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Abstract

Current state-of-the-art approaches for spatio-temporal

action localization rely on detections at the frame level that

are then linked or tracked across time. In this paper, we

leverage the temporal continuity of videos instead of oper-

ating at the frame level. We propose the ACtion Tubelet

detector (ACT-detector) that takes as input a sequence of

frames and outputs tubelets, i.e., sequences of bounding

boxes with associated scores. The same way state-of-the-

art object detectors rely on anchor boxes, our ACT-detector

is based on anchor cuboids. We build upon the SSD frame-

work [19]. Convolutional features are extracted for each

frame, while scores and regressions are based on the tem-

poral stacking of these features, thus exploiting information

from a sequence. Our experimental results show that lever-

aging sequences of frames significantly improves detection

performance over using individual frames. The gain of our

tubelet detector can be explained by both more accurate

scores and more precise localization. Our ACT-detector

outperforms the state-of-the-art methods for frame-mAP

and video-mAP on the J-HMDB [12] and UCF-101 [31]

datasets, in particular at high overlap thresholds.

1. Introduction

Action localization is one of the key elements to video

understanding. It has been an active research topic for the

past years due to various applications, e.g. video surveil-

lance [10, 21] or video captioning [33, 37]. Action local-

ization focuses both on classifying the actions present in a

video and on localizing them in space and time. Action lo-

calization task faces significant challenges, e.g. intra-class

variability, cluttered background, low quality video data,

occlusion, changes in viewpoint. Recently, Convolutional

Neural Networks (CNNs) have proven well adapted for ac-

tion localization, as they provide robust representations of

video frames. Indeed, most state-of-the-art action local-

ization approaches [9, 23, 27, 30, 36] are based on CNN

object detectors [19, 25] that detect human actions at the
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standing	up?	

si,ng	down?	

Figure 1. Understanding an action from a single frame can be am-

biguous, e.g. sitting down or standing up; the action becomes clear

when looking at a sequence of frames.

frame level. Then, they either link frame-level detections or

track them over time to create spatio-temporal tubes. Al-

though these action localization methods have achieved re-

markable results [23, 27], they do not exploit the temporal

continuity of videos as they treat the video frames as a set

of independent images on which a detector is applied inde-

pendently. Processing frames individually is not optimal, as

distinguishing actions from a single frame can be ambigu-

ous, e.g. person sitting down or standing up (Figure 1).

In this paper, we propose to surpass this limitation and

treat a video as a sequence of frames. Modern object de-

tectors for images, such as Faster R-CNN [25] and Single

Shot MultiBox Detector (SSD) [19], proceed by classify-

ing and regressing a set of anchor boxes to the ground-truth

bounding box of the object. In this paper, we introduce a

spatio-temporal tubelet extension of this design. Our Ac-

tion Tubelet detector (ACT-detector) takes as input a short

sequence of a fixed number of frames and outputs tubelets,

i.e., sequences of bounding boxes over time (Figure 2). Our

method considers densely sampled anchors of cuboid shape

with various sizes and aspect ratios. At test time, we gen-

erate for each anchor cuboid a score for a given action and

regressed coordinates transforming it into a tubelet. Impor-

tantly, the score and regression are based on convolutional

feature maps from all frames in the sequence. While the

anchor cuboids have fixed spatial extent across time, the

tubelets change size, location and aspect ratio over time, fol-

lowing the actors. Here we build upon the SSD framework,

but the proposed tubelet extension is applicable to other de-

tectors based on anchor boxes, such as Faster R-CNN.
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Figure 2. Overview of our ACT-detector. Given a sequence of frames, we extract convolutional features with weights shared between

frames. We stack the features from subsequent frames to predict scores and regress coordinates for the anchor cuboids (middle figure, blue

color). Depending on the size of the anchors, the features come from different convolutional layers (left figure, color coded: yellow, red,

purple, green). As output, we obtain tubelets (right figure, yellow color).

Our experiments show that taking as input a sequence of

frames improves: (a) action scoring, because the ambiguity

between different actions reduces and (b) localization accu-

racy, because frames in a cuboid are regressed jointly and

hence, they share information about the location of the ac-

tor in neighboring frames, see Figure 1. Our ACT-detector

obtains state-of-the-art frame-mAP and video-mAP perfor-

mance on the J-HMDB [12] and UCF-101 [31] datasets, in

particular at high overlap thresholds.

In summary, we make the following contributions:

• We introduce the ACT-detector, an action tubelet detector

that proceeds by scoring and regressing anchor cuboids.

• We demonstrate that anchor cuboids can handle moving

actors for sequences up to around 10 frames.

• We provide an extensive analysis demonstrating the clear

benefit of leveraging sequences of frames instead of operat-

ing at the frame level.

The code of our ACT-detector is available at

http://thoth.inrialpes.fr/src/ACTdetector.

2. Related work

Almost all recent works [23, 27, 30, 36] for action lo-

calization build on CNN object detectors [19, 25]. In the

following, we review recent CNN object detectors and then

state-of-the-art action localization approaches.

Object detection with CNNs. Recent state-of-the-art ob-

ject detectors [8, 19, 24, 25] are based on CNNs. R-CNN [8]

casts the object detection task as a region-proposal clas-

sification problem. Faster R-CNN [25] extends this ap-

proach by generating bounding box proposals with a fully-

convolutional Region Proposal Network (RPN). RPN con-

siders a set of densely sampled anchor boxes, that are scored

and regressed. Moreover, it shares convolutional features

with proposal classification and regression branches. These

branches operate on fixed-size features obtained using a

Region-of-Interest (RoI) pooling layer. In a similar spirit,

YOLO [24] and SSD [19] also use a set of anchor boxes,

which are directly classified and regressed without a RoI

pooling layer. In YOLO, all scores and regressions are

computed from the last convolutional feature maps, whereas

SSD adapts the features to the size of the boxes. Features

for predicting small-sized boxes come from early layers,

and features for big boxes come from the latter layers, with

larger receptive fields. All these object detectors rely on an-

chor boxes. In our work, we extend them to anchor cuboids

leading to significant improvement for action localization.

Action localization. Initial approaches for spatio-temporal

action localization are extensions of the sliding window

scheme [2, 16], requiring strong assumptions such as a

cuboid shape, i.e., a fixed spatial extent of the actor across

frames. Other methods extend object proposals to videos.

Hundreds of action proposals are extracted per video given

low-level cues, such as super-voxels [11, 22] or dense tra-

jectories [3, 7, 20]. They then cast action localization as a

proposal classification problem. More recently, some ap-

proaches [17, 34, 38] rely on an actionness measure [4],

i.e., a pixel-wise probability of containing any action. To

estimate actionness, they use low-level cues such as opti-

cal flow [38], CNNs with a two-stream fully-convolutional

architecture [34] or recurrent neural networks [34]. They

extract action tubes either by thresholding [17] the action-

ness score or by using a maximum set coverage formula-

tion [38]. This, however, outputs only a rough localization

of the action as it is based on noisy pixel-level maps.

Most recent approaches rely on object detectors trained

to discriminate human action classes at the frame level.

Gkioxari and Malik [9] extend the R-CNN framework to a

two-stream variant [28], processing RGB and flow data sep-

arately. The resulting per-frame detections are then linked

using dynamic programming with a cost function based

on detection scores of the boxes and overlap between de-

tections of consecutive frames. Weinzaepfel et al. [36]

replace the linking algorithm by a tracking-by-detection

method. More recently, two-stream Faster R-CNN was in-

troduced by [23, 27]. Saha et al. [27] fuse the scores of

both streams based on overlap between the appearance and

the motion RPNs. Peng and Schmid [23] combine proposals
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extracted from the two streams and then classify and regress

them with fused RGB and multi-frame optical flow features.

They also use multiple regions inside each action proposal

and then link the detections across a video based on spatial

overlap and classification score. Singh et al. [30] perform

action localization in real-time using (a) the efficient SSD

detector, (b) a fast method [14] to estimate the optical flow

for the motion stream, and (c) an online linking algorithm.

All these approaches rely on detections at the frame level.

In contrast, we build our ACT-detector by taking as input se-

quences of frames and demonstrate improved action scores

and location accuracy over frame-level detections.

3. ACtion Tubelet (ACT) detector

We introduce the ACtion Tubelet detector (ACT-

detector), an action tubelet approach for action localization

in videos. The ACT-detector takes as input a sequence of

K frames f1, ..., fK and outputs a list of spatio-temporal

detections, each one being a tubelet, i.e., a sequence of

bounding boxes, with one confidence score per action class.

The idea of such an extension to videos could be applied

on top of various state-of-the-art object detectors. Here, we

apply our method on top of SSD, as it has lower runtime

than other detectors, which makes it suitable for large video

datasets. In this section, we first describe our fdafd4dfposed

ACT-detector (Section 3.1), and then our full framework for

video detection (Section 3.2). Finally, Section 3.3 describes

our method for constructing action tubes.

3.1. ACT­detector

In this paper, we claim that action localization bene-

fits from predicting tubelets taking as input a sequence of

frames instead of operating at the frame level. Indeed, the

appearance and even the motion may be ambiguous for a

single frame. Considering more frames for predicting the

scores reduces this ambiguity (Figure 1). Moreover, this al-

lows to perform regression jointly over consecutive frames.

Our ACT-detector builds upon SSD, see Figure 2 for an

overview of the approach. In the following we review the

SSD detector in details and then present our ACT-detector.

SSD detector. The SSD detector (Single Shot MultiBox

Detector) [19] performs object detection by considering a

set of anchor boxes at different positions, scales and aspect

ratios. Each of them is (a) scored for each object class and

for a background class, and (b) regressed to better fit the

object extent. SSD uses a fully convolutional architecture,

without any object proposal step, enabling fast computation.

Classification and regression are performed using different

convolutional layers depending on the scale of the anchor

box. Note that the receptive field of a neuron used to pre-

dict the classification scores and the regression of a given

anchor box remains significantly larger than the box.

ACT-detector. Given a sequence of K frames, the ACT-

detector computes convolutional features for each one. The

weights of these convolutional features are shared among all

input frames. We extend the anchor boxes of SSD to anchor

cuboids by assuming that the spatial extent is fixed over

time along the K frames. We then stack the corresponding

convolutional features from each of K frames (Figure 2).

The stacked features are the input of two convolutional lay-

ers, one for scoring action classes and one for regressing the

anchor cuboids. For instance, when considering an anchor

cuboid for which the prediction is based on the ‘red’ feature

maps of Figure 2, the classification and regression are per-

formed with convolutional layers that take as input the ‘red’

stacked feature maps from the K frames. The classification

layer outputs for each anchor cuboid C + 1 scores: one per

action class plus one for the background. This means that

the tubelet classification is done based on the sequence of

frames. The regression outputs 4 × K coordinates (4 for

each of the K frames) for each anchor cuboid. Note that

although all boxes in a tubelet are regressed jointly, they

result in a different regression for each frame.

The initial anchor cuboids have a fixed spatial extent over

time. In Section 4.2 we show experimentally that such an-

chor cuboids can handle moving actors for short sequences

of frames. Note that the receptive field of the neurons used

to score and regress an anchor cuboid is larger than its spa-

tial extent. This allows us to base the prediction also on the

context around the cuboid, i.e., with knowledge for actors

that may move outside the cuboid. Moreover, the regression

significantly deforms the cuboid shape. Even though anchor

cuboids have fixed spatial extent, the tubelets obtained after

regressing the 4×K coordinates do not. We display two ex-

amples in Figure 3 with the anchor cuboid (cyan boxes) and

the resulting regressed tubelet (yellow boxes). Note how

the regression outputs an accurate localization despite the

change in aspect ratio of the action boxes across time.

Training loss. For training, we consider only sequences
of frames in which all frames contain the ground-truth ac-
tion. As we want to learn action tubes, all positive and neg-
ative training data come from sequences in which actions
occur. We exclude sequences in which the action starts or
ends. Let A be the set of anchor cuboids. We denote by
P the set of anchor cuboids for which at least one ground-
truth tubelet has an overlap over 0.5, and by N the com-
plementary set. Overlap between tubelets is measured by
averaging the Intersection over Union (IoU) between boxes
over K frames. Each anchor cuboid from P is assigned to
ground-truth boxes with IoU over 0.5. More precisely, let
x
y
ij ∈ {0, 1} be the binary variable whose value is 1 if and

only if the anchor cuboid ai is assigned to the ground-truth
tubelet gj of label y. The training loss L is defined as:

L =
1

N

(

Lconf + Lreg

)

, (1)

with N =
∑

i,j,y
x
y
ij the number of positive assignments
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Figure 3. Examples of regressed tubelets (yellow) from cuboids (cyan) in our ACT-detector. Note the accurate localization of the tubelet,

despite the fact that the aspect ratio of the cuboid is changing over time.

and Lconf (resp. Lreg) the confidence (resp. regression) loss

as defined below.

The confidence loss is defined using a softmax loss. Let

ĉ
y
i be the predicted confidence score (after softmax) of an

anchor ai for class y. The confidence loss is:

Lconf = −

∑

i∈P

x
y
ij log (ĉ

y
i )−

∑

i∈N

log
(

ĉ
0

i

)

. (2)

The regression loss is defined using a Smooth-L1 loss

between the predicted regression and the ground-truth tar-

get. We regress an offset for the center (x, y) of each box in

the tubelet, as well as for the width w and the height h. The

regression loss is averaged over K frames. More precisely,

let r̂xk

i be the predicted regression for the x coordinate of

anchor ai at frame fk and let gj be the ground-truth target.

The regression loss is defined as:

Lreg =
1

K

∑

i∈P

∑

c∈{x,y,w,h}

x
y
ij

K
∑

k=1

SmoothL1
(

r̂
ck
i − g

ck
ij

)

,

with g
xk

ij =
g
xk

j − a
xk

i

a
wk

i

g
yk
ij =

g
yk
j − a

yk
i

a
hk

i

,

g
wk

ij = log

(

g
wk

j

a
wk

i

)

g
hk

ij = log





g
hk

j

a
hk

i



 .

(3)

3.2. Two­stream ACT­detector

Following standard practice for action localization [23,

27, 36], we use a two-stream detector. We train an appear-

ance detector, for which the input is a sequence of K con-

secutive RGB frames, and a motion detector, which takes as

input the flow images [1] obtained following [9].

Each stream outputs a set of regressed tubelets with con-

fidence scores, originating from the same set of anchor

cuboids. For combining the two streams at test time we

compare two approaches: union fusion and late fusion. For

the union fusion [30], we consider the set union of the out-

puts from both streams: the tubelets from the RGB stream

with their associated scores and the tubelets from the flow

stream with their scores. For the late fusion [6], we aver-

age the scores from both streams for each anchor cuboid,

as the set of anchors is the same for both streams. We keep

the regressed tubelet from the RGB stream, as appearance is

more relevant for regressing boxes, in particular for actions

with limited motion. Our experiments show that late fusion

outperforms the union fusion (Section 4.3).

3.3. From action tubelets to spatio­temporal tubes

For constructing action tubes, we build upon the frame

linking algorithm of [30], as it is robust to missed detections

and can generate tubes spanning different temporal extents

of the video. We extend their algorithm from frame linking

to tubelet linking and propose a temporal smoothing to build

action tubes from the linked tubelets. The method is online

and proceeds by iteratively adding tubelets to a set of links

while processing the frames. In the following, t is a tubelet

and L a link, i.e., a sequence of tubelets.

Input tubelets. Given a video, we extract tubelets for each

sequence of K frames. This means that consecutive tubelets

overlap by K−1 frames. The computation of overlapping

tubelets can be performed at an extremely low cost as the

weights of the convolutional features are shared. We com-

pute the convolutional features for each frame only once.

For each sequence of frames, only the last layers that pre-

dict scores and regressions, given the stacked convolutional

features (Figure 2), remain to be computed. For linking, we

keep only the N =10 highest scored tubelets for each class

after non-maximum suppression (NMS) at a threshold 0.3
in each sequence of frames.

Overlap between a link and a tubelet. Our linking algo-

rithm relies on an overlap measure ov(L, t) between a link

L and a tubelet t that temporally overlaps with the end of

the link. We define the overlap between L and t as the over-

lap between the last tubelet of the link L and t. The overlap

between two tubelets is defined as the average IoU between

their boxes over overlapping frames.

Initialization. In the first frame, a new link is started for

each of the N tubelets. At a given frame, new links start

from tubelets that are not associated to any existing link.

Linking tubelets. Given a new frame f , we extend one by

one in descending order of scores each of the existing links

with one of the N tubelet candidates starting at this frame.

The score of a link is defined as the average score of its

tubelets. To extend a link L, we pick the tubelet candidate t
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Figure 4. Examples when comparing per-frame (K =1) and tubelet detections (K =6). The yellow color represents the detections and

their scores for the classes shown, the red color highlights errors due to missed detections (first row) or wrong labeling (third row) and the

green color corresponds to correct labels. Our ACT-detector outputs one class label with one score per tubelet, we thus display it once.

that meets the following criteria: (i) is not already selected

by another link, (ii) has the highest score, and (iii) verifies

ov(L, t)> τ , with τ a given threshold. In our experiments

we use τ=0.2.

Termination. Links stop when these criteria are not met for

more than K − 1 consecutive frames.

Temporal smoothing: from tubelet links to action tubes.

For each link L, we build an action tube, i.e., a sequence of

bounding boxes. The score of a tube is set to the score of

the link, i.e., the average score over the tubelets in the link.

To set the bounding boxes, note that we have multiple box

candidates per frame as the tubelets are overlapping. One

can simply use the box of the highest scored tubelet. In-

stead, we propose a temporal smoothing strategy. For each

frame, we average the box coordinates of tubelets that pass

through that frame. This allows us to build smooth tubes.

Temporal detection. The initialization and termination

steps result in tubes spanning different temporal extents of

the video. Each tube determines, thus, the start and end in

time of the action it covers. No further processing is re-

quired for temporal localization.

4. Experimental results

In this section we study the effectiveness of our ACT-

detector. After presenting the datasets used in our exper-

iments (Section 4.1), we provide an analysis of our ACT-

detector: we validate anchor cuboids (Section 4.2), evalu-

ate input modalities (RGB and flow) and their fusion (Sec-

tion 4.3), and examine the impact of the length K of the

sequence of frames (Section 4.4). We finally compare our

method to the state of the art (Section 4.5). We also provide

an error analysis in an extended version of this paper [13].

4.1. Datasets, metrics and implementation details

Datasets. The UCF-Sports dataset [26] contains 150 videos

from 10 sports classes such as diving or running. The videos

are trimmed to the action. We use the train/test split of [15].

The J-HMDB dataset [12] contains 928 videos with 21
actions, including brush hair and climb stairs. The videos

are trimmed to the action. We report results averaged on the

three splits defined in [12], unless stated otherwise.

The UCF-101 dataset [31] contains spatio-temporal an-

notations for 24 sports classes in 3207 videos. The videos

are not trimmed. Following [9, 23, 27, 36], we report results

for the first split only.

Metrics. We use metrics at both frame and video level.

Frame-level metrics allow us to compare the quality of the

detections independently of the linking strategy. Metrics at

the video level are the same as the ones at the frame level,

replacing the Intersection-over-Union (IoU) between boxes

by a spatio-temporal overlap between tubes, i.e., an aver-

age across time of the per-frame IoU [27, 36]. To measure

our performance at the frame level, we take into account

the boxes originating from all tubelets that pass through the

frame with their individual scores and perform NMS. In all

cases, we only keep the detections with a score above 0.01.

We report frame and video mean Average Precision

(mAP). A detection is correct if its IoU with a ground-truth
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Figure 5. (a) Motion overlap: Mean motion overlap between a box in a ground-truth tube and its box n frames later for varying n.

(b-d) Recall of the anchor cuboids for various IoU thresholds on the training set of three action localization datasets. The numbers in

parenthesis indicate the recall at IoU=0.5.

box or tube is greater than 0.5 and its action label is cor-

rectly predicted [5]. For each class, we compute the average

precision (AP) and report the average over all classes.

To evaluate the localization accuracy of the detections,

we report MABO (Mean Average Best Overlap) [32]. We

compute the IoU between each ground-truth box (or tube)

and our detections. For each ground truth box (or tube), we

keep the overlap of the best overlapping detection (BO) and,

for each class, we average over all boxes (or tubes) (ABO).

The mean is computed over all classes (MABO).

To evaluate the quality of the detections in terms of scor-

ing, we also measure classification accuracy. In each frame,

assuming that the ground-truth localization is known, we

compute class scores for each ground-truth box by averag-

ing the scores from the detected boxes or tubelets (after re-

gression) whose overlap with the ground-truth box of this

frame is greater than 0.7. We then assign the class having

the highest score to each of these boxes and measure the

ratio of boxes that are correctly classified.

Implementation details. We use VGG [29] with ImageNet

pre-training for both appearance and motion streams [23,

35]. Our frames are resized to 300× 300. We use the same

hard negative mining strategy as SSD [19], i.e., to avoid an

unbalanced factor between positive and negative samples,

only the hardest negatives up to a ratio of 3 negatives for 1

positive are kept in the loss. We perform data augmentation

to the whole sequence of frames: photometric transforma-

tion, rescaling and cropping. Given the K parallel streams,

the gradient of the shared convolutional layers is the sum

over the K streams. We find that dividing the learning rate

of the shared convolutional layers by K helps convergence,

as it prevents large gradients.

4.2. Validation of anchor cuboids

This section demonstrates that an anchor cuboid can

handle moving actions. We first measure how much the ac-

tors move in the training sets of the three action localization

datasets by computing the mean motion overlap. For each

box in a ground-truth tube, we measure its motion overlap:

the overlap between this box and the ground-truth box n

frames later for varying n. For each class, we compute the

average motion overlap over all frames and we report the

mean over all classes in Figure 5 (a). We observe that the

motion overlap reduces as n increases, especially for UCF-

Sports and UCF-101 for which the motion overlap for a gap

of n=10 frames is around 60%. This implies that there is

still overlap between the ground-truth boxes that are sepa-

rated by n= 10 frames. It also means that in many cases,

this overlap is below 50% due to the motion of the actor.

In practice, we want to know if we have positive train-

ing anchor cuboids. Positive cuboids are the ones that have

an overlap of at least 50% with a ground-truth tubelet; the

overlap being the average IoU between boxes over the K

frames in the sequence. Such cuboids are required for train-

ing the classifier and the regressor. Thus, we consider all

possible training sequences and compute for each class the

recall of the anchor cuboids with respect to the ground-truth

tubelets, i.e., the ratio of ground-truth tubelets for which at

least one anchor cuboid has an overlap over 0.5. We report

the mean recall over the classes for varying IoU thresholds

for the three datasets in Figure 5 (b-d). For all datasets, the

recall at IoU= 0.5 remains > 98% up to K = 6 and over

95% for K=10. This confirms that cuboid-shaped anchors

can be used in case of moving actors. When increasing K,

for instance to 32, the recall starts dropping significantly.

Given that sequences of up to K = 10 frames result

in high recall of the anchor cuboids, we examine in Sec-

tions 4.3 and 4.4 the performance of our tubelet detector for

sequences of length ranging between K=1 and K=10.

4.3. Tubelet modality

In this section, we examine the impact of the RGB and

flow modalities and their fusion on the performance of our

ACT-detector. For all datasets, we examine the frame-mAP

when using (i) only RGB data, (ii) only flow data, (iii) union

of RGB + flow data [27], and (iv) late fusion of RGB + flow

data for varying sequence length from 1 to 10 frames.

For all datasets and for all K, the RGB stream (blue line)

outperforms the flow stream (red line), showing that appear-

ance information is on average a more distinctive cue than

motion (Figure 6). In all cases, using both modalities (green

and black lines) improves the detection performance com-
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Figure 6. Frame-mAP of our ACT-detector on the three datasets

when varying K for RGB data (blue line), flow (red line), union

and late fusion of RGB + flow data (black and green lines, resp.).

pared to using only one. We observe that late fusion of the

scores (green line) performs consistently better than union

fusion (black line), with a gain between 1% and 4% in terms

of frame-mAP. This can be explained by the fact that union

fusion considers a bigger set of detections without taking

into account the similarity between appearance and motion

detections. Instead, the late fusion re-scores every detection

by taking into account both RGB and flow scores. Given

that late fusion delivers the best performance, we use it in

the remainder of this paper.

4.4. Tubelet length

In this section, we examine the impact of K. We con-

sider K = 1 as the baseline, and we report results for our

method with K = 2, 4, 6, 8, 10. We quantify the impact

of K by measuring (i) the localization accuracy (MABO),

(ii) the classification accuracy, (iii) the detection perfor-

mance (frame-mAP), and (iv) the motion speed of actors.

MABO. MABO allows us to examine the localization ac-

curacy of the per-frame detections when varying K. Results

are reported in Figure 7 (top). For all three datasets we ob-

serve that using sequences of frames (K > 1) leads to a

significant improvement. In particular, MABO increases up

to K = 4, and then remains almost constant up to K = 8
frames. For instance, MABO increases by 5% on UCF-

Sports, 2% on J-HMDB and 5% on UCF-101 when using

K=6 instead of K=1. This clearly demonstrates that per-

forming detection at the sequence level results in more ac-

curate localization, see Figure 3 for examples. Overall, we

observe that K = 6 is one of the values for which MABO

obtains excellent results for all datasets.

Classification accuracy. We report classification accuracy

on the three action localization datasets in Figure 7 (bot-

tom). Using sequences of frames (K > 1) improves the

classification accuracy of the detections for all datasets. For

UCF-Sports, the accuracy keeps increasing with K, while

for J-HMDB it remains almost constant after K = 6. For

UCF-101, the accuracy increases when moving from K=1
to K=4 and after K=8 it starts decreasing. Overall, using

up to K = 10 frames improves performance over K = 1.

This shows that the tubelet scoring improves the classifica-

tion accuracy of the detections. Again, K=6 is one of the

values which results in excellent results for all datasets.

Figure 7. MABO (top) and classification accuracy (bottom) of our

ACT-detector on the three datasets when varying K.

K
UCF-Sports J-HMDB (split 1) UCF-101 (split 1)

slow medium fast slow medium fast slow medium fast

K=1 79.5 84.0 68.1 61.2 55.5 49.0 69.6 73.5 67.3

K=6 85.5 89.7 76.8 69.8 66.9 58.0 75.4 78.5 70.7

Table 1. Frame-mAP for slow, medium and fast moving actors.

Frame-mAP. Figure 6 shows the frame-mAP when train-

ing the ACT-detector with varying K. On all three datasets,

we observe a gain up to 10% when increasing the tubelet

length up to K = 6 or 8 frames depending on the dataset,

compared to the standard baseline of per-frame detection.

This result highlights the benefit of performing detection at

the sequence level. For J-HMDB and UCF-101, we also

observe a performance drop for K > 8, because regressing

from anchor cuboids is harder as (a) the required transfor-

mation is larger when the actor moves, and (b) there are

more training parameters for less positive samples, given

that the recall of anchor cuboids decreases (Section 4.2).

The above results show that K = 6 gives overall good re-

sults. We use this value in the following sections.

Figure 4 shows some qualitative examples comparing the

performance for K = 1 and K = 6. We observe that our

tubelets lead to less missed detections and to more accurate

localization compared to per-frame detection (first and sec-

ond rows). Moreover, our ACT-detector reduces labeling

mistakes when one frame is not enough to disambiguate be-

tween classes. For instance, in the last row we predict the

correct label catch, whereas in the third row there is a big

variance in the labels (swing basketball, kick ball, catch).

Handling moving actors. To validate that our ACT-

detector can handle moving actors, we measure frame-mAP

with respect to the speed of the actor. We group actors into

three categories (slow, medium, fast) with 1/3 of the data in

each category. Speed is computed using the IoU of an actor

with its instances in ±10 neighboring frames. Table 1 re-

ports the frame-mAP at IoU = 0.5 for the three categories.

For all datasets there is a clear gain between K = 1 and

K=6 for all speeds. In particular, for actors with fast mo-

tion the gain is +8% for UCF-Sports, +9% for J-HMDB,

and +3% for UCF-101. This confirms that our tubelets can

successfully handle large displacements. A potential expla-

nation is the fact that the receptive fields are significantly

larger than the the spatial extent of the anchor cuboid.
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detector method
UCF-Sports J-HMDB (all splits) UCF-101 (split 1)

0.2 0.5 0.75 0.5:0.95 0.2 0.5 0.75 0.5:0.95 0.2 0.5 0.75 0.5:0.95

actionness [34] - - - - - 56.4 - - - - - -

R-CNN
[9] - 75.8 - - - 53.3 - - - - - -

[36] - 90.5 - - 63.1 60.7 - - 51.7 - - -

Faster R-CNN

[23] w/o MR 94.8 94.8 47.3 51.0 71.1 70.6 48.2 42.2 71.8 35.9 1.6 8.8

[23] with MR 94.8 94.7 - - 74.3 73.1 - - 72.9 - - -

[27] - - - - 72.6 71.5 43.3 40.0 66.7 35.9 7.9 14.4

SSD
[30] - - - - 73.8 72.0 44.5 41.6 73.5 46.3 15.0 20.4

ours 92.7 92.7 78.4 58.8 74.2 73.7 52.1 44.8 77.2 51.4 22.7 25.0

Table 2. Comparison of video-mAP to the state of the art at various detection thresholds. The columns 0.5:0.95 correspond to the average

video-mAP for thresholds with step 0.05 in this range. For [23], we report the results with and without their multi-region (+MR) approach.

detector method UCF-Sports J-HMDB UCF-101

actionness [34] - 39.9 -

R-CNN
[9] 68.1 36.2 -

[36] 71.9 45.8 35.8

Faster [23] w/o MR 82.3 56.9 64.8

R-CNN [23] with MR 84.5 58.5 65.7

SSD ours 87.7 65.7 67.1

Table 3. Comparison of frame-mAP to the state of the art. For [23],

we report the results with and without their multi-region (+MR).

4.5. Comparison to the state of the art

We compare our ACT-detector to the state of the art.

Note that our results reported in this section are obtained

by stacking 5 consecutive flow images [23, 28] as input to

the motion stream, instead of just 1 for each of the K = 6
input frames. This variant brings about +1% frame-mAP.

Frame-mAP. We report frame-mAP on the three datasets

in Table 3. We compare our performance with late fusion

of RGB+5flows when K = 6 to [9, 36], that use a two-

stream R-CNN, and to [34], which is based on actionness.

We also compare to Peng and Schmid [23] that build upon

a two-stream Faster R-CNN with multiscale training and

testing. We report results of [23] with and without their

multi-region approach. The latter case can be seen as the

baseline Faster R-CNN with multiscale training and testing

for K = 1. Our ACT-detector (i.e., with K = 6) brings a

clear gain in frame-mAP, outperforming the state of the art

on UCF-Sports, J-HMDB and UCF-101. We also observe

that overall the performance of the baseline SSD (K = 1)

is somewhat lower (by around 3 to 5%) than Faster R-CNN

used by the state of the art [23], see Figure 6. SSD, how-

ever, is much faster than Faster R-CNN, and therefore more

suitable for large video datasets.

Video-mAP. Table 2 reports the video-mAP results for our

method and the state of the art at various IoU thresholds

(0.2, 0.5, and 0.75). We also report results with the proto-

col 0.5:0.95 [18], which averages over multiple IoU thresh-

olds, i.e., over 10 IoU thresholds between 0.5 and 0.95 with

a step of 0.05. At rather low IoU thresholds (0.2, 0.5) on

UCF-Sports and J-HMDB the performance of our ACT-

detector is comparable to the state-of-the-art methods that

rely on Faster R-CNN [23, 27] or on SSD [30]. At higher

overlap thresholds we significantly outperform them. For

instance on UCF-Sports and J-HMDB at IoU = 0.75 we

outperform [23] by 31% and 4%. In particular, our per-

formance drops slower than the state of the art as the IoU

threshold increases. This highlights the high localization

accuracy of our tubelets and, therefore of our tubes. On

UCF-101, we significantly outperform the state of the art

at all overlap thresholds, with a larger gap at high thresh-

olds. For instance, we outperform [30] by 5% at IoU=0.5,

and by 7.5% at IoU = 0.75. To validate our tubelet link-

ing strategy (Section 3.3), we experiment with an approach

that transforms tubelets into individual boxes and links them

with [23, 27]. We observe a consistent gain of 1% on all

datasets. As a summary, our ACT-detector improves over

the state of the art, especially at high thresholds.

Runtime. We compare our runtime using two streams (ap-

pearance and flow) to the frame-based SSD approach of

Singh et al. [30] and to frame-based Faster R-CNN ap-

proaches [23, 27]. We report runtime on a single GPU with-

out flow computation. Faster R-CNN based approaches [23,

27] run at 4fps and the SSD-based method [30] at 25-30fps.

Our ACT-detector also runs at 25-30fps (K = 6). Com-

puting tubelets has a low overhead, since the convolutional

features are computed once per frame due to the parallel

architecture with shared weights. The post-processing is

extremely fast (∼300fps) for all methods.

5. Conclusions

We introduced the ACT-detector, a tubelet detector that

leverages the temporal continuity of video frames. It takes

as input a sequence of frames and outputs tubelets instead

of operating on single frames, as is the case with previous

state-of-the-art methods [23, 27, 30]. Our method builds

upon SSD and introduces anchor cuboids that are scored

and regressed over sequences of frames. An extensive ex-

perimental analysis shows the benefits of our ACT-detector

for both classification and localization. It achieves state-of-

the-art results, in particular for high overlap thresholds.
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