
Inferring and Executing Programs for Visual Reasoning

Justin Johnson1 Bharath Hariharan2 Laurens van der Maaten2

Judy Hoffman1 Li Fei-Fei1 C. Lawrence Zitnick2 Ross Girshick2

1Stanford University 2Facebook AI Research

Abstract

Existing methods for visual reasoning attempt to directly

map inputs to outputs using black-box architectures without

explicitly modeling the underlying reasoning processes. As

a result, these black-box models often learn to exploit biases

in the data rather than learning to perform visual reason-

ing. Inspired by module networks, this paper proposes a

model for visual reasoning that consists of a program gen-

erator that constructs an explicit representation of the rea-

soning process to be performed, and an execution engine

that executes the resulting program to produce an answer.

Both the program generator and the execution engine are

implemented by neural networks, and are trained using a

combination of backpropagation and REINFORCE. Using

the CLEVR benchmark for visual reasoning, we show that

our model significantly outperforms strong baselines and

generalizes better in a variety of settings.

1. Introduction

In many applications, computer-vision systems need to

answer sophisticated queries by reasoning about the visual

world (Figure 1). To deal with novel object interactions or

object-attribute combinations, visual reasoning needs to be

compositional: without ever having seen a “person touching

a bike”, the model should be able to understand the phrase

by putting together its understanding of “person”, “bike”

and “touching”. Such compositional reasoning is a hall-

mark of human intelligence, and allows people to solve a

plethora of problems using a limited set of basic skills [27].

In contrast, modern approaches to visual recognition

learn a mapping directly from inputs to outputs; they do

not explicitly formulate and execute compositional plans.

Direct input-output mapping works well for classifying im-

ages [25] and detecting objects [10] for a small, fixed set of

categories. However, it fails to outperform strong baselines

on tasks that require the model to understand an exponen-

tially large space of objects, attributes, actions, and inter-

actions, such as visual question answering (VQA) [3, 50].

Instead, models that learn direct input-output mappings tend

How many chairs are at the table? Is there a pedestrian in my lane?

Is the person with the blue hat

touching the bike in the back?

Is there a matte cube that has the

same size as the red metal object?

Figure 1. Compositional reasoning is a critical component needed

for understanding the complex visual scenes encountered in ap-

plications such as robotic navigation, autonomous driving, and

surveillance. Current models fail to do such reasoning [19].

to learn dataset biases but not reasoning [7, 18, 19].

In this paper, we argue that to successfully perform com-

plex reasoning tasks, it might be necessary to explicitly in-

corporate compositional reasoning in the model structure.

Specifically, we investigate a new model for visual ques-

tion answering that consists of two parts: a program gener-

ator and an execution engine. The program generator reads

the question and produces a plan or program for answer-

ing the question by composing functions from a function

dictionary. The execution engine implements each func-

tion using a small neural module, and executes the resulting

module network on the image to produce an answer. Both

the program generator and the modules in the execution en-

gine are neural networks with generic architectures; they

can be trained separately when ground-truth programs are

available, or jointly in an end-to-end fashion.

Our model builds on prior work on neural module net-

works that incorporate compositional reasoning [1, 2]. Prior

module networks do not generalize well to new problems,

because they rely on a hand-tuned program generator based

12989

on syntactic parsing, and on hand-engineered modules. By

contrast, our model does not rely on such heuristics: we

only define the function vocabulary and the “universal”

module architecture by hand, learning everything else.

We evaluate our model on the recently released CLEVR

dataset [19], which has proven to be challenging for state-

of-the-art VQA models. The CLEVR dataset contains

ground-truth programs that describe the compositional rea-

soning required to answer the given questions. We find that

with only a small amount of reasoning supervision (9000
ground-truth programs which is 1% of those available),

our model outperforms state-of-the-art non-compositional

VQA models by ∼15 percentage points on CLEVR. We

also show that our model’s compositional nature allows it

to generalize to novel questions by composing modules in

ways that are not seen during training.

Though our model works well on the algorithmically

generated questions in CLEVR, the true test is whether it

can answer questions asked by humans in the wild. We col-

lect a new dataset of human-posed free-form natural lan-

guage questions about CLEVR images. Many of these

questions have out-of-vocabulary words and require reason-

ing skills that are absent from our model’s repertoire. Nev-

ertheless, when finetuned on this dataset without additional

program supervision, our model learns to compose its mod-

ules in novel but intuitive ways to best answer new types

of questions. The result is an interpretable mapping of free-

form natural language to programs, and a ∼9 point improve-

ment in accuracy over the best competing models.

2. Related Work

Our work is related to prior research on visual question

answering, reasoning-augmented models, semantic parsers,

and (neural) program-induction methods.

Visual question answering (VQA) is a popular proxy

task for gauging the quality of visual reasoning systems

[21, 43]. Like the CLEVR dataset, benchmark datasets

for VQA typically comprise a set of questions on images

with associated answers [3, 31, 39, 24, 50]; both ques-

tions and answers are generally posed in natural language.

Many systems for VQA employ a very similar architecture

[3, 8, 9, 30, 32, 33, 44]: they combine an RNN-based em-

bedding of the question with a convolutional network-based

embedding of an image in a classification model over possi-

ble answers. Recent work has questioned whether such sys-

tems are capable of developing visual reasoning capabili-

ties: (1) very simple baseline models were found to perform

competitively on VQA benchmarks by exploiting biases in

the data [18, 49, 11] and (2) experiments on CLEVR, which

was designed to control such biases, revealed that current

systems do not learn to reason about spatial relationships or

to learn disentangled representations [19].

Our model aims to address these problems by explic-

itly constructing an intermediate program that defines the

reasoning process required to answer the question. We

show that our model succeeds on several kinds of reason-

ing where other VQA models fail.

Reasoning-augmented models add components to neu-

ral network models to facilitate the development of rea-

soning processes in such models. For example, models

such as neural Turing machines [12, 13], memory networks

[40, 37], and stack-augmented recurrent networks [20] add

explicit memory components to neural networks to facili-

tate learning of reasoning processes that involve long-term

memory. While long-term memory is likely to be a crucial

component of intelligence, it is not a prerequisite for rea-

soning, especially the kind of reasoning that is required for

answering questions about images.1 Therefore, we do not

consider memory-augmented models in this study.

Module networks are an example of reasoning-

augmented models that use a syntactic parse of a question

to determine the architecture of the network [1, 2, 17]. The

final network is composed of trained neural modules that

execute the “program” produced by the parser. The main

difference between our models and existing module net-

works is that we replace hand-designed off-the-shelf syn-

tactic parsers [23], which perform poorly on complex ques-

tions such as those in CLEVR [19], by a learnt program

generator that can adapt to the task at hand. We note that in

concurrent work, Hu et al. [16] propose end-to-end module

networks for visual question answering which offer similar

advantages.

Semantic parsers attempt to map natural language sen-

tences to logical forms. Often, the goal is to answer natural

language questions using a knowledge base [29]. Recent

approaches to semantic parsing involve a learnt program-

mer [28]. However, the semantics of the program and the

execution engine are fixed and known a priori, while we

learn both the program generator and the execution engine.

Program-induction methods learn programs from

input-output pairs by fitting the parameters of a neural net-

work to predict the output that corresponds to a particular

input value. Such models can take the form of a feedfor-

ward scoring function over operators in a domain-specific

language that can be used to guide program search [4], or

of a recurrent network that decodes a vectorial program

representation into the actual program [22, 26, 34, 46, 47,

48]. The recurrent networks may incorporate compositional

structure that allows them to learn new programs by com-

bining previously learned sub-programs [35].

Our approach differs from prior work on program induc-

tion in (1) the type of input-output pairs that are used and

(2) the way the domain-specific language is implemented.

Prior work on neural program interpreters considers simple

1Memory is likely indispensable in more complex settings such as vi-

sual dialogues or SHRDLU [6, 42].

2990

algorithms such as sorting of a list of integers; by contrast,

we consider inputs that comprise an image and an associ-

ated question (in natural language). Program induction ap-

proaches also assume knowledge of the low-level operators

such as arithmetic operations. In contrast, we use a learnt

execution engine and assume minimal prior knowledge.

3. Method

We develop a learnable compositional model for visual

question answering. Our model takes as input an image x

and a visual question q about the image. The model selects

an answer a ∈ A to the question from a fixed set A of

possible answers. Internally, the model predicts a program

z representing the reasoning steps required to answer the

question. The model then executes the predicted program

on the image, producing a distribution over answers.

To this end, we organize our system into two compo-

nents: a program generator, z = π(q), which predicts

programs from questions, and an execution engine, a =
φ(x, z), which executes a program z on an image x to pre-

dict an answer a. Both the program generator and the ex-

ecution engine are neural networks that are learned from

data. In contrast to prior work [1, 2], we do not manually

design heuristics for generating or executing the programs.

We present learning procedures both for settings where

(some) ground-truth programs are available during training,

and for settings without ground-truth programs. In practice,

our models need some program supervision during training,

but we find that the program generator requires very few of

such programs in order to learn to generalize (see Figure 4).

3.1. Programs

Like all programming languages, our programs are de-

fined by syntax giving rules for building valid programs,

and semantics defining the behavior of valid programs. We

focus on learning semantics for a fixed syntax. Concretely,

we fix the syntax by pre-specifying a set F of functions f ,

each of which has a fixed arity nf ∈ {1, 2}. Because we are

interested in visual question answering, we include in the

vocabulary a special constant Scene, which represents the

visual features of the image. We represent valid programs

z as syntax trees in which each node contains a function

f ∈ F , and in which each node has as many children as the

arity of the function f .

3.2. Program generator

The program generator z = π(q) predicts programs z

from natural-language questions q that are represented as a

sequence of words. We use a prefix traversal to serialize

the syntax tree, which is a non-sequential discrete structure,

into a sequence of functions. This allows us to implement

the program generator using a standard LSTM sequence-to-

sequence model; see [38] for details.

CNN

LSTMAre

there

more

cubes

than

yellow

things

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Program Generator

greater
than

filter
color

[yellow]

count

filter
shape
[cube]

<SCENE>

<SCENE>

count

Predicted
Program

greater_than

count

filter
shape
[cube]

count

Classifier

Answer: Yes

Execution
Engine

filter
color

[yellow]

Question: Are there more cubes than yellow things?

Figure 2. System overview. The program generator is a

sequence-to-sequence model which inputs the question as a se-

quence of words and outputs a program as a sequence of functions,

where the sequence is interpreted as a prefix traversal of the pro-

gram’s abstract syntax tree. The execution engine executes the

program on the image by assembling a neural module network [2]

mirroring the structure of the predicted program.

When decoding at test time, we simply take the argmax

function at each time step. The resulting sequence of func-

tions is converted to a syntax tree; this is straightforward

since the arity of each function is known. Some generated

sequences do not correspond to prefix traversals of a tree.

If the sequence is too short (some functions do not have

enough children) then we pad the sequence with Scene

constants. If the sequence is too long (some functions have

no parents) then unused functions are discarded.

3.3. Execution engine

Given a predicted program z and an input image x,

the execution engine executes the program on the image,

a = φ(x, z), to predict an answer a. The execution en-

gine is implemented using a neural module network [2]: the

program z is used to assemble a question-specific neural

network that is composed from a set of modules. For each

function f ∈ F , the execution engine maintains a neural

network module mf . Given a program z, the execution en-

gine creates a neural network m(z) by mapping each func-

tion f to its corresponding module mf in the order defined

by the program: the outputs of the “child modules” are used

as input into their corresponding “parent module”.

Our modules use a generic architecture, in contrast to [2].

A module of arity n receives n features maps of shape

C×H×W and produces a feature map of shape C×H×W .

Each unary module is a standard residual block [14] with

two 3×3 convolutional layers. Binary modules concatenate

their inputs along the channel dimension, project from 2C
to C channels using a 1× 1 convolution, and feed the result

to a residual block. The Scene module takes visual features

as input (conv4 features from ResNet-101 [14] pretrained

2991

Compare Integer Query Compare

Method Exist Count Equal Less More Size Color Mat. Shape Size Color Mat. Shape Overall

Q-type mode 50.2 34.6 51.4 51.6 50.5 50.1 13.4 50.8 33.5 50.3 52.5 50.2 51.8 42.1

LSTM 61.8 42.5 63.0 73.2 71.7 49.9 12.2 50.8 33.2 50.5 52.5 49.7 51.8 47.0

CNN+LSTM 68.2 47.8 60.8 74.3 72.5 62.5 22.4 59.9 50.9 56.5 53.0 53.8 55.5 54.3

CNN+LSTM+SA [45] 68.4 57.5 56.8 74.9 68.2 90.1 83.3 89.8 87.6 52.1 55.5 49.7 50.9 69.8

CNN+LSTM+SA+MLP 77.9 59.7 60.3 83.7 76.7 85.4 73.1 84.5 80.7 72.3 71.2 70.1 69.7 73.2

Human† [19] 96.6 86.7 79.0 87.0 91.0 97.0 95.0 94.0 94.0 94.0 98.0 96.0 96.0 92.6

Ours-strong (700K prog.) 97.1 92.7 98.0 99.0 98.9 98.8 98.4 98.1 97.3 99.8 98.5 98.9 98.4 96.9

Ours-semi (18K prog.) 95.3 90.1 93.9 97.1 97.6 98.1 97.1 97.7 96.6 99.0 97.6 98.0 97.3 95.4

Ours-semi (9K prog.) 89.7 79.7 85.2 76.1 77.9 94.8 93.3 93.1 89.2 97.8 94.5 96.6 95.1 88.6

Table 1. Question answering accuracy (higher is better) on the CLEVR dataset for baseline models, humans, and three variants of our

model. The strongly supervised variant of our model uses all 700K ground-truth programs for training, whereas the semi-supervised

variants use 9K and 18K ground-truth programs, respectively. †Human performance is measured on a 5.5K subset of CLEVR questions.

on ImageNet [36]) and passes these features through four

convolutional layers to output a C×H×W feature map.

Using the same architecture for all modules ensures that

every valid program z corresponds to a valid neural network

which inputs the visual features of the image and outputs a

feature map of shape C×H×W . This final feature map is

flattened and passed into a multilayer perceptron classifier

that outputs a distribution over possible answers.

3.4. Training

Given a VQA dataset containing (x, q, z, a) tuples with

ground-truth programs z, we can train both the program

generator and execution engine in a supervised manner.

Specifically, we can (1) use pairs (q, z) of questions and

corresponding programs to train the program generator,

which amounts to training a standard sequence-to-sequence

model; and (2) use triplets (x, z, a) of the image, program,

and answer to train the execution engine, using backpropa-

gation to compute the required gradients (as in [2]).

Annotating ground-truth programs for free-form natural

language questions is expensive, so in practice we may have

few or no ground-truth programs. To address this problem,

we opt to train the program generator and execution engine

jointly on (x, q, a) triples without ground-truth programs.

However, we cannot backpropagate through the argmax op-

erations in the program generator. Instead we replace the

argmaxes with sampling and use REINFORCE [41] to esti-

mate gradients on the outputs of the program generator; the

reward for each of its outputs is the negative zero-one loss

of the execution engine, with a moving-average baseline.

In practice, joint training using REINFORCE is diffi-

cult: the program generator needs to produce the right pro-

gram without understanding what the functions mean, and

the execution engine has to produce the right answer from

programs that may not accurately implement the question

asked. We propose a more practical semi-supervised learn-

ing approach. We first use a small set of ground-truth pro-

grams to train the program generator, then fix the program

generator and train the execution engine using predicted

programs on a large dataset of (x, q, a) triples. Finally, we

use REINFORCE to jointly finetune the program generator

and execution engine. Crucially, ground-truth programs are

only used to train the initial program generator.

4. Experiments

We evaluate our model on the recent CLEVR

dataset [19]. Standard VQA methods perform poorly on

this dataset, showing that it is a challenging benchmark. All

questions are equipped with ground-truth programs, allow-

ing for experiments with varying amounts of supervision.

We first perform experiments using strong supervision

in the form of ground-truth programs. We show that in

this strongly supervised setting, the combination of pro-

gram generator and execution engine works much better

on CLEVR than alternative methods. Next, we show that

this strong performance is maintained when a small num-

ber of ground-truth programs, which capture only a frac-

tion of question diversity, is used for training. Finally, we

evaluate the ability of our models to perform compositional

generalization, as well as generalization to free-form ques-

tions posed by humans. Code reproducing the results of our

experiments is available from https://github.com/

facebookresearch/clevr-iep.

4.1. Baselines

Johnson et al. [19] tested several VQA models on

CLEVR. We reproduce these models as baselines here.

Q-type mode: This baseline predicts the most frequent

answer for each of the question types in CLEVR.

LSTM: Similar to [3, 32], questions are processed

with learned word embeddings followed by a word-level

LSTM [15]. The final LSTM hidden state is passed to a

multi-layer perceptron (MLP) that predicts a distribution

2992

https://github.com/facebookresearch/clevr-iep
https://github.com/facebookresearch/clevr-iep

Q: What shape is the. purple thing?

A: cube

. . . blue thing?

A: sphere

. . . red thing right of

the blue thing?

A: sphere

. . . red thing left of

the blue thing?

A: cube

Q: How many cyan

things are. . .

. . . right of the gray cube?

A: 3

. . . left of the small cube?

A: 2

. . . right of the gray cube

and left of the small cube?

A: 1

. . . right of the gray cube

or left of the small cube?

A: 4

Figure 3. Visualizations of the norm of the gradient of the sum of the predicted answer scores with respect to the final feature map. From

left to right, each question adds a module to the program; the new module is underlined in the question. The visualizations illustrate which

objects the model attends to when performing the reasoning steps for question answering. Images are from the validation set.

Figure 4. Accuracy of predicted programs (left) and answers

(right) as we vary the number of ground-truth programs. Blue and

green give accuracy before and after joint finetuning; the dashed

line shows accuracy of our strongly-supervised model.

over answers. This method uses no image information, so it

can only model question-conditional biases.

CNN+LSTM: Images and questions are encoded using

convolutional network (CNN) features and final LSTM hid-

den states, respectively. These features are concatenated

and passed to an MLP that predicts an answer distribution.

CNN+LSTM+SA [45]: Questions and images are en-

coded using a CNN and LSTM as above, then combined

using two rounds of soft spatial attention; a linear transform

of the attention output predicts the answer.

CNN+LSTM+SA+MLP: Replaces the linear transform

with an MLP for better comparison with the other methods.

The models that are most similar to ours are neural mod-

ule networks [1, 2]. Unfortunately, neural module networks

use a hand-engineered, off-the-shelf parser to produce pro-

grams, and this parser fails2 on the complex questions in

CLEVR [19]. Therefore, we were unable to include mod-

ule networks in our experiments.

4.2. Strongly and semisupervised learning

We first experiment with a model trained using full su-

pervision: we use the ground-truth programs for all ques-

2See supplemental material for example parses of CLEVR questions.

Train A Finetune B

Method A B A B

LSTM 55.2 50.9 51.5 54.9

CNN+LSTM 63.7 57.0 58.3 61.1

CNN+LSTM+SA+MLP 80.3 68.7 75.7 75.8

Ours (18K prog.) 96.6 73.7 76.1 92.7

Figure 5. Question answering accuracy on the CLEVR-CoGenT

dataset (higher is better). Top: We train models on Condition A,

then test them on both Condition A and Condition B. We then

finetune these models on Condition B using 3K images and 30K

questions, and again test on both Conditions. Our model uses 18K

programs during training on Condition A, and does not use any

programs during finetuning on Condition B. Bottom: We investi-

gate the effects of using different amounts of data when finetuning

on Condition B. We show overall accuracy as well as accuracy on

color-query and shape-query questions.

tions in CLEVR to train both the program generator and

the execution engine separately. The question answering

accuracy of the resulting model on CLEVR is shown in Ta-

ble 1 (Ours-strong). The results show that using strong su-

pervision, our model can achieve near-perfect accuracy on

CLEVR (even outperforming Mechanical Turk workers).

In practical scenarios, ground-truth programs are not

available for all questions. We use the semi-supervised

training process described in Section 3.4 to determine how

many ground-truth programs are needed to match fully su-

pervised models. First, the program generator is trained

2993

