
Temporal Tessellation: A Unified Approach for Video Analysis

Dotan Kaufman1, Gil Levi1, Tal Hassner2,3, and Lior Wolf1,4

1The Blavatnik School of Computer Science , Tel Aviv University, Israel
2Information Sciences Institute , USC , CA, USA

3The Open University of Israel, Israel
4Facebook AI Research

Abstract

We present a general approach to video understanding,

inspired by semantic transfer techniques that have been suc-

cessfully used for 2D image analysis. Our method con-

siders a video to be a 1D sequence of clips, each one as-

sociated with its own semantics. The nature of these se-

mantics – natural language captions or other labels – de-

pends on the task at hand. A test video is processed by

forming correspondences between its clips and the clips of

reference videos with known semantics, following which,

reference semantics can be transferred to the test video.

We describe two matching methods, both designed to en-

sure that (a) reference clips appear similar to test clips and

(b), taken together, the semantics of the selected reference

clips is consistent and maintains temporal coherence. We

use our method for video captioning on the LSMDC’16

benchmark, video summarization on the SumMe and TV-

Sum benchmarks, Temporal Action Detection on the Thu-

mos2014 benchmark, and sound prediction on the Greatest

Hits benchmark. Our method not only surpasses the state

of the art, in four out of five benchmarks, but importantly, it

is the only single method we know of that was successfully

applied to such a diverse range of tasks.

1. Introduction

Despite decades of research, video understanding still

challenges computer vision. The reasons for this are many,

and include the hurdles of collecting, labeling and process-

ing video data, which is typically much larger yet less abun-

dant than images. Another reason is the inherent ambiguity

of actions in videos which often defy attempts to attach di-

chotomic labels to video sequences [26]

Rather than attempting to assign videos with single ac-

tion labels (in the same way that 2D images are assigned

object classes in, say, the ImageNet collection [47]) an in-

creasing number of efforts focus on other representations

Figure 1. Tessellation for temporal coherence. For video cap-

tioning, given a query video (top), we seek reference video clips

with similar semantics. Our tessellation ensures that the semantics

assigned to the test clip are not only the most relevant (the five

options for each clip) but also preserve temporal coherence (green

path). Ground truth captions are provided in blue.

for the semantics of videos. One popular approach as-

signs videos with natural language text annotations which

describe the events taking place in the video [4, 44]. Sys-

tems are then designed to automatically predict these anno-

tations. Others attach video sequences with numeric values

indicating what parts of the video are more interesting or

important [13]. Machine vision is then expected to deter-

mine the importance of each part of the video and summa-

rize videos by keeping only their most important parts.

Although impressive progress was made on these and

other video understanding problems, this progress was often

made disjointedly: separate specialized systems were uti-

lized that were tailored to obtain state of the art performance

on different video understanding problems. Still lacking is

a unified general approach to solving these different tasks.

Our approach is inspired by recent 2D dense correspon-

dence estimation methods (e.g., [16, 34]). These methods

were successfully shown to solve a variety of image un-

derstanding problems by transferring per-pixel semantics

from reference images to query images. This general ap-

94

proach was effectively applied to a variety of tasks, includ-

ing single view depth estimation, semantic segmentation

and more. We take an analogous approach, applying similar

techniques to 1D video sequences rather than 2D images.

Specifically, image based methods combine local, per-

pixel appearance similarity with global, spatial smoothness.

We instead combine local, per-region appearance similarity

with global semantics smoothness, or temporal coherence.

Fig. 1 offers an example of this, showing how temporal co-

herence improves the text captions assigned to a video.

Our contributions are as follows: (a) We describe a novel

method for matching test video clips to reference clips. Ref-

erences are assumed to be associated with semantics rep-

resenting the task at hand. Therefore, by this matching

we transfer semantics from reference to test videos. This

process seeks to match clips which share similar appear-

ances while maintaining semantic coherency between the

assigned reference clips. (b) We discuss two techniques for

maintaining temporal coherency: the first uses unsupervised

learning for this purpose whereas the second is supervised.

Finally, (c), we show that our method is general by pre-

senting state of the art results on three recent and challeng-

ing video understanding tasks, previously addressed sepa-

rately: Video caption generation on the LSMDC’16 bench-

mark [46], video summarization on the SumMe [13] and

TVSum [53] benchmarks, and action detection on the THU-

MOS’14 benchmark [20]. In addition, we report results

comparable to the state of the art on the Greatest Hits bench-

mark [38] for sound prediction from video. Importantly, we

will publicly release our code and models.1

2. Related work

Video annotation. Significant progress was made in the

relatively short time since work on video annotation / cap-

tion generation began. Early methods such as [1, 18, 37, 68]

attempted to cluster captions and videos and applied this

for video retrieval. Others [12, 27, 58] generated sentence

representations by first identifying semantic video content

(e.g., verb, noun, etc.) using classifiers tailored for particu-

lar objects and events. They then produce template based

sentences. This approach, however, does not scale well,

since it requires substantial efforts to provide suitable train-

ing data for the classifiers, as well as limits the possible

sentences that the model can produce.

More recently, and following the success of image an-

notation systems based on deep networks such as [8, 64],

similar techniques were applied to videos [8, 55, 62, 69].

Whereas image based methods used convolutional neural

networks (CNN) for this purpose, application to video in-

volve temporal data, which led to the use of recurrent neural

networks (RNN), particularly long short-term memory net-

1See: www.github.com/dot27/temporal-tessellation

works (LSTM) [17]. We also use CNN and LSTM models

but in fundamentally different ways, as we later explain in

Sec. 4.

Video summarization. This task involves selecting the

subset of a query video’s frames which represents its most

important content. Early methods developed for this pur-

pose relied on manually specified cues for determining

which parts of a video are important and should be retained.

A few such examples include [5, 41, 53, 73].

More recently, the focus shifted towards supervised

learning methods [11, 13, 14, 74], which assume that train-

ing videos also provide manually specified labels indicat-

ing the importance of different video scenes. These meth-

ods sometimes use multiple individual-tailored decisions to

choose video portions for the summary [13, 14] and often

rely on the determinantal point process (DPP) in order to

increase the diversity of selected video subsets [3, 11, 74].

Unlike video description, LSTM based methods were only

considered for summarization very recently [75]. Their use

of LSTM is also very different from ours.

Temporal action detection. Early work on video ac-

tion recognition relied on hand crafted space-time fea-

tures [24, 25, 30, 65]. More recently, deep methods have

been proposed [19, 21, 57], many of which learn deep visual

and motion features [32, 51, 60, 67]. Along with the devel-

opment of stronger methods, larger and more challenging

benchmarks were proposed [15, 26, 28, 54]. Most datasets,

however, used trimmed, temporally segmented videos, i.e:

short clips which contain only a single action.

Recently, similar to the shift toward classification com-

bined with localization in object recognition, some of the

focus shifted toward more challenging and realistic sce-

narios of classifying untrimmed videos [10, 20]. In these

datasets, a given video can be up to a few minutes in length,

different actions occur at different times in the video and

in some parts of the video no clear action occurs. These

datasets are also used for classification, i.e. determining the

main action taking place in the video. A more challenging

task, however, is the combination of classification with tem-

poral detection: determining which action, if any, is taking

place at each time interval in the video.

In order to tackle temporal action detection in untrimmed

videos, Yuan et al. [72] encode visual features at different

temporal resolutions followed by a classifier to obtain clas-

sification scores at different time scales. Escorcia et al [9]

focus instead on a fast method for obtaining action pro-

posals from untrimmed videos, which later can be fed to

an action classifier. Instead of using action classifiers, our

method relies on matching against a gallery of temporally

segmented action clips.

95

www.github.com/dot27/temporal-tessellation

3. Preliminaries

Our approach assumes that test videos are partitioned

into clips. It then matches each test clip with a reference

(training) clip. Matching is performed with two goals in

mind. First, at the clip level, we select reference clips which

are visually similar to the input. Second, at the video level,

we select a sequence of clips which best preserves the tem-

poral semantic coherency. Taken in sequence, the order of

selected, reference semantics should adhere to the temporal

manner in which they appeared in the training videos.

Following this step, the semantics associated with se-

lected reference clips can be transferred to test clips. This

allows us to reason about the test video using information

from our reference. This approach is general, since it al-

lows for different types of semantics to be stored and trans-

ferred from reference, training videos to the test videos.

This can include, in particular, textual annotations, action

labels, manual annotations of interesting frames and others.

Thus, different semantics represent different video under-

standing problems which our method can be used to solve.

3.1. Encoding video content

We assume that training and test videos are partitioned

into sequences of clips. A clip C consists of a few consec-

utive frames Ii, i ∈ 1..n where n is the number of frames

in the clip. Our tessellation approach is agnostic to the par-

ticular method chosen to represent these clips. Of course,

The more robust and discriminative the representation, the

better we expect our results to be. We, therefore, chose the

following two step process, based on the recent state of the

art video representations of [31].

Step 1: Representing a single frame. Given a frame Ii

we use an off the shelf CNN to encode its appearance. We

found the VGG-19 CNN to be well suited for this pur-

pose. This network was recently proposed in [52] and used

to obtain state of the art results on the ImageNet, large

scale image recognition benchmark (ILSVRC) [47]. In their

work, [52] used the last layer of this network to predict Im-

ageNet class labels, represented as one-hot encodings. We

instead treat this network as a feature transform function

f : I 7→ a
′ which for image (frame) I returns the 4, 096D

response vector from the penultimate layer of the network.

To provide robustness to local translations, we extract

these features by oversampling: I is cropped ten times at

different offsets around the center of the frame. These

cropped frames are normalized by subtracting the mean

value of each color channel and then fed to the network.

Finally, the ten 4, 096D response vectors returned by the

network are pooled into a single vector by element-wise

averaging. Principle component analysis (PCA) is further

used to reduce the dimensionality of these features to 500D,

giving us the final, per frame representation a ∈ R
500.

Step 2: Representing multiple frames. Once the frames

are encoded, we pool them to obtain a representation for

the entire clip. Pooling is performed by Recurrent Neural

Network Fisher Vector (RNN-FV) encoding [31].

Specifically, We use their RNN, trained to predict the

feature encoding of a future frame, ai, given the encodings

for its k preceding frames, (ai−k, ...,ai−1). This RNN was

trained on the training set from the Large Scale Movie De-

scription Challenge [46], containing roughly 100K videos.

We apply the RNN-FV to the representations produced for

all of the frames in the clip. The gradient of the last layer of

this RNN is then taken as a 100,500D representation for the

entire sequence of frames in C. We again use PCA for di-

mensionality reduction, this time mapping the features pro-

duced by the RNN-FV to 2,000D dimensions, resulting in

our pooled representation A ∈ R
2,000. We refer to [31] for

more details about this process.

3.2. Encoding semantics

As previously mentioned, the nature of the semantics

associated with a video depends on the task at hand. For

tasks such as action detection and video summarization, for

which the supervision signal is of low dimension, the se-

mantic space of the labels has only a few bits of informa-

tion per segment and is not discriminative enough between

segments. In this case, we take the semantic space V
S to

be the same as the appearance space V
A and take both to

be the pooled representation A.

Textual semantics In video captioning, in which the text

data provides a rich source of information, our method

largely benefits from having a separate semantic represen-

tation that is based on the label data.

We tested several representations for video semantics

and chose the recent Fisher Vector of a Hybrid Gaussian-

Laplacian Mixture Model (FV-HGLMM) [23], since it pro-

vided the best results in our initial cross-validation experi-

ments.

Briefly, we assume a textual semantic representation, s

for a clip C, where s is a string containing natural language

words. We use word2vec [35] to map the sequence of words

in s to a sequence of vectors, (s1, ..., sm), where m is the

number of words in s and can be different for different clips.

FV-HGLMM then maps this sequence of numbers to a vec-

tor S ∈ R
M of fixed dimensionality, M .

FV-HGLMM is based on the well-known Fisher Vectors

(FV) [40, 50, 56]. The standard Gaussian Mixture Models

(GMM) typically used to produce FV representations are

replaced here with a Hybrid Gaussian-Laplacian Mixture

Model which was shown in [23] to be effective for image

annotation. We refer to that paper for more details.

96

3.3. The joint semantics video space (SVS)

Clip representations and their associated semantics are

all mapped to the joint SVS. We aim to map the appearance

of each clip and its assigned semantics to two neighboring

points in the SVS. By doing so, given an appearance rep-

resentation for a query clip, we can search for potential se-

mantic assignments for this clip in our reference set using

standard Euclidean distance. This property will later be-

come important in Sec. 4.2.

In practice, all clip appearance representations A and

their associated semantic representations S are jointly

mapped to the SVS using regularized Canonical Correlation

Analysis (CCA) [63] where the CCA mapping is trained us-

ing the given ground truth semantics. In our experiments,

the CCA regularization parameter is fixed to be a tenth of

the largest eigenvalue of the cross domain covariance ma-

trix computed by CCA. For each clip, CCA projects A and

S (appearance and semantics, respectively) to V
A and V

S .

4. Tessellation

We assume a data set of training (reference) clips, VA
j ,

and their associated semantics, V
S
j , represented as de-

scribed in Sec. 3. Here, j ∈ 1..N indexes the entire data

set of N clips. Since these clips may come from different

videos, j does not necessarily reflect temporal order.

Given a test video, we process its clips following 3.1

and 3.3, obtaining a sequence of clip representations, UA
i in

the SVS, where consecutive index values for i ∈ M , repre-

sent consecutive clips in a test video with M clips. Our goal

is to match each U
A
i with a data set semantic representation

V
S
ji

while optimizing the following two requirements:

1. Semantics-appearance similarity. The representa-

tion for the test clip appearance is similar to the repre-

sentation of the selected semantics.

2. Temporal coherence. The selected semantics are or-

dered similar to their occurrences in the training set.

Drawing on the analogy to spatial correspondence estima-

tion methods such as SIFT flow [34], the first requirement is

a data term and the second is a smoothness term, albeit with

two important distinctions: First, the data term matches test

appearances to reference semantics directly, building on the

joint embedding of semantics and appearances in the SVS.

Second, we define the smoothness term in terms of associ-

ated semantics and not pixel coordinates.

4.1. Local Tessellation

Given the sequence of appearance representations U =
(UA

1
, ...,UA

M) for the test sequence, we seek a correspond-

ing set of reference semantics V = (VS
j1
, ...,VS

jM
) (here,

again, j indexes the N clips in the reference set). The local

tessellation method employs only the semantics-appearance

similarity. In other words, we associate each test clip U
A
i ,

with the following training clip:

V∗

ji
= argmin

Vj

||UA
i −V

S
j || (1)

4.2. Tessellation Distribution

We make the Markovian assumption that the semantics

assigned to input clip i, only depend on the appearance of

clip i and the semantics assigned to its preceding clip, i−1.

This gives the standard factorization of the joint distribution

for the clip appearances and their selected semantics:

P (V,U) =P (VS
j1
)P (UA

1
|VS

j1
)× (2)

M∏

i=2

P (VS
ji
|VS

ji−1
)P (UA

i |V
S
ji
).

We set the priors P (VS
j1
) to be the uniform distribution.

Due to our mapping of both appearances and semantics to

the joint SVS, we can define both posterior probabilities

simply using the L2-norm of these representations:

P (UA
i |V

S
j) ∝ exp (−||UA

i −V
S
j ||

2) (3)

P (VS
ji
|VS

ji−1
) ∝ exp (−||VS

ji
−V

S
ji−1

||2) (4)

Ostensibly, We can now apply the standard Viterbi

method [42] to obtain a sequence V which maximizes this

probability. In practice, we used a slightly modified ver-

sion of this method, and, when possible, a novel method de-

signed to better exploit our training data to predict database

matches. These are explained below.

4.3. Restricted Viterbi Method.

Given the test clip appearance representations U , the

Viterbi method provides an assignment V∗ such that,

V∗ = argmax
V

P (V,U). (5)

We found that in practice P (UA
i |V

S
j) is a long-tail distri-

bution, with only a few dataset elements VS
j near enough to

any U
A
i for their probability to be more than near-zero. We,

therefore, restrict the Viterbi method in two ways. First,

we consider only the r′ = 5 nearest neighboring database

semantics features. Second, we apply a threshold on the

probability of our data term, Eq. (3), and do not consider

semantics V
S
j falling below this threshold, except for the

first nearest neighbor. Therefore, the number of available

assignments for each clip is 1 ≤ r ≤ 5. This process is

illustrated in Figure 2 (left).

97

Figure 2. Our two non-local tessellations. Left: Tessellation by restricted Viterbi. For a query video (top), our method finds visually

similar videos and selects the clips that preserve temporal coherence using the Viterbi Method. The ground truth captions are shown in

blue, the closest caption is shown in pink. Note that our method does not always select clips with the closest captions but the ones that best

preserve temporal coherence. Right: Tessellation by predicting the dynamics of semantics. Given a query video (top) and a previous clip

selection, we use an LSTM to predict the most accurate semantics for the next clip.

Method CIDEr-D BLEU-4 BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE

BUPT CIST AI lab∗ .072 .005 .151 .047 .013 .075 .152

IIT Kanpur∗ .042 .004 .116 .003 .011 .070 .138

Aalto University∗ .037 .002 .007 .001 .005 .033 .069

Shetty and Laaksonen [48] .044 .003 .119 .024 .007 .046 .108

Yu et al [71] .082 .007 .157 .049 .017 .070 .149

S2VT [62] .088 .007 .162 .051 .017 .070 .157

Appearance Matching .042 .003 .118 .026 .008 .046 .110

Local Tess. (mean pooling) .091 .005 .134 .038 .013 .054 .125

Local Tessellation .098 .007 .144 .042 .016 .056 .130

Unsupervised Tessellation .102 .007 .146 .043 .016 .055 .137

Supervised Tessellation .109 .008 .151 .044 .017 .057 .135

Table 1. Video annotation results on the LSMDC’16 challenge [46]. CIDEr-D and BLEU-4 values were found to be the most correlated

with human annotations in [45, 61]. Our results on these metrics far outperform others. * Denotes results which appear in the online

challenge result board, but were never published. They are included here as reference.

4.4. Predicting the Dynamics of Semantics

The Viterbi method of Sec. 4.3 is efficient and requires

only unsupervised training. Its use of the smoothness term

of Eq. (3), however, results in potentially constant semantic

assignments, where for any ji, V
S
ji

can equal VS
ji−1

.

In cases where reference clips are abundant and come

from continuous video sources, we provide a more effective

method of ensuring smoothness. This is done by supervised

learning of how the semantic labels associated with video

clips change over time, and by using that to predict the as-

signment VS
ji

for UA
i .

Our process is illustrated in Fig. 2 (right). We train an

LSTM RNN [17] on the semantic and appearance represen-

tations of the training set video clips. We use this network

as a function:

g(VS
0
,VS

1
, ...,VS

i−1
,UA

1
, ...,UA

i−1
,UA

i) = V
S
i ,

V
S
0
= 0, (6)

which predicts the semantic representation V
S
i for the clip

at time i given the semantic representation, VS
i−1

, assigned

to the preceding clip and the appearance of the current clip,

U
A
i . The labeled examples used to train g are taken from the

training set, following the processing described in Sec. 3.2

and 3.3 in order to produce 2,000D post-CCA vectors. Each

pair of previous ground truth semantics and current clip ap-

pearance in the training data provides one sample for train-

ing the LSTM. We employ two hidden layers, each with

1, 000 LSTM cells. The output, which predicts the seman-

tics of the next clip, is also 2,000D.

Given a test video, we begin by processing it as in

Sec. 4.3. In particular, for each of its clip representations

U
A
i , we select r ≤ 5 nearest neighboring semantics from

the training set. At each time step i, we feed the clip and its

assigned semantics from the preceding clip at time i− 1 to

our LSTM predictor g. We thus obtain an estimate for the

semantics we expect to see at time i, V̂S
i .

Of course, the predicted vector V̂
S
i cannot necessarily

be interpreted as a semantic label: not all points in the

SVS have semantic interpretations. We thus choose a rep-

98

