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Abstract

Techniques for dense semantic correspondence have pro-

vided limited ability to deal with the geometric variations

that commonly exist between semantically similar images.

While variations due to scale and rotation have been exam-

ined, there is a lack of practical solutions for more complex

deformations such as affine transformations because of the

tremendous size of the associated solution space. To ad-

dress this problem, we present a discrete-continuous trans-

formation matching (DCTM) framework where dense affine

transformation fields are inferred through a discrete label

optimization in which the labels are iteratively updated via

continuous regularization. In this way, our approach draws

solutions from the continuous space of affine transforma-

tions in a manner that can be computed efficiently through

constant-time edge-aware filtering and a proposed affine-

varying CNN-based descriptor. Experimental results show

that this model outperforms the state-of-the-art methods for

dense semantic correspondence on various benchmarks.

1. Introduction

Establishing dense correspondences across semantically

similar images is essential for numerous tasks such as non-

parametric scene parsing, scene recognition, image registra-

tion, semantic segmentation, and image editing [15, 33, 32].

Unlike traditional dense correspondence for estimating

depth [46] or optical flow [9, 51], semantic correspondence

estimation poses additional challenges due to intra-class

appearance and shape variations among object instances,

which can degrade matching by conventional approaches

[33, 59]. Recently, several methods have attempted to deal

with the appearance differences using convolutional neural

network (CNN) based descriptors because of their high in-

variance to appearance variations [34, 11, 61, 24]. However,

geometric variations are considered in just a limited manner

through constraint settings such as those used for depth or

optical flow. Some methods solve for geometric variations
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Figure 1. Visualization of our DCTM results: (a) source image, (b)

target image, (c), (d) ground truth correspondences, (e), (f), (g), (h)

warped images and correspondences after discrete and continuous

optimization, respectively. For images undergoing non-rigid de-

formations, our DCTM estimates reliable correspondences by it-

eratively optimizing the label space via continuous regularization.

such as scale or rotation [18, 41, 21], but they consider only

a discrete set of scales or rotations as possible solutions, and

do not capture the non-rigid geometric deformations that

commonly exist between semantically similar images.

It has been shown that these non-rigid image deforma-

tions can be locally well approximated by affine transfor-

mations [45, 30, 29]. To estimate dense affine transforma-

tion fields, a possible approach is to discretize the space of

affine transformations and find a labeling solution. How-

ever, the higher-dimensional search space for affine trans-

formations makes discrete global optimization algorithms

such as graph cut [6] and belief propagation [48, 52] com-

putationally infeasible. For more efficient optimization over

large label spaces, the PatchMatch Filter (PMF) [37] in-

tegrates constant-time edge-aware filtering (EAF) [43, 36]

with PatchMatch-based randomized search [2]. PMF is

leveraged for dense semantic correspondence in DAISY Fil-

ter Flow (DFF) [59], which finds labels for displacement

fields as well as for scale and rotation. Extending DFF to

affine transformations would be challenging though. One

reason is that its efficient technique for computing DAISY

features [54] at pre-determined scales and rotations cannot

be applied for affine transformations. Another reason is

that, as shown in [27, 21], the weak implicit smoothing em-
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bedded in PMF makes it more susceptible to erroneous local

minima, and this problem may be magnified in the higher-

dimensional affine transformation space. Explicit smooth-

ing models have been adopted to alleviate this problem in

the context of stereo matching [28, 3], but were designed

specifically for depth regularization.

In this paper, we introduce an effective method for esti-

mating dense affine transformation fields between semanti-

cally similar images, as shown in Fig. 1. The key idea is

to couple a discrete local labeling optimization with a con-

tinuous global regularization that updates the discrete can-

didate labels. An affine transformation field is efficiently

inferred in a filter-based discrete labeling scheme inspired

by PMF, and then the discrete affine transformation field is

globally regularized in a moving least squares (MLS) man-

ner [45]. These two steps are iterated in alternation un-

til convergence. Through the synergy of the discrete local

labeling and continuous global regularization, our method

yields continuous solutions from the space of affine trans-

formations, rather than selecting from a pre-defined, finite

set of discrete samples. We show that this continuous reg-

ularization additionally overcomes the aforementioned im-

plicit smoothness problem in PMF.

Moreover, we model the effects of affine transformations

directly within the state-of-the-art fully convolutional self-

similarity (FCSS) descriptor [24], which leads to significant

improvements in processing speed over computing descrip-

tors on various affine transformations of the image. Exper-

imental results show that the presented model outperforms

the latest methods for dense semantic correspondence on

several benchmarks, including that of Taniai et al. [53], Pro-

posal Flow [16], and PASCAL [10].

2. Related Work

Dense Semantic Flow Most conventional techniques for

dense semantic correspondence have employed handcrafted

features such as SIFT [35] or DAISY [54]. To improve

matching quality, they have focused on optimization. Liu et

al. [33] pioneered the idea of dense correspondence across

different scenes, and proposed SIFT Flow which is based

on hierarchical dual-layer belief propagation. Inspired by

this, Kim et al. [23] proposed the deformable spatial pyra-

mid (DSP) which performs multi-scale regularization with

a hierarchical graph. Among other methods are those that

take an exemplar-LDA approach [7], employ joint image set

alignment [62], or jointly solve for cosegmentation [53].

Recently, CNN-based descriptors have been used to es-

tablish dense semantic correspondences. Zhou et al. [61]

proposed a deep network that exploits cycle-consistency

with a 3D CAD model [40] as a supervisory signal. Choy

et al. [11] proposed the universal correspondence network

(UCN) based on fully convolutional feature learning. Most

recently, Kim et al. [24] proposed the FCSS descriptor that

formulates local self-similarity (LSS) [47] within a fully

convolutional network. Because of its LSS-based struc-

ture, FCSS is inherently insensitive to intra-class appear-

ance variations while maintaining precise localization abil-

ity. However, none of these methods is able to handle non-

rigid geometric variations.

Several methods aim to alleviate geometric variations

through extensions of SIFT Flow, including scale-less SIFT

Flow (SLS) [18], scale-space SIFT Flow (SSF) [41], and

generalized DSP (GDSP) [21]. However, these techniques

have a critical practical limitation that their computation in-

creases linearly with the search space size. A generalized

PatchMatch algorithm [2] was proposed for efficient match-

ing that leverages a randomized search scheme. This was

utilized by HaCohen et al. [15] in a non-rigid dense corre-

spondence (NRDC) algorithm, but employs weak match-

ing evidence that cannot guarantee reliable performance.

Geometric invariance to scale and rotation is provided by

DFF [59], but its implicit smoothing model which relies

on randomized sampling and propagation of good estimates

in the direct neighborhood often induces mismatches. A

segmentation-aware approach [56] was proposed to provide

geometric robustness for descriptors, but can have a neg-

ative effect on the discriminative power of the descriptor.

Recently, Ham et al. [16] presented the Proposal Flow (PF)

algorithm to estimate correspondences using object propos-

als. While these aforementioned techniques provide some

amount of geometric invariance, none of them can deal with

affine transformations across images, which are a frequent

occurrence in dense semantic correspondence.

Image Manipulation A possible approach for estimating

dense affine transformation fields is to interpolate sparsely

matched points using a method, including thin plate splines

(TPS) [4], motion coherence [60], coherence point drift

[39], or smoothly varying affine stitching [30]. MLS is also

a scattered point interpolation technique first introduced in

[26] to reconstruct a continuous function from a set of point

samples by incorporating spatially-weighted least squares.

MLS has been successfully used in applications such as im-

age deformation [45], surface reconstruction [13], image

super-resolution and denoising [5], and color transfer [22].

Inspired by the MLS concept, our method utilizes it to reg-

ularize estimated affine fields, but with a different weight

function and an efficient computational scheme.

More related to our work is the method of Lin et al.

[29], which jointly estimates correspondence and relative

patch orientation for descriptors. However, it is formu-

lated with pre-computed sparse correspondences and also

requires considerable computation to solve a complex non-

linear optimization. By contrast, our method adopts dense

descriptors that can be evaluated efficiently for any affine

transformation, and employs quadratic continuous opti-

mization to rapidly infer dense affine transformation fields.
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3. Method

3.1. Problem Formulation and Model

Given a pair of images I and I ′, the objective of dense

correspondence estimation is to establish a correspondence

i′ for each pixel i = [ix, iy]. Unlike conventional dense cor-

respondence settings for estimating depth [46], optical flow

[9, 51], or similarity transformations [59, 21], our objective

is to infer a field of affine transformations, each represented

by a 2× 3 matrix

Ti =

[

Ti,x

Ti,y

]

(1)

that maps pixel i to i′ = Tii, where i is pixel i represented

in homogeneous coordinates such that i = [i, 1]T .

In this work, we solve for affine transformations that may

lie anywhere in the continuous solution space. This is made

possible by formulating the inference of dense affine trans-

formation fields as a discrete optimization problem with

continuous regularization. This optimization seeks to mini-

mize an energy of the form

E(T) = Edata(T) + λEsmooth(T), (2)

consisting of a data term that accounts for matching evi-

dence between descriptors and a smoothness term that fa-

vors similar affine transformations among adjacent pixels

with a balancing parameter λ.

Our data term is defined as follows:

Edata(T) =
∑

i

∑

j∈Ni

ωI
ij min(‖Dj −D

′
j′(Ti)‖1, τ). (3)

It is designed to estimate the affine transformation Ti by ag-

gregating the matching costs of descriptors between neigh-

boring pixels j and transformed pixels j′ = Tij within

a local aggregation window Ni. A truncation threshold τ
is used to deal with outliers and occlusions. It should be

noted that aggregated data terms have been popularly used

in stereo [46] and optical flow [27]. For dense semantic cor-

respondence, several methods have employed aggregated

data terms; however, they often produce undesirable results

across object boundaries due to uniform weights that ignore

image structure [23, 21], or fail to deal with geometric dis-

tortions like affine transformations as they rely on a reg-

ular grid structure for local aggregation windows [59]. By

contrast, the proposed method adaptively aggregates match-

ing costs using edge-preserving bilateral weights ωI
ij as in

[55, 19] on a geometrically-variant grid structure in order

to produce spatially smooth yet discontinuity-preserving la-

beling results even under affine transformations.

Our smoothness term is defined as follows to regularize

affine transformation fields Ti within a local neighborhood:

Esmooth(T) =
∑

i

∑

j∈Mi

υIij‖Tij−Tjj‖
2. (4)

i

l
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l
ti W





(a) FCSS [24]
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i ti T W
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i

(b) Affine-FCSS

Figure 2. Illustration of (a) FCSS descriptor [24] and (b) affine-

FCSS descriptor. Within a support window, sampling patterns Wl

s

and W
l

t are transformed according to affine fields Ti.

When the affine transformation T is constrained to [I2×2,u]
with u = [ux, uy]

T and Mi is the 4-neighborhood, this

smoothness term becomes the first order derivative of the

optical flow vector as in many conventional methods [33,

38]. However, non-rigid deformations occur with high fre-

quency in semantic correspondence, and such a basic con-

straint is inadequate for modeling the smoothness of affine

transformation fields. Our smoothness term is formulated

to address this by regularizing estimated affine transforma-

tions Ti in a moving least squares manner [45] within lo-

cal neighborhoodMi. We define the smoothness constraint

of affine transformation fields by fitting Ti based on the

affine flow fields of neighboring pixels Tjj. Unlike con-

ventional moving least square solvers [45], our smoothness

term incorporates edge-preserving bilateral weights υIij as

in [55, 19] for image structure-aware regularization.

Minimizing the energy in (2) is a non-convex optimiza-

tion problem defined over an infinite continuous solution

space. A similar issue exists for optical flow estimation

[8, 58, 42]. To minimize the non-convex energy function,

several techniques such as a hybrid method with descrip-

tor matching [8, 42] and a coarse-to-fine scheme [58] have

been used, but they are tailored to optical flow estimation

and have exhibited limited performance. We instead use a

penalty decomposition scheme to alternately solve for the

discrete and continuous affine transformation fields. An ef-

ficient filter-based discrete optimization technique is used to

locally estimate discrete affine transformations in a manner

similar to PMF [37]. The weakness of the implicit smooth-

ing in the discrete local optimization is overcome by regu-

larizing the affine transformation fields through global op-

timization in the continuous space. This alternating opti-

mization is repeated until convergence. Furthermore, to ac-

quire matching evidence for semantic correspondence un-

der spatially-varying affine fields, we extend the FCSS de-

scriptor [24] to model affine variations.

3.2. Affine­FCSS Descriptor

To estimate a matching cost, a dense descriptor Di is ex-

tracted over the local support window of each image point

Ii. For this we employ the state-of-the-art FCSS descriptor
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[24] for dense semantic correspondence, which formulates

LSS [47] within a fully convolutional network in a manner

where the patch sampling patterns and self-similarity mea-

sure are both learned. Formally, FCSS can be described as

a vector of feature values Di =
⋃

lD
l
i for l ∈ {1, ..., L}

with the maximum number of sampling patterns L, where

the feature values are computed as

Dl
i = exp(−S(i−Wl

s, i−Wl
t)/Wσ). (5)

S(·, ·) represents the self-similarity between two convolu-

tional activations taken from a sampling pattern around cen-

ter pixel i, and can be expressed as

S(i−Wl
s, i−Wl

t) = ‖F(Ai;W
l
s)−F(Ai;W

l
t)‖

2, (6)

where F(Ai;W
l
s) = Ai−Wl

s
and F(Ai;W

l
t) = Ai−Wl

t

,

Wl
s = [W l

s,x,W
l
s,y] and Wl

t = [W l
t,x,W

l
t,y] compose the

l-th learned sampling pattern, and Ai is the convolutional

activation through feed-forward process F(Ii;Wc) for Ii
with network weights Wc. The network parameters Wc,

Ws, Wt, and Wσ are learned in an end-to-end manner to

provide optimal correspondence performance.

The FCSS descriptor provides high invariance to appear-

ance variations, but it inherently cannot deal with geomet-

ric variations due to its pre-defined sampling patterns for all

pixels in an image. Furthermore, although its computation

is efficient, FCSS cannot in practice be evaluated exhaus-

tively over all the affine candidates during optimization. To

alleviate these limitations, we extend the FCSS descriptor to

adapt to affine transformation fields. This is accomplished

by reformulating the sampling patterns so that they account

for the affine transformations. To expedite this computa-

tion, we first compute Ai over the entire image domain by

passing it through the network. An FCSS descriptorDi(Ti)
transformed under an affine field Ti can then be built by

computing self-similarity on transformed sampling patterns

‖F(Ai;Ti[W
l
s, 0]

T )−F(Ai;Ti[W
l
t, 0]

T )‖2. (7)

With this approach, repeated computation of convolutional

activations over different affine transformations of the im-

age can be avoided. The affine transformation is efficiently

inferred in a discrete optimization described in the follow-

ing section. Differences between the FCSS descriptor and

the affine-FCSS descriptor are illustrated in Fig. 2.

3.3. Solution

Since affine transformation fields are defined in an in-

finite label space, minimizing our energy function E(T)
directly is infeasible. Through fine-scale discretization of

this space, affine transformation fields could be estimated

through discrete global optimization, but at a tremendous

computational cost. To address this issue, we introduce an

Continuous Optimization

Discrete Optimization

i
kS

I
ij

1min(|| ( ) || , )j j i  T

' ii  Ti

ij  T j
j

i

j
I
ij

2|| ||t
i iL j T j iL j

' t
jj  T j

Figure 3. Our DCTM method consists of discrete optimization and

continuous optimization. Our DCTM method differs from the con-

ventional PMF [37] by alternately optimizing the discrete label

space and performing the continuous regularization.

auxiliary affine field L to decouple our data and regular-

ization terms, and approximate the original minimization

problem as the following auxiliary energy formulation:

Eaux(T,L) =
∑

i

∑

j∈Ni

ωI
ij min(‖Dj −D

′
j′(Ti)‖1, τ)

+ µ
∑

i

‖Li −Ti‖
2 + λ

∑

i

∑

j∈Mi

υIij‖Lij−Tjj‖
2.

(8)

Since this energy function is based on two affine trans-

formations, L and T, we employ alternating minimization

to solve for them and boost matching performance in a syn-

ergistic manner. We split the optimization of Eaux(L,T)
into two sub-problems, namely a discrete local optimiza-

tion problem with respect to T and a continuous global op-

timization problem with respect to L. Increasing µ through

the iterations drives the affine fields T and L together and

eventually results in limµ→∞Eaux ≈ E.

Discrete Optimization To infer the discrete affine trans-

formation field Tt with Lt−1 being fixed at the t-th itera-

tion, we first discretize the continuous parameter space and

then solve the problem through filter-based label inference.

For discrete affine transformation candidates T ∈ L, the

matching cost between FCSS descriptors Dj and D′
j′(T) is

first measured as

Cj(T) = min(‖Dj −D
′
j′(T)‖1, τ), (9)

where D′
j′(T) is the affine-FCSS descriptor with respect

to T. This yields an affine-invariant matching cost. Fur-

thermore, since j′ varies according to affine fields such that

j′ = Tj, affine-varying regular grids can be used when ag-

gregating matching costs, thus enabling affine-invariant cost
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. DCTM convergence: (a) Source image; (b) Target image; Iterative evolution of warped images (c), (e), (g) after discrete opti-

mization and (d), (f), (h) after continuous optimization. Our DCTM optimizes the label space with continuous regularization during the

iterations, which facilitates convergence and boosts matching performance.

aggregation. To aggregate the raw matching costs, we apply

EAF on Ci(T) such that

C̄i(T) =
∑

j∈Ni

ωI
ijCj(T), (10)

where ωI
ij is the normalized adaptive weight of a support

pixel j, which can be defined in various ways with respect

to the structures of the image I [55, 14, 19].

In determining the affine field T, the matching costs are

also augmented by the previously estimated affine transfor-

mation field Lt−1

i such that

Gi(T) = µ‖T− Lt−1

i ‖2 + λ
∑

j∈Mi

υIij‖Tj− Lt−1

i j‖2.

(11)

Since ‖Tj − Lt−1

i j‖2 = ‖(T − Lt−1

i )j‖2 and T − Lt−1

i

is independent to pixel j within the support window, Gi(T)
can be efficiently computed by using constant-time EAF, as

described in detail in the supplementary material.

The resultant label at the t-th iteration is determined with

a winner-takes-all (WTA) scheme:

Tt
i = argminT∈L{C̄i(T) +Gi(T)}. (12)

Continuous Optimization To solve the continuous affine

transformation field Lt with Tt being fixed, we formulate

the problem as an image warping minimization:

∑

i



µ‖Li −Tt
i‖

2 + λ
∑

j∈Mi

υIij‖Lij−Tt
jj‖

2



 . (13)

Since this involves solving spatially-varying weighted

least squares at each pixel i, the computational burden in-

evitably increases when considering non-local neighbor-

hoodsMi. To expedite this, existing MLS solvers adopted

grid-based sampling [45] at the cost of quantization errors

or parallel processing [22] with additional hardware. In

contrast, our method optimizes the objective with a sparse

matrix solver, yielding a substantial runtime gain. Since the

Lij term can be formulated in the x- and y-directions sep-

aratively, [Li,xj,Li,yj]
T , we decompose the objective into

Algorithm 1: DCTM Framework

Input: images I , I ′, FCSS network parameter W

Output: dense affine transformation fields T

Parameters: number of segments K, pyramid levels F
/∗ Initialization ∗/

1 : Partition I into a set of disjoint K segments {Sk}
2 : Initialize affine fields as Ti = [I2×2,02×1]

for f = 1 : F do

3 : Build convolution activations Af , A′f for If , I ′f

4 : Initialize affine fields T
f
i = L

f−1

i when f > 2
while not converged do

/∗ Discrete Optimization ∗/
5 : Initialize affine fields Tt

i = Lt−1

i

for k = 1 : K do

/∗ Propagation ∗/
6 : For Sk, construct affine candidates

T ∈ Lp from neighboring segments

7 : Build cost volumes C̄i(T) and Gi(T)
8 : Determine Tt

i using (12)

/∗ Random Search ∗/
9 : Construct affine candidates T ∈ Lr

from randomly sampled affine fields

10 : Determine Tt
i by Step 7-8

end for

/∗ Continuous Optimization ∗/
11 : Estimate affine fields Lt

i from Tt
i using (15)

end while

end for

two separable energy functions. For the x-direction, the en-

ergy function can be represented as

∑

i



µ‖Li,x −Tt
i,x‖

2 + λ
∑

j∈Mi

υIij‖Li,xj−Tt
j,xj‖

2



 .

(14)

By setting the gradient of this objective with respect to Lx,i

to zero, the minimizer Lt
i,x is obtained by solving a linear

system based on a large sparse matrix:

(µ/λI+U)Lt
x = (µ/λI+K)Tt

x, (15)
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where I denotes a 3N×3N identity matrix withN denoting

the number of pixels in image I . Lt
x and Tt

x denote 3N ×1
column vectors containing Lt

i,x and Tt
i,x, respectively. U

and K denote matrices defined as

U =





ψ(VX2) ψ(VXY ) ψ(VX)
ψ(VXY ) ψ(VY 2) ψ(VY )
ψ(VX) ψ(VY ) IN×N



 , (16)

and

K =





Vψ(X) 0 0

0 Vψ(Y ) 0

0 0 V



 , (17)

where V is anN×N kernel matrix whose nonzero elements

are given by the weights υIij , ψ(·) denotes a diagonalizaition

operator, X and Y denoteN ×1 column vectors containing

ix and iy, respectively. X2 = X ◦ X , Y 2 = Y ◦ Y , and

XY = X ◦ Y , where ◦ denotes the Hadamard product.

Since υIij is a normalized bilateral weight, the matrices

U and K can be efficiently computed using recent EAF al-

gorithms [14, 19]. Furthermore, since µ/λI+U is a block-

diagonal matrix, Lt
x can be estimated efficiently using a fast

sparse matrix solver [25]. After optimizing Lt
y in a similar

manner, we then have the continuous affine fields Lt.

Iterative Inference In our filter-based discrete optimiza-

tion, exhaustively evaluating the raw and aggregated costs

for every labelL is still prohibitively time-consuming. Thus

we utilize the PMF [37] which jointly leverages label cost

filtering and fast randomized PatchMatch search in a high

dimensional label space. Our discrete optimization differs

from the PMF by optimizing the discrete label space with

continuous regularization during the iterations, which facil-

itates convergence and boosts matching performance.

We first decompose an image I into a set of K disjoint

segments I = {Sk, k = 1, ...,K} and build its set of spa-

tially adjacent segment neighbors. Then for each segment

Sk, two sets of label candidates from the propagation and

random search steps are evaluated for each graph node in

scan order. In the propagation step, for each segment Sk,

a candidate pixel i is randomly sampled from each neigh-

boring segment, and a set of current best labels Lp for i is

defined by {Ti}. For these Lp, EAF-based cost aggrega-

tion is then performed for the segment Sk. In the random

search step, a center-biased random search as done in Patch-

Match [2] is performed for the current segment Sk, where

a sequence of random labels Lr sampled around the current

best label is evaluated. After an iteration of the propagation

and random search steps for all segments, we apply con-

tinuous optimization as described in the preceding section

to regularize the discrete affine transformation fields. After

each iteration, we enlarge µ such that µ ← cµ with a con-

stant value 1 < c ≤ 2 to accelerate convergence. Fig. 3

summarizes our DCTM method, consisting of discrete and

Error threshold (pixels)
5 10 15

F
lo

w
 a

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIFT Flow
Zhou et al.
Taniai et al.
SFw/FCSS
SSF
Lin et al.
DFF
GDSP
PF
DCTMw/Cont.
DCTMw/C2F
DCTM

(a) FG3DCar

Error threshold (pixels)
5 10 15

F
lo

w
 a

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIFT Flow
Zhou et al.
Taniai et al.
SFw/FCSS
SSF
Lin et al.
DFF
GDSP
PF
DCTMw/Cont.
DCTMw/C2F
DCTM

(b) JODS

Error threshold (pixels)
5 10 15

F
lo

w
 a

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SIFT Flow
Zhou et al.
Taniai et al.
SFw/FCSS
SSF
Lin et al.
DFF
GDSP
PF
DCTMw/Cont.
DCTMw/C2F
DCTM

(c) PASCAL

Error threshold (pixels)
5 10 15

F
lo

w
 a

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SIFT Flow
Zhou et al.
Taniai et al.
SFw/FCSS
SSF
Lin et al.
DFF
GDSP
PF
DCTMw/Cont.
DCTMw/C2F
DCTM

(d) Average

Figure 6. Average flow accuracy with respect to endpoint error

threshold on the Taniai benchmark [53].

continuous optimization, and Fig. 4 illustrates the conver-

gence of our DCTM method.

To boost matching performance and convergence of our

algorithm, we apply our method in a coarse-to-fine manner,

where images If are constructed at F image pyramid levels

f = {1, ..., F} and affine transform fields Tf are predicted

at level f . Coarser scale results are then used as initializa-

tion for the finer levels. Algorithm 1 provides a summary of

the overall procedure of our DCTM method.

4. Experimental Results

4.1. Experimental Settings

For our experiments, we used the FCSS descriptor pro-

vided by authors, which is learned on Caltech-101 dataset

[12]. For EAF for ωI
ij and υIij , we utilized the guided fil-

ter [20], where the radius and smoothness parameters are

set to {16, 0.01}. The weights in energy function were ini-

tially set to {λ, µ} = {0.01, 0.1} by cross-validation, but

µ increases as evolving iterations with c = 1.8. The SLIC

[1] segment number K increases sublinearly with the im-
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Figure 5. Qualitative results on the Taniai benchmark [53]: (a) source image, (b) target image, (c) Lin et al. [29], (d) DFF [59], (e) PF [16],

(f) Taniai et al. [53], (g) SF w/FCSS [24], and (h) DCTM. The source images were warped to the target images using correspondences.

Methods FG3D JODS PASC. Avg.

SIFT Flow [33] 0.632 0.509 0.360 0.500

DSP [23] 0.487 0.465 0.382 0.445

Zhou et al. [61] 0.721 0.514 0.436 0.556

Taniai et al. [53] 0.830 0.595 0.483 0.636

SF w/DAISY [54] 0.636 0.373 0.338 0.449

SF w/VGG [49] 0.756 0.490 0.360 0.535

SF w/FCSS [24] 0.830 0.653 0.494 0.660

SLS [18] 0.525 0.519 0.320 0.457

SSF [41] 0.687 0.344 0.370 0.467

SegSIFT [56] 0.612 0.421 0.331 0.457

Lin et al. [29] 0.406 0.283 0.161 0.283

DFF [59] 0.489 0.296 0.214 0.333

GDSP [21] 0.639 0.374 0.368 0.459

Proposal Flow [16] 0.786 0.653 0.531 0.657

DCTM w/DAISY 0.710 0.506 0.482 0.566

DCTM w/VGG 0.790 0.611 0.528 0.630

DCTM wo/Cont. 0.850 0.637 0.559 0.682

DCTM wo/C2F 0.859 0.684 0.550 0.698

DCTM 0.891 0.721 0.610 0.740

Table 1. Matching accuracy compared to state-of-the-art corre-

spondence techniques on the Taniai benchmark [53].

age size, e.g., K = 500 for 640 × 480 images. The image

pyramid level F is set to 3. We implemented our DCTM

method in Matlab/C++ on Intel Core i7-3770 CPU at 3.40

GHz, and measured the runtime on a single CPU core. Our

code will be made publicly available.

In the following, we comprehensively evaluated our

DCTM method through comparisons to the state-of-the-

art methods for dense semantic correspondences, including

SIFT Flow [33], DSP [23], Zhou et al. [61], UCN [11],

Taniai et al. [53], SIFT Flow optimization with VGG1 [49]

and FCSS [24] descriptor. Furthermore geometric-invariant

methods including SLS [18], SSF [41], SegSIFT [56], Lin

et al. [29], DFF [59], GDSP [21], and PF [16] were eval-

uated. The performance was measured on Taniai bench-

mark [53], Proposal Flow dataset [16], and PASCAL-VOC

1In the ‘VGG’, ImageNet pretrained VGG-Net [49] from the botton

conv1 to the conv3-4 layer were used with L2 normalization [50].

dataset [10]. To validate the components of our method,

we additionally examined the performance contributions of

the continuous optimization (wo/Cont.) and the coarse-to-

fine scheme (wo/C2F). Furthermore the performance of our

DCTM method when combined with other dense descrip-

tors2 was examined using the DAISY [54] and VGG [49].

4.2. Results

Taniai Benchmark [53] We first evaluated our DCTM

method on the Taniai benchmark [53], which consists of

400 image pairs divided into three groups: FG3DCar [31],

JODS [44], and PASCAL [17]. As in [53, 24], flow ac-

curacy was measured by computing the proportion of fore-

ground pixels with an absolute flow endpoint error that is

smaller than a certain threshold T , after resizing images so

that its larger dimension is 100 pixels.

Table 1 summarizes the matching accuracy for state-of-

the-art correspondence techniques (T = 5 pixels). Fig.

5 displays qualitative results for dense flow estimation.

Fig. 6 plots the flow accuracy with respect to error thresh-

old. Compared to methods based on handcrafted features

[41, 59, 21], CNN based methods [53, 24] provide higher

accuracy even though they do not consider geometric varia-

tions. The method of Lin et al. [29] cannot estimate reliable

correspondences due to unstable sparse correspondences.

Thanks to its discrete labeling optimization with contin-

uous regularization and affine-FCSS, our DCTM method

provides state-of-the-art performance.

Proposal Flow Benchmark [16] We also evaluated our

FCSS descriptor on the Proposal Flow benchmark [16],

which includes 10 object sub-classes with 10 keypoint an-

notations for each image. For the evaluation metric, we used

the probability of correct keypoint (PCK) between flow-

warped keypoints and the ground truth [34, 16]. The warped

keypoints are deemed to be correctly predicted if they lie

within α ·max(H,W ) pixels of the ground-truth keypoints

for α ∈ [0, 1], where H and W are the height and width

of the object bounding box, respectively. The PCK values

2These experiments use only the upright version of the descriptors.
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Figure 7. Qualitative results on the Proposal Flow benchmark [16]: (a) source image, (b) target image, (c) SSF [41], (d) DSP [23], (e)

GDSP [21], (f) PF [16], (g) SF w/FCSS [24], and (h) DCTM. The source images were warped to the target images using correspondences.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8. Visualizations of dense flow field with color-coded part segments on the PASCAL-VOC part dataset [10]: (a) source image, (b)

target image, (c) source mask, (d) DFF [59], (e) GDSP [21], (f) Zhou et al. [61], (g) SF w/FCSS [24], (h) DCTM, and (i) target mask.

Methods
PCK

α = 0.05 α = 0.1 α = 0.15

SIFT Flow [33] 0.247 0.380 0.504

DSP [23] 0.239 0.364 0.493

Zhou et al. [61] 0.197 0.524 0.664

SF w/FCSS [24] 0.354 0.532 0.681

SSF [41] 0.292 0.401 0.531

Lin et al. [29] 0.192 0.354 0.487

DFF [59] 0.241 0.362 0.510

GDSP [21] 0.242 0.487 0.512

Proposal Flow [16] 0.284 0.568 0.682

DCTM 0.381 0.610 0.721

Table 2. Matching accuracy compared to state-of-the-art corre-

spondence techniques on the Proposal Flow benchmark [16].

were measured for different correspondence techniques in

Table 2. Fig. 7 shows qualitative results for dense flow

estimation. Our DCTM method exhibits performance com-

petitive to the state-of-the-art correspondence techniques.

PASCAL-VOC Parts Dataset [10] Lastly, we evaluated

our DCTM method on the dataset provided by [62], where

the images are sampled from the PASCAL parts dataset

[10]. With human-annotated part segments, we measured

part matching accuracy using the weighted intersection over

union (IoU) score between transferred segments and ground

truths, with weights determined by the pixel area of each

part. To evaluate alignment accuracy, we measured the PCK

metric using keypoint annotations for the 12 rigid PASCAL

classes [57]. Table 3 summarizes the matching accuracy

compared to state-of-the-art correspondence methods. Fig.

8 visualizes estimated dense flow with color-coded part seg-

Methods IoU
PCK

α = 0.05 α = 0.1

Zhou et al. [61] - - 0.24

UCN [11] - 0.26 0.44

SF w/ FCSS [33] 0.44 0.28 0.47

DFF [59] 0.36 0.14 0.31

GDSP [21] 0.40 0.16 0.34

Proposal Flow [16] 0.41 0.17 0.36

DCTM 0.48 0.32 0.50

Table 3. Matching accuracy on the PASCAL-VOC dataset [10].

ments. From the results, our DCTM method is found to

yield the highest matching accuracy.

Computation Speed For all the test cases, our DCTM

method converges with 3-5 iterations on each image pyra-

mid level. For 320 × 240 images, the average runtime

of DCTM is 15-20 seconds, compared to 216 seconds for

GDSP [21], 73 seconds for DFF [59], 276 seconds for Lin

et al. [29], and 321 seconds for Taniai et al. [53].

5. Conclusion

We presented DCTM, which estimates dense affine

transformation fields through a discrete label optimization

in which the labels are iteratively updated via continuous

regularization. DCTM infers solutions from the continu-

ous space of affine transformations in a manner that can be

computed efficiently through constant-time edge-aware fil-

tering and the affine-FCSS descriptor. A direction for fur-

ther study is to examine how the semantic flow of DCTM

could benefit single-image 3D reconstruction and instance-

level object segmentation.
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