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Abstract

Most state-of-the-art motion segmentation algorithms

draw their potential from modeling motion differences of

local entities such as point trajectories in terms of pairwise

potentials in graphical models. Inference in instances of

minimum cost multicut problems defined on such graphs al-

lows to optimize the number of the resulting segments along

with the segment assignment. However, pairwise potentials

limit the discriminative power of the employed motion mod-

els to translational differences. More complex models such

as Euclidean or affine transformations call for higher-order

potentials and a tractable inference in the resulting higher-

order graphical models. In this paper, we (1) introduce a

generalization of the minimum cost lifted multicut problem

to hypergraphs, and (2) propose a simple primal feasible

heuristic that allows for a reasonably efficient inference in

instances of higher-order lifted multicut problem instances

defined on point trajectory hypergraphs for motion segmen-

tation. The resulting motion segmentations improve over

the state-of-the-art on the FBMS-59 dataset.

1. Introduction

Motion segmentation, i.e. the task of segmenting all

moving objects visible in a video, is a long-standing task

in computer vision [5, 25, 30, 26, 34]. On a low level, it

requires an accurate estimation and adequate comparison of

the point-wise observable motion. At the same time, the

number of independently moving objects has to be inferred

and all points have to be correctly assigned to a motion seg-

ment. While spectral clustering approaches have been used

traditionally in this field [5, 34, 13], correlation clustering,

also referred to as minimum cost multicut problem, has re-

cently proven successful on this task [20].

In fact, correlation clustering differs in the objective

function from spectral clustering approaches since it does

not prefer balanced cuts. At the same time, it directly opti-

mizes for the right number of objects, such that there is no

need for a separate model selection. As spectral clustering,

MCe [20] proposed

Figure 1. Motion segmentation result for a sequence with two con-

sistently moving objects under scaling (the man and the horse next

to him). The higher-order lifted multicut model allows for a more

precise segmentation.

the objective function of the minimum cost multicut prob-

lem is defined by edge costs. Unlike the spectral clustering

scenario, these edge costs can have any real value and thus

explicitly model attractive and repulsive terms in the objec-

tive function.1

The formulation of the minimum cost lifted multicut

model in [21] facilitates the definition of such costs between

any two nodes, even if they are not connected in the origi-

nal graph. This generalization of the cost function allowed

multicut formulations to match the state-of-the-art in image

segmentation and has shown its benefits for multiple target

tracking [35].

One of the key challenges in motion segmentation is to

disambiguate between different objects moving according

to the same motion model as illustrated in Fig. 1. This is

comparable to the difficulty in image segmentation when

different objects have similar color and texture. Lifted Mul-

ticuts can dissolve such ambiguities appropriately for image

segmentation [21]. In this paper, we show that the same is

1Variants of spectral clustering explicitly incorporating (soft) repulsive

terms have been proposed in for example [8, 11].
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true for motion segmentation. In Fig. 1, the man and the

horse next to him can be segmented from the background

and from each other although they move similarly.

However, pairwise potentials, such as the lifted multicut

model from [21] allows to define, are very limited in their

capacity to describe object motion. In fact, the Euclidean

difference between two local motion descriptors such as op-

tical flow vectors or point trajectories, measures how well

the behavior of the two entities can be described by a sin-

gle translational motion model. Depending on the motion

recorded in the video, this simple model can yield good per-

formance as shown e.g. in [31, 20]. However, when we want

to segment objects from videos showing complex motion

patterns caused for example by object or camera rotation,

scaling motion or zooming, more complex motion models

are needed. Transformations describing translation, rota-

tion and scaling can be estimated from two motion vectors.

Thus, for any three points, one can estimate how well their

motion can be described by one Euclidean transformation.

Edges that describe such motion differences are thus at least

of order three. Affine motion differences can be described

with edges of order four and to assign costs to differences

in homographies, the minimum required edge-order is five.

In this paper, we propose the higher-order minimum cost

lifted multicut model. We provide a rigorous definition

along with a simple primal feasible heuristic that allows

for practical applicability in computer vision. To the best

of our knowledge, we are the first to look into this specific

problem, which is specially suitable to formulate the mo-

tion segmentation objective. We demonstrate the benefit of

the proposed model on the motion segmentation task using

third-order edges and improve over the state-of-the-art on

the FBMS-59 [31] dataset.

2. Related Work

Higher-order graph decompositions have been addressed

prominently in computer vision since [2]. For example in

the subsequent works [1, 38, 7, 30, 39, 10, 37], spectral

approaches to the clustering of hypergraphs have been ad-

dressed. Specifically, [30, 39, 10] model higher-order mo-

tions. Zografos et al. [39] model 3D motions using group

invariants and [10] model higher-order motion subspaces.

The segmentation is then generated by projecting the result-

ing hyper-graph onto its primal graph and solving the spec-

tral clustering problem there. Higher-Order Markov Ran-

dom Field (MRF) and Conditional Random Field (CRF)

models have been proposed for example in [12, 24, 33, 27].

Our formulation of higher-order minimum cost multicut

problems is different from both previous approaches. In

contrast to spectral clustering, the multicut formulation does

not suppose any balancing criterion. Further, we directly

infer segmentations from the hyper-graph without any pro-

jection onto its primal graph.

In contrast to MRFs, the proposed approach allows

higher-order edges to connect vertices globally, violating

the Markov property. Further, MRFs and CRFs aim at in-

ferring a node labeling with labels given a priori while mul-

ticut approaches aim at inferring an edge labeling yielding

an optimal number of segments.

However, most previous works on minimum cost multi-

cuts in computer vision focus on the definition of problems

with pairwise potentials [17, 21, 20, 36]. The exception is

the model first presented by [22, 23] and extensively studied

in [18]. Therein, higher-order costs are used for image seg-

mentation on superpixel graphs with pairwise neighborhood

connectivity. In [18] an implementation of an ILP solver is

proposed for small problem instances.

In contrast, we propose a higher-order lifted multicut

model, which allows the definition of edge costs of any or-

der in the lifted graph as well as in its connectivity defining

subgraph. Further, both models differ in that the proposed

model allows edges of any order to define the graph connec-

tivity, while in [22, 23, 18], the graph connectivity is defined

exclusively by pairwise edges.

Lifted multicuts on simple graphs have been proposed

in [21] along with a primal feasible heuristic to generate

solutions. A different heuristic solver for the problem has

been proposed in [4]. Here, we generalize the solver from

[21] to facilitate the inference in higher-order problems.

In our setup, motion segmentation is cast as a point tra-

jectory grouping problem. In a similar way, it has previ-

ously been addressed in [5, 25, 30, 26, 34, 31, 32, 16, 20].

From sparse motion segmentations, framewise dense seg-

mentations can be computed for example by the variational

approaches from [29, 28].

3. The Higher-Order Lifted Multicut Problem

Here, we define an optimization problem, the Higher-

Order Minimum Cost Lifted Multicut Problem in analogy

to the Lifted Multicut Problem proposed in [21]. Its feasible

solutions correspond to the decompositions of a hypergraph

and its objective function can assign, for any set e of nodes,

a real valued cost to all decompositions for which all nodes

v ∈ e are in the same component. A component of a hy-

pergraph is any non-empty subgraph that is node-induced

and connected by edges of any order. A decomposition of

a hypergraph is any partition Π of the node set such that,

for every V ′ ∈ Π, the subgraph induced by V ′ is a con-

nected component of the hypergraph. An instance of the

problem is then defined with respect to an undirected hy-

pergraph G = (V, F ) and an additional set of hyperedges

F ′ connecting sets of nodes that are not necessarily neigh-

bors in G. Practically, we can distinguish between pairwise

edges e ∈ Fp ∪ F ′
p with |e| = 2 and higher-order edges

e ∈ Fh ∪ F ′
h with |e| > 2. In our experiments, we limit

F and F ′ to edges e of order |e| = 2 or 3. For every edge
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e ∈ E = F ∪ F ′, a cost ce ∈ R is assigned to all feasible

solutions for which all nodes connected by e are in the same

component.

Then, we can define a feasible set YE ⊆ {0, 1}E whose

elements y ∈ YE are 01-labelings of all edges E = F ∪F ′.

The feasible set is defined such that: (1) the feasible solu-

tions y ∈ YE relate one-to-one to the decompositions of the

hypergraph G. (2) for every edge e ∈ E, ye = 1 if and only

if all nodes connected by e are in the same component of G.

It can be defined rigorously by linear inequality constraints

on higher-order edges [22, 23] (2) and (3), cycle inequalities

[9] (4) and path and cut constraints (5) and (6) [21].

Definition 1 For any hypergraph G = (V, F ), any F ′ ⊆
⋃

k

(

V
k

)

\ F and any c : E := F ∪ F ′ → R, the 01 linear

program written below is an instance of the Higher-Order

Minimum Cost Lifted Multicut Problem w.r.t. G, E and c.

min
y∈YE

∑

e∈E

ceye (1)

with YE ⊆ {0, 1}E the set of all y ∈ {0, 1}E with

∀e, eh ∈ E | e ⊂ eh : yeh ≤ ye (2)

∀eh ∈ E | Ḡ = (eh, e ∈ E|e ⊂ eh) is connected :

(1− yeh) ≤
∑

e∈E|e⊂eh

(1− ye) (3)

∀C ∈ cycles(G) ∀e ∈ C : (1− ye) ≤
∑

e′∈C\{e}

(1− ye′) (4)

∀e ∈ F, ∀vw ⊂ e∀P ∈ vw-paths(G) :

(1− ye) ≤
∑

e′∈P

(1− y′e) (5)

∀e ∈ F, ∀vw ⊂ e∀C ∈ vw-cuts(G) :

ye ≤
∑

e′∈C

(y′e) (6)

Note that, since higher-order edges e ∈ F are connec-

tivity defining, these conditions need to hold on cycles, vw-

paths (any path in G, connecting v and w) and vw-cuts (any

cut in G assigning v and w to distict components) of any

order. In the higher-order model from [22], it is sufficient

to ensure the cycle inequalities (4) for cycles on pairwise

edges. For the motion segmentation application, it is rea-

sonable to allow higher-order edges to define the graph con-

nectivity since most motion models can only be estimated

on at least two nodes. If, in this case, for a pair of nodes

v and w all higher-order edges with {v, w} ⊆ e have la-

bel ye = 0, there was no motion model that supports v and

w belonging to the same object. Consequently, any group-

ing of a subset of e, for which the motion model can not

be evaluated, to the same component, is uninformed and

should thus be avoided. However, if the connectivity is de-

fined from the projection of e onto a primal graph, this con-

nection is possible and cost-neutral.

Algorithm 1: Kernighan-Lin Algorithm. The function

higher order update bipartition is given in Algorithm 2.

Data: weighted undirected lifted higher-order graph

G = (V, F ∪F ′, c), starting 01-edge labeling y|F∪F ′|

Result: 01-edge labeling y

1 t← 1 while t < max iter and not yt = yt−1 do

2 foreach (a, b) ∈ adjacent partitions(yt−1) do

3 yt ← higher order update bipartition(G, a, b)

4 foreach a ∈ partitions(yt) do

5 yt ← higher order update bipartition(G, a, ∅)

The definition of lifted edges allows to ensure a consis-

tent motion segment connectivity. For example background

motion can often only be correctly estimated from points

with large spatial distance. In this case, the constraints (6)

ensure an existing path between these background points.

At the same time, defining the connectivity on sets of points

in a spatial neighborhood allows to cut apart distinct but

consistently moving objects.

In the following, we describe a primal feasible heuristic

that allows to solve instances of the Higher-Order Lifted

Multicut Problem in practice.

4. Higher-Order Lifted Kernighan-Lin Algo-

rithm

The Kernighan-Lin [19] heuristic is known to work well

for the balanced set partitioning problem. The original

heuristic has been modified in [3] to disregard the size of

the resulting partitions as well as to optimize for the number

of components. In [21], it has been further adapted to work

with sparse and lifted graphs; an additional joining move

has been introduced for a more stable behavior with differ-

ent initializations. Here, we further extend the algorithm

to work with higher-order lifted graphs. While the outer

loop of the algorithm, running over all pairs of neighboring

components is only marginally affected, the major change

concerns the inner iterations, where the gain of moving ver-

tices is computed and successively updated. The algorithm

takes as input an instance of the higher-order lifted multicut

problem and an initial decomposition of G and outputs a

decomposition of G whose higher-order lifted multicut has

an objective value lower than or equal to that of the initial

decomposition. As the basic KLj-Algorithm [21], it main-

tains, throughout its execution, a decomposition of G which

is encoded as a graph G = (V, E). The nodes a ∈ V of G
are components of G and its edges ab ∈ E connect all com-

ponents a and b of G which are connected in G by an edge

of arbitrary order.

Algorithm 1 starts from an initial decomposition pro-

vided as input. As KLj [21], in each iteration, it tries to
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Algorithm 2: Function higher order update bipartition

Data: weighted undirected lifted higher-order graph

G = (V, F ∪ F ′, c), a pair of partitions A and B

Result: 01 - edge labeling y

1 DA∪B = compute differences(F, F ′, A,B)

2 BDY ← compute boundary nodes(F,A,B)

3 ∆join ← compute gain from joining(F, F ′, A,B)

4 S|A∪B| = 0 // cumulative gain

5 M = [.] // empty move vector

6 ; for i← 1 to |BDY | do

7 v∗ ← argmaxv (D(A∪B)∩BDY )

8 M .push back(v∗)

9 foreach e ∈ G.edges(v∗) do

10 if same partition(G.nodes(e)\v∗) then

11 foreach w ∈ G.nodes(e)\v∗ do

12 if same partition(v∗, w) and

|G.nodes(w) \ v∗| = 1 then

13 Dw ← Dw − 2ce

14 else if same partition(v∗, w) and

|G.nodes(w) \ v∗| > 1 then

15 Dw ← Dw − ce

16 else if not same partition(v∗, w) and

|G.nodes(w) \ v∗|= 1 then

17 Dw ← Dw + 2ce

18 else if not same partition(v∗, w) and

|G.nodes(w) \ v∗| > 1 then

19 Dw ← Dw + ce

20 else

21 foreach w ∈ G.nodes(e)\v∗ do

22 if same partition(G.nodes(e)\v∗, w) then

23 if same partition(v∗, w) then

24 Dw ← Dw + ce

25 else if not same partition(v∗, w) then

26 Dw ← Dw − ce

27 Si = Si−1 +Dv∗

28 BDY ← update boundary(v∗, F,A,B)

29 k ← argmaxiSi // best number of moves

30 if ∆join > Sk and ∆join > 0 then

31 join partitions(y,A,B);

32 else if Sk > 0 then

33 move nodes(y,A,B, k)

improve the current decomposition by one of these three

transformations: (1) moving a set of nodes between two

neighboring components, (2) moving a connected set of

nodes from one component to a new component, (3) joining

two neighboring components. The main operation of Alg. 1

is called “higher order update bipartition”. Its input is the

current decomposition and a pair ab ∈ E of neighboring

components of G. The neighborhood in G is defined with

respect to edges e ∈ F of any order. It evaluates transforma-

tions (1) and (3) for ab. Transformation (2) is assessed by

executing “higher order update bipartition” for each com-

ponent and ∅.

In the operation “higher order update bipartition” a se-

quence M of elementary transformations of the compo-

nents a and b is constructed greedily such that at every

consecutive move-operation increases the cumulative gain

S maximally (or decreases it minimally) while preserv-

ing a feasible solution. Therefore, the operation “com-

pute differences” computes, at the beginning of each execu-

tion of “higher order update bipartition”, for every element

w ∈ a∪ b the difference Dw in the objective function when

w is moved between a and b. Then, an element on the cur-

rent boundary between a and b with maximal difference is

added to the sequence M . The differences D are updated

according to Alg. 2, ll. 9-26.

If the objective value can be decreased by executing ei-

ther the first k ∈ N0 elementary transformations or by join-

ing the components a and b the optimal of these two opera-

tions is carried out.

While components are defined with respect to the graph

G = (V, F ), differences in objective value are computed

with respect to the graph G′ = (V,E) with E = F ∪ F ′.

As in KLj [21], the number of outer iterations of Alg. 1 is

not bounded by a polynomial and we cannot give any guar-

antee for convergence. However, in practice, the algorithm

converged in less than 50 iterations for the experiments de-

scribed in Sec. 6.

5. Graph Construction

5.1. Point Trajectories

Point trajectories are spatio-temporal curves that de-

scribe the trajectory of a single object point in the image

plane. They build the basis for many motion segmenta-

tion methods such as [5, 13, 14, 31, 20]. Here, we use the

method from [5] to generate dense long-term point trajec-

tories from precomputed optical flow. While we are aware

that more recent optical flow algorithms allow for better mo-

tion segmentations [15], we build our trajectories from large

displacement optical flow [6] to allow for a direct compar-

ison to previous work. For a video of length N , [5] yields

n point trajectories pi with the maximum length N , where

n depends on the desired sampling rate. Due to occlusions

and mistakes in the optical flow estimation, most trajecto-

ries are significantly shorter than N , and some trajectories

start after frame 1 to ensure even point sampling throughout

the sequence.

5.2. Higher­Order Motion Models

Although this is not sufficient to accurately describe ob-

ject motion in a 3D environment recorded with a possibly
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moving camera, we restrict ourselves to edge potentials of

order two and three for practical reasons. This allows to

measure the difference of point motions according to Eu-

clidean motion models, i.e. from the group of transforma-

tions describing translation, rotation and scaling in the 2D

plane. This is a subset of the group of similarity transfor-

mations in the 2D plane, where reflections are excluded.

We further argue that in any case, the easiest model that

can explain the motion of a set of points with a single trans-

formation should be used. If two points are moving accord-

ing to the same translational motion model, we can assume

that they belong to the same object without looking at fur-

ther points around them. Only if their motion is different

according to a purely translational model, looking at more

complex motion models adds information. This results in a

motion-adaptive graph construction strategy.

Motion-Adaptive Graph Construction We propose to

construct the higher-order graph G depending on the pair-

wise costs computed from motion differences. The algo-

rithm is described in Alg. 3. For any pair of trajectories, we

compute their cost of belonging to the same translational

motion model. Only if this cost is repulsive, we look at all

further points to compute for every three-tuple the cost of

belonging to the same motion model for translation, rota-

tion and scaling. The respective third-order edges are in-

serted along with their costs.

This strategy allows to integrate second and third order

potential without losing model capacity. Further, compared

to generating the full graph with higher-order potentials, it

yields a huge complexity reduction in practice.

Lifted Graph Construction To construct higher-order

lifted graphs G′ = (V, F ∪ F ′), we precompute for every

trajectory the set of its 12 spatially nearest neighbors N .

The edge set F is the subset of the full edge set E, com-

puted according to Alg. 3, that contains exactly all pairwise

edges eij ∈ E for which at least one of the following three

conditions holds: (1) pi ∈ N (pj), (2) pj ∈ N (pi) (3) the

maximum spatial distance between pi and pj is below 40

pixels.

Second Order Costs Second order costs are computed

from pairwise differences on point trajectories. We compute

such differences only for trajectories which have at least two

frames in common. Since it has proven successful in previ-

ous work [20], we compute such differences based on mo-

tion, color and spatial distance cues. As suggested by [31],

we define the pairwise motion difference of two trajectories

at time t as

dm
t (pi, pj) =

‖∂tpi − ∂tpj‖

σt

. (7)

Algorithm 3: Motion Adaptive Graph Construction.

Data: set of point trajectories V with pk ∈ V with

k ∈ {1 . . . n}
Result: weighted undirected higher-order graph

G = (V,E), cost vector c

1 G← (V,E = ∅)
2 c = [.]
3 foreach pi and pj ∈ V do

4 cij ← compute translational motion cost(pi, pj)

5 E ← E ∪ (pi, pj) // insert pairwise edge

6 if c < 0 then

7 c.push back(cij)

8 else

9 c.push back(0)

10 foreach pk ∈ V {pi, pj} do

11 cijk ←
compute higher order motion cost(pi, pj , pk)

12 E ← E ∪ (pi, pj , pk) // insert

higher-order edge

13 c.push back(cijk)

Here, ∂tpi and ∂tpj are the partial derivatives of pi and pj
with respect to the time dimension and σt is the variation of

the optical flow as defined in [31]. The motion distance of

two trajectories is defined by the maximum over time

dm(pi, pj) = max
t

dm
t (pi, pj). (8)

As proposed in [20] color and spatial distances dc and ds

are computed as average distances over the common life-

time of two trajectories. These three cues are combined

non-linearly to compute the costs

cij = −max ( θ̄0 + θ1d
m(pi, pj)+ (9)

θ2d
s(pi, pj) + θ3d

c(pi, pj) ,

θ0 + θ1d
m(pi, pj) )

with weights and intercept values θ as proposed in [20].

Third Order Costs We compute third order motion dif-

ferences as proposed in [30]. For any two trajectories pi and

pj coexisting from time t to t′, we estimate the Euclidean

motion model Tij(t), consisting of rotation Rα, translation

v := (v1, v2)
⊤ and scaling s as

α = arccos

(

(pi(t
′)− pj(t

′))⊤(pi(t)− pj(t))

‖pi(t′)− pj(t′)‖ · ‖pi(t)− pj(t)‖

)

(10)

s =
‖pi(t

′)− pj(t
′)‖

‖pi(t)− pj(t)‖

v =
1

2
(pi(t

′) + pj(t
′)− sRα(pi(t) + pj(t)))
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The distance to any third trajectory pk existing from t

to t′ can then be measured by dtij(pk) = ‖Tij(t)pk(t) −
pk(t

′)‖. For numerical reasons, dtij(pk) is normalized by

γt
ij =

1

σt

(

1

2

(

‖pi(t)− pj(t)‖

‖pi(t)− pk(t)‖
+

‖pi(t)− pj(t)‖

‖pj(t)− pk(t)‖

))
1

4

,

(11)

with σt being the optical flow variation as in (7).

To render distances symmetric, [30] pro-

pose to consider the maximum dtmax(i, j, k) =
max(γt

ijd
t
ij(pk), γ

t
ikd

t
ik(pj), γ

t
jkd

t
jk(pi)), which yields

an over-estimation of the true distance. While this is

unproblematic in a spectral clustering scenario, where

distances are used to define positive point affinities, it can

lead to problems in the multicut approach. Over-estimated

distances lead to under-estimated join probabilities and thus

eventually to switching the sign of the cost function towards

repulsive terms. To avoid this effect, we compute both

dtmax(i, j, k) and, analogously, dtmin(i, j, k). For both, we

compute the maximum motion distance over the common

lifetime of pi, pj and pk as dmax(i, j, k) = maxtd
t
max(i, j, k)

and dmin(i, j, k) = maxtd
t
min(i, j, k). We evaluate the costs

c(dmax(i, j, k)) and c(dmin(i, j, k)) for both distances as

c(d) = θ0 + θ1d and compute the final edge costs

cijk =











c(dmin(i, j, k)) if c(dmax(i, j, k)) > 0

c(dmax(i, j, k)) if c(dmin(i, j, k)) < 0

0 otherwise.

(12)

Thus, we make sure not to set any costs for edges whose

underlying motion is controversial. Here, we set θ0 = −1
and θ1 = 0.08 manually.

Implementation Details In practice, we insert pairwise

edges eij in G and G′ only if the spatial distance between

pi and pj is below 100 pixel. This is in analogy to [20] and

due to the fact that for nearby points, the approximation

of the true motion by a simplified model is usually better

than for points at a large distance. Also, since the number

of pairwise edges increases quadratically with the maximal

spatial distance, this heuristic decreases the computational

load significantly. For the same reason, we introduce an

edge sampling strategy for third order edges. For every

three-tuple of points, we compute the maximum pairwise

distance d. From all three-tuples with 20 < d < 300, we

randomly sample 100

d2 %, while we insert all edges eijk with

d ≤ 20. This also prevents from a too strong imbalance of

long range edges over short range edges.

6. Experiments

We evaluate the proposed higher-order lifted multicut

model on the motion segmentation benchmark FBMS-59

Set A (29 sequences) P R F O

SC [31] 85.10% 62.40% 72.0% 17/65

Higher-Order SC [30] 81.55% 59.33% 68.68% 16/65

MC [20] 84.94% 71.22% 77.48% 23/65

HO MC (ours) 83.51% 75.54% 79.33% 28/65

Set B (30 sequences) P R F O

SC [31] 79.61% 60.91% 69.02% 24/69

Higher-Order SC [30] 82.11% 64.67% 72.35% 27/69

MC [20] 82.87% 69.89% 75.83% 27/69

HO MC (ours) 83.62% 68.83% 75.51% 27/69

Table 1. Segmentation results on the FBMS-59 dataset on Set

A (top) and Set B (bottom). We report P: average precision, R:

average recall, F: F-measure and O: extracted objects with F ≥
75%. All results are computed for sparse trajectory sampling at 8

pixel distance. Our result HO MC is computed on the non-lifted

purely higher-order model to allow for a direct comparison to the

listed competing methods.

[31], which is an extended version of the BMS-26 bench-

mark from Brox-Malik [5]. It contains 59 sequences of

varying length (from 19 to 800 frames) and diverse content

and motion. It provides manual annotations for all mov-

ing objects in the videos for every 20th frame. To allow

for training, the dataset has been split into two subsets of

29 and 30 sequences for training and testing, respectively.

While we agree that training all model parameters is highly

desirable, we did not do so. This is due to the fact that

(1) neither of the state-of-the-art methods [30, 31, 20] is

training-based and (2), the training set, with 29 sparsely an-

notated sequences, is rather small. Thus, to avoid confusion,

we hence denote the training split by Set A and the test split

by Set B.

Evaluation To assess the capacity of our model compo-

nents, we first evaluate a purely higher-order non-lifted ver-

sion of our model. In this model, all pairwise costs are re-

moved and all edges are connectivity defining. We com-

pare this simple model to [31, 30] and the purely motion-

based version of [20]. While [31] and [20] only consider

translational motion, the affinities in [30] are defined most

similarly to our higher-order costs. As the proposed ap-

proach, [20] formulate a multicut problem while [31, 30]

follow a spectral clustering approach. The results are given

in Tab. 1 in terms of precision, recall, f-measure and the

number of extracted objects. Precision and recall are not di-

rectly comparable but they can serve as cues for under- or

over-segmentation. The f-measure is an aggregate of both.

From Tab. 1, we can observe that our higher-order lifted

multicut model outperforms the higher-order spectral clus-

tering method from [30] by about 10% on Set A and 3.5%

on Set B. While there is a clear improvement on both sets,
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Set A (29 sequences) P R F O

MCe [20] 86.73% 73.08% 79.32% 31/65

HOPMC 86.45% 76.28% 81.05% 31/65

AOMC 83.91% 76.44% 80.00% 33/65

Lifted HOPMC 88.19% 77.10% 82.27% 31/65

Lifted AOMC 86.83% 77.79% 82.06% 32/65

Set B (30 sequences) P R F O

MCe [20] 87.88% 67.7% 76.48% 25/69

HOPMC 85.83% 68.74% 76.34% 26/69

AOMC 84.19% 72.64% 77.99% 26/69

Lifted HOPMC 85.88% 69.24% 76.68% 26/69

Lifted AOMC 87.77% 71.96% 79.08% 25/69

Table 2. Segmentation Results on FBMS-59 on Set A (top) and

Set B (bottom). We report P: average precision, R: average recall,

F: F-measure and O: extracted objects with F ≥ 75%. All results

are computed for sparse trajectory sampling at 8 pixel distance.

the imbalance is remarkable. A similarly remarkable im-

balance can be observed when comparing the performance

of the two spectral clustering methods [31] and [30]. The

higher-order model [30] yields a lower f-measure on Set A

compared to [31]. Yet it outperforms [31] on Set B by about

3%. This indicates that the motion statistics in both splits

are significantly different.

When we compare our higher-order model to the pair-

wise minimum cost multicut model from [20], we can ob-

serve an improvement on Set A. On Set B, both model per-

form almost equally in terms of f-measure.

In Tab. 2, we show the evaluation of our higher-order

multicut model with the motion-adaptive order, denoted

AOMC (compare Alg. 3). This model has access to similar

pairwise cues as the motion and color-based version from

[20], denoted MCe. It has as well access to the higher-order

motion cues from Eq. (12).

As a sanity check for the motion-adaptive graph con-

struction, we generate graphs that simply contain all pair-

wise costs cij as well as all third order edges with costs cijk
without any adaptation w.r.t. the costs. We denote this addi-

tive model by HOPMC (higher-order + pairwise multicut).

On Set A, both variants improve over MCe [20] while on

Set B, HOPMC performs similarly as MCe [20] and is out-

performed by AOMC by about 1.5% in f-measure.

Lifted versions of both types of proposed problems

(HOPMC and AOMC) yield a further improvement on both

sets w.r.t. the respective non-lifted model. However, on

Set B, the segmentation quality of Lifted HOPMC does not

significantly outperform the one of MCe. In contrast, the

proposed Lifted AOMC consistently outperforms all com-

peting methods and baselines.

Fig. 3 gives an example of the segmentation quality un-

der scaling. In the horses05 sequence, scaling is caused by

MCe [20] ours

Figure 3. The scaling motion of the white horse moving to-

wards the camera causes over-segmentation with a simple motion

model [20]. With the proposed Lifted AOMC, this can be avoided.

MCe [20] ours

Figure 4. The two cars in front move to the same direction, lead-

ing an assignment to the same cluster with the non-lifted mulitcut

approach [20]. The Lifted AOMC can assign the different cars to

distinct segments.

MCe [20] ours

Figure 5. Due to camera motion the person and the wall are as-

signed to the same cluster with the non-lifted multicut approach

[20]. The Lifted AOMC allows for correct segmentation.

the motion of the white horse towards the camera. This

causes over-segmentation in the competing method MCe

[20], which can not handle higher-order motion models.

With the proposed Lifted AOMC, the segmentation can be

improved.

Fig. 4 and 5 both show examples, where the same label

is assigned to distinct objects that move similarly. In the

cars2 sequence in Fig. 4, this is indeed due to similar real

world object motion, whereas, in the marple10 sequence,

the effect is due to camera motion and the scene geometry.

In both cases, the formulation of the Lifted AOMC prob-

lem allows to tell the distinct objects apart. However, in

the marple10 sequence (Fig. 5), we can observe a spurious

segment in the background, which is probably caused by

unprecise flow estimation.

In Fig. 6, we show an example of the goats01 sequence.

Here, the head and body of the goat in front are segmented

into a distinct components by the pairwise method [20], be-

cause of the expressed articulated motion. Although our

third order model can not explicitly handle articulation, the

over-segmentation can be fixed in this case.
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Figure 2. Samples of our Lifted AOMC segmentation results densified by [29]. Even for articulated motion, our segmentations show little

over-segmentation.

MCe [20] ours

Figure 6. The articulated motion causes over-segmentation in [20].

The Lifted AOMC performs better.

MCe [20] ours

Figure 7. Failure case. The dominant camera motion causes strong

over-segmentation with the proposed method. Here, our third or-

der model can not model the motion appropriately.

In contrast, Fig. 7 shows a failure case of the proposed

method. Due to the dominant camera motion in a scene

with complex geometry, the Euclidean motion model fits

particularly badly. Thus our model leads to the segmenta-

tion of the scene into its depth layers, and thus to strong

over-segmentation.

Several examples of pixel-segmentations computed from

our sparse segmentation using [29] are given in Fig. 2. The

densified segmentations look reasonable. On the bear ex-

ample, the articulated leg motion still causes some over-

segmentation. One of the horses in the horses05 sequence is

missed. However, even small object such as the tray in the

marple12 sequence or the phone in the marple13 sequence

can be correctly segmented.

Scalability Last, we want to evaluate our proposed

heuristic for the higher-order minimum cost lifted multicut

problems (compare Alg. 1) in terms of computation times.

Fig. 8 shows a plot of the computation times of our full
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Figure 8. Computation times in logarithmic scale of the problem

instances from Set A and Set B with respect to the number of nodes

in logarithmic scale, i.e. clustered trajectories.

pipeline on Set A and B w.r.t. the number of clustered point

trajectories in logarithmic scale. The runtime distribution

indicates linear runtime behavior. However, the number of

large problem instances is too small to make any claim. Yet,

the plot shows that heuristic solutions can be generated in a

few minutes for most instances.

7. Conclusion

In this paper, we have presented a generalization of the

minimum cost lifted multicut problem to a higher-order

minimum cost lifted multicut problem, with an application

to motion segmentation. For this new problem class, we

have proposed a heuristic solver that allows to generate so-

lutions on dense point trajectory graphs. Further, for the

motion segmentation application, we have proposed an al-

gorithm that allows to insert higher-order edges adaptively

w.r.t. pairwise motion differences. With this approach, we

improve over the state-of-the-art in motion segmentation on

the FBMS-59 benchmark. Since the proposed problem can

model highly expressive cost functions, we hope that it is

going to be useful for further computer vision applications.
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