(·) denote the per-

pixel logarithmic probability on the ground-truth class pro-

duced by the frame parsing network and the predictive

learning network, respectively. In experiments, we use the

re-weighting strategy [34] which balances the effects of

those two networks.

Note that during the training of phase II, all parameters

except those in the output layer in the predictive learning

network are initialized from WG which is learned in the

unsupervised frame prediction phase (ref. to Eqn. (1)).

We observe that training Φ from scratch harms the per-

formance. The reasons are as follows: since there are no

enough data with pixel-wise annotations for training a good

model free from over-fitting, it cannot directly train the pre-

dictive learning network for the predictive parsing task from

scratch. Therefore, training the predictive learning network

for frame prediction at first gives a good starting model for

training PEARL in phase II.

Visualization of Predictive Parsing Results As shown

in Figure 2, compared with those from the frame parsing

network, the parsing maps from the predictive learning net-

work present two distinct properties. First, the labeling

maps are temporally smooth which are reflected in the pars-

ing results like the building region where the frame pars-

ing network produces noisy and inconsistent parsing results.

This demonstrates the predictive learning network indeed

learns the temporally continuous dynamics from the video

data. Secondly, the predictive learning network tends to

miss objects of small sizes, e.g., transport signs and poles,

which are captured by the frame parsing network due to

its relying on locally discriminative features. One reason

for missing small objects is the inevitable blurry prediction

[26] since the high frequency spectrum is prone to being

smoothed.

The Role of the Transform Layer Now we proceed to

explain the role of the transform layer. Compared with

naively combining the features from two networks (e.g.,

concatenation), the transform layer brings following two

advantages: 1) naturally normalize the feature maps to

proper scales; 2) align the features of semantic meaning

such that the integrated features are more powerful for pars-

ing. Effectiveness of this transform layer is clearly validated

in the ablation study in Section 4.2.1.

4. Experiments

In this section, we present the details and analysis the

results in our experiments. We conduct extensive ablation

studies to verify the effectiveness of PEARL. On both the

Cityscapes and Camvid dataset, PEARL achieves the state-

of-the-art performance.

4.1. Settings and Implementation Details

Datasets Since PEARL tackles the video scene pars-

ing problem which involves temporal context, we choose

Cityscapes [4] and Camvid [1] as evaluation benchmarks.

Both datasets provide densely annotated frames as well

as their adjacent frames, suitable for testing the tempo-

ral modeling ability. Cityscapes is a large-scale dataset

containing fine pixelwise annotations on 2,975/500/1,525
train/val/test frames with 19 semantic classes and another

20,000 coarsely annotated frames. Each finely annotated

frame is the 20th frame of a 30-frame video clip in the

dataset which contains in total 180K frames. Every frame

in Cityscapes has a large resolution of 1,024×2,048 pixels.

The Camvid dataset contains 701 color images with an-

notations on 11 semantic classes. These images are ex-

tracted from driving videos captured at daytime and dusk.

Each video contains 5,000 frames on average, with a resolu-

tion of 720× 960 pixels, amounting to in total 40K frames.

Baselines To demonstrate that PEARL can be applied

with advanced deep architectures, we compare PEARL with

multiple baselines which use the following two state-of-the-

art deep architectures.

• VGG16-baseline VGG16-baseline is built upon

DeepLab [3], which is the state-of-the-art image parsing

model. To further enhance its ability for video scene

parsing, we add three deconvolutional layers (each

followed by ReLU) after fc7 to up-sample the output

features. Besides, for fc7 features, we use the ParseNet

contexture module which is proposed in [20] to encode

global features. The details of its architecture are given

in supplementary material due to space limitation.

• Res101-baseline The Res101-baseline is built upon the

most recent Res101 [10] model following FCN [22]. Be-

sides, like [44], we use hard training sample mining to

reduce over-fitting. Architectural details are provided in

supplementary material.

In our experiments, both CNN1 and CNN2 share the

same network architectures as baseline models for fair com-

parison. Moreover, for each baseline model, we report
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Figure 5: Examples of parsing results of PEARL on Cityscapes val set. In each row, the first five images are from a same video sequence,

followed by ground-truth annotations, the respective labeling map of the baseline model and our proposed PEARL, all for frame T (high-

lighted in green). It is observed that PEARL produces more smooth parsing maps and shows stronger discriminability for small objects

(highlighted in red boxes) compared to the baseline model.

the result of an ensemble of two baseline models fine-

tuned independently (with the same number of parameters

as PEARL). All results of PEARL are based on single-

model single-scale testing.

Evaluation Metrics Following previous practice, we use

the mean IoU (mIoU) for Cityscapes, and per-pixel accu-

racy (PA) and average per-class accuracy (CA) for Camvid.

In particular, mIoU is defined as the pixel intersection-over-

union (IOU) averaged across all classes; PA is defined as

the percentage of all correctly classified pixels; and CA is

the average of all class-wise accuracies.

Implementation Details Throughout the experiments,

we set the number of preceding frames of each frame as 4,

i.e., s = 4 in P s
i (ref. Sec. 3). In phase I, we randomly select

frame sequences of length 4 with enough movement (the ℓ2
distance between the raw frames is larger than a threshold

230). In this way, we finally obtain 35K/8.8K sequences

from Cityscapes and Camvid respectively. The input frames

in phase I are all normalized such that values of their pixels

lie between −1 and 1. In phase II, we only perform mean

value subtraction on the frames. For the predictive learning

network in phase II, we select 4 frames before the anno-

tated frames as input, where the frames are required to have

sufficient motion, consistent with phase I.

For data augmentation, we use random cropping and ran-

dom mirror for all datasets in two phases. In addition,

in phase I, the temporal order of a sequence (including

the frame to be predicted and 4 preceding frames) is ran-

domly reversed to model various dynamics in videos. We

set λadv = 0.2 in Eqn. (1) and λP = 0.3 in Eqn. (2)

and the probability threshold of hard training sample min-

ing [44] in Res101-baseline as 0.9. The values are cho-

sen through cross-validation. SGD with momentum is em-

ployed throughout training. For other hyperparameters in-

cluding weight decay, learning rate, batch size and epoch

number etc., please refer to the Supplementary Material.

Computational Efficiency Since no post-processing is

required in PEARL, the running time of PEARL adopting

Res101 architecture to obtain the parsing map of a frame

with resolution 1,024×2,048 is only 0.8 seconds on a mod-

ern GPU, among the fastest models in existing works.

4.2. Results

Examples of the final parsing maps produced by PEARL

on Cityscapes val set are illustrated in Figure 5, where

VGG16 architecture is used in the baseline model and

PEARL. We present evaluation results with more details on

the two datasets as well as ablation studies below.

4.2.1 Cityscapes

Ablation Analysis We investigate the contribution of

each component of the proposed PEARL model.

(1) Predictive Feature Learning. To investigate the ef-

fect of the predictive features learned in two phases on the

video scene parsing performance, we conduct the following

three experiments. The comparison results are listed in Ta-

ble 1, where VGG16 architecture is used in both PEARL

and the baseline.

First, we verify the effectiveness of the predictive fea-

tures learned in phase I (learned from frame prediction).

We concatenate the transformed output features of CNN1

in the predictive learning network with the output features

of CNN2, as shown in Figure 6, and fix the parameters of

CNN1 during training. In this way, the predictive learning

network only provides pre-computed video features to assist

the video scene parsing task. As can be seen from Table 1,
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Figure 6: A variant of PEARL to verify the effectiveness of pre-

dictive features. The features of the predictive learning network

are concatenated with a standard frame parsing network via the

transform layer. The weights of CNN1 are fixed during training.

Table 1: Comparative study of effects of predictive features on fi-

nal performance over Cityscapes val set. VGG16 architecture is

used in baseline and PEARL. featCNN1
denotes the output fea-

tures of “CNN1” after phase I ends, while feat
CNN

+

1

denotes the

output features after fine-tuning “CNN1” with predictive parsing.

Methods mIoU

VGG16-baseline 64.5

featCNN1
+ VGG16-baseline 69.2

feat
CNN

+

1

+ VGG16-baseline 69.8

PEARL 70.4

by combining featCNN1
, the mIoU increases from 64.5 (of

the VGG16-baseline) to 69.2, demonstrating the predictive

learning network indeed learns useful temporal representa-

tions through frame prediction for video scene parsing.

Next, we investigate how adapting the predictive learn-

ing network to predictive parsing provides stronger pre-

dictive features for parsing. In this experiment, we firstly

fine-tune the pre-trained predictive learning network in the

predictive parsing task (see Eqn. (4)), and then similar

to the above experiment, we fix the parameters of CNN1

and concatenate the transformed output features of CNN+
1

(CNN+
1 is distinguished from CNN1 by fine-tuning on pre-

dictive parsing) with the output features of CNN2. As illus-

trated in Table 1, the mIoU further increases by 0.6 using

featCNN
+

1

compared with using featCNN1
, demonstrating

the features learned from predictive parsing are beneficial

for video scene parsing.

Finally, we look into the effectiveness of joint training

of the predictive parsing network and the frame parsing net-

work. It is observed from Table 1 that the best performance

is achieved using PEARL, benefiting from the joint end-to-

end training strategy.

(2) Comparison with Temporal Modeling Methods. To

verify the superiority of PEARL on learning the temporal

representations specific for video scene parsing, we com-

pare PEARL with other temporal context modeling meth-

Table 2: Comparative study of PEARL with optical flow based

method. OF means the optical flow maps augmented train-

ing data. PEARL in the upper/lower panel in the table adopts

VGG16/Res101 architecture respectively.

Methods mIoU

VGG16-baseline 64.5

OF + VGG16-baseline 64.7

PEARL 70.4

Res101-baseline 73.2

OF + Res101-baseline 73.5

PEARL 76.5

Table 3: Comparison with state-of-the-arts on Cityscapes val

set. PEARL in the upper/lower panel in the table adopts

VGG16/Res101 architecture respectively. Single-model, single-

scale testing is used in PEARL w/o post-processing like CRF.

Methods mIoU

VGG16-baseline (ours) 64.5

FCN (CVPR-15) [22] 61.7

Pixel-level Encoding (CVPRW-16) [40] 64.3

DPN (ECCV-15) [21] 66.8

Dilation10 (ICLR-16) [45] 67.1

DeepLab-VGG16 (Arxiv-16) [2] 62.9

Deep Structure (Arxiv-16) [19] 68.6

Clockwork FCN (ECCVW-16) [33] 64.4

PEARL (ours) 70.4

Res101-baseline (ours) 73.2

DeepLab-Res101 (Arxiv-16) [2] 71.4

PEARL (ours) 76.5

Table 4: Comparison with state-of-the-arts on Cityscapes test set.

Res101 architecture is used in PEARL. Note for fast inference,

single-model, single-scale testing is used in PEARL without any

post-processing like CRF.

Methods mIoU

FCN 8s (CVPR-15) [22] 65.3

DPN (ECCV-15) [21] 66.8

Dilation10 (ICLR-16) [45] 67.1

DeepLab (Arxiv-16) [2] 70.4

Deep Structure (Arxiv-16) [19] 71.6

LRR-4X (ECCV-16) [7] 71.8

RefineNet (CVPR-17) [18] 73.6

PEARL (ours) 75.2

ods including optical flow. First, we naively pass each of

s preceding frames in P s
j and Xj through baseline models

and merge their probability maps to obtain the final parsing

map of Xi. It is experimentally verified that such a method

achieves worse performance (mIoU on VGG16-Baseline:
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60.9 versus 64.5; mIoU on Res101-Baseline: 70.3 versus

73.2) than baseline models due to its weakness in utilizing

temporal information and the noisy probability maps pro-

duced for each frame.

Since optical flow is naturally capable of modeling the

temporal information in videos, we use it as a strong base-

line to compete with PEARL. Firstly, the epic flow [29] is

employed to compute all optical flows. Then we concate-

nate the optical flow maps calculated from Xj−1 to Xj with

Xj to form 5-channel raw training data X̄j (RGB plus X/Y

channels of optical flow). Using the optical flow augmented

training data {(X̄j , Yj), j = 1, . . . ,M}, we re-train base-

line models. During training, each kernel in the first con-

volutional layer of baseline models is randomly initialized

for the weights corresponding to the X/Y channels of op-

tical flow. This method is referred to as “OF + Baseline”.

The comparison results of “OF + Baseline” and PEARL

are shown in Table 2. From the results, one can observe

“OF + Baseline” achieves higher performance than base-

lines as it models temporal context during training. Notably,

PEARL beats “OF + Baseline” on both network architec-

tures, proving its capability of modeling temporal informa-

tion for video scene parsing problems.

(3) Ablation Study of the GAN Loss in Phase I We con-

duct experiments to evaluate how GAN loss (adversarial

loss) contributes. The results show that GAN loss indeed

enhances PEARLs performance. Compared with PEARL

w/o GAN loss, PEARL w/ GAN loss improves the mIoU on

Cityscape val by 1.0 and 0.6 for VGG16 and Res101 back-

bone architectures respectively. This is because with the

GAN loss, the generator (CNN1) in the predictive learning

network learns more descriptive features for video contents

and dynamics and produces more realistic frames. Such

features are critical to produce temporally consistent video

parsing results.

(4) Ablation Study of the Transform Layer As intro-

duced in Sec. 3.3, the transform layer improves the per-

formance of PEARL by learning the latent feature space

transformations from featCNN1
to featCNN2

. In our ex-

periments, the transform layer contains one residual block

[10] which has been widely used due to its good perfor-

mance and easy optimization. Details of the residual block

used in our experiments are deferred to supplementary ma-

terial. Compared to the PEARL w/o the transform layer,

adding the transform layer brings 1.2/0.5 mIoU improve-

ments for PEARL adopting VGG16 and Res101 architec-

ture respectively. We also conduct experiments by stacking

more residual blocks, but only observe marginal improve-

ments at larger computational cost.

Comparison with State-of-the-arts The comparison of

PEARL with other state-of-the-arts on Cityscapes val set

is listed in Table 3, from which one can observe PEARL

achieves the best performance among all compared methods

on both network architectures. Note loss re-weighting is not

used on this dataset.

Specifically, PEARL adopting VGG16/Res101 architec-

ture significantly improve the corresponding baseline mod-

els by 5.9/3.3 mIoU, respectively. Notably, compared with

[33] which proposed a temporal skip network based on

VGG16 for video scene parsing, PEARL beats it by 6.0 in

terms of mIoU. We also note that different from other meth-

ods which extensively modify VGG16 networks to enhance

the discriminative power for frame parsing, e.g. [2, 19],

PEARL is built on the vanilla VGG16 architecture. Thus

it is reasonable to expect further improvement on the per-

formance by using more powerful front CNN architectures.

Furthermore, we compare PEARL adopting Res101 archi-

tecture with other state-of-the-arts on Cityscapes test set. As

shown in Table 4, our method achieves the best performance

among all top methods.

4.2.2 Camvid

We report the comparison results of PEARL with state-of-

the-arts in Table 5. Due to limited space, more experimental

details are deferred to Supplementary Material.

Table 5: Comparison with the state-of-the-art on CamVid. Res101

architecture is used in PEARL.

Methods PA(%) CA(%)

Res101-baseline (ours) 92.7 80.8

Ladicky et al.(ECCV-10) [15] 83.8 62.5

SuperParsing(ECCV-10) [39] 83.9 62.5

DAG-RNN (CVPR-16) [34] 91.6 78.1

MPF-RNN (AAAI-17) [12] 92.8 82.3

Liu et al. (ECCV-15) [21] 82.5 62.5

RTDF (ECCV-16) [16] 89.9 80.5

PEARL (ours) 94.4 83.2

5. Conclusion

We proposed a new predictive feature learning model

for effective video scene parsing. It contains two learning

phases. The first phase learns temporal representations in an

unsupervised manner by predicting future frames from un-

labeled video data. The second phase integrates the predic-

tive learning network and a standard frame parsing network

to produce temporally smooth and structure preserving re-

sults. Extensive experiments on Cityscapes and Camvid

fully demonstrated the effectiveness of our model.
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