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Abstract

Deep neural perception and control networks are likely

to be a key component of self-driving vehicles. These mod-

els need to be explainable - they should provide easy-to-

interpret rationales for their behavior - so that passengers,

insurance companies, law enforcement, developers etc., can

understand what triggered a particular behavior. Here we

explore the use of visual explanations. These explanations

take the form of real-time highlighted regions of an image

that causally influence the network’s output (steering con-

trol). Our approach is two-stage. In the first stage, we use a

visual attention model to train a convolution network end-

to-end from images to steering angle. The attention model

highlights image regions that potentially influence the net-

work’s output. Some of these are true influences, but some

are spurious. We then apply a causal filtering step to de-

termine which input regions actually influence the output.

This produces more succinct visual explanations and more

accurately exposes the network’s behavior. We demonstrate

the effectiveness of our model on three datasets totaling 16

hours of driving. We first show that training with attention

does not degrade the performance of the end-to-end net-

work. Then we show that the network causally cues on a

variety of features that are used by humans while driving.

1. Introduction

Self-driving vehicle control has made dramatic progress

in the last several years, and many auto vendors have

pledged large-scale commercialization in a 2-3 year time

frame. These controllers use a variety of approaches but

recent successes [3] suggests that neural networks will be

widely used in self-driving vehicles. But neural networks

are notoriously cryptic - both network architecture and hid-

den layer activations may have no obvious relation to the

function being estimated by the network. An exception to

the rule is visual attention networks [29, 23, 7]. These net-

works provide spatial attention maps - areas of the image

that the network attends to - that can be displayed in a way

that is easy for users to interpret. They provide their atten-

tion maps instantly on images that are input to the network,

and in this case on the stream of images from automobile

video. As we show from our examples later, visual atten-

tion maps lie over image areas that have intuitive influence

on the vehicle’s control signal.

However, attention maps are only part of the story. At-

tention is a mechanism for filtering out non-salient image

content. But attention networks need to find all potentially

salient image areas and pass them to the main recognition

network (a CNN here) for a final verdict. For instance, the

attention network will attend to trees and bushes in areas

of an image where road signs commonly occur. Just as a

human will use peripheral vision to determine that “there

is something there”, and then visually fixate on the item to

determine what it actually is. That is, the attention model

must not mask out regions that might be important for driv-

ing control, but must look at foliage or other stimulae to

determine that they are not street signs or other vehicles.

We therefore post-process the attention network’s output,

clustering it into attention “blobs” and then mask (set the

attention weights to zero) each blob to determine the effect

on the end-to-end network output. Blobs that have a causal

effect on network output are retained while those that do not

are removed from the visual map presented to the user.

Figure 1 shows an overview of our model. Our approach

can be divided into three steps: (1) Encoder: convolutional

feature extraction, (2) Coarse-grained decoder by visual at-

tention mechanism, and (3) Fine-grained decoder: causal

visual saliency detection and refinement of attention map.

Our contributions are as follows:

• We show that visual attention heat maps are suitable

“explanations” for the behavior of a deep neural vehi-

cle controller, and do not degrade control accuracy.
• We show that attention maps comprise “blobs” that can

be segmented and filtered to produce simpler and more

accurate maps of visual saliency.
• We demonstrate the effectiveness of using our model

with three large real-world driving datasets that con-

tain over 1,200,000 video frames (approx. 16 hours).
• We illustrate typical spurious attention sources in driv-

ing video and quantify the reduction in explanation

complexity from causal filtering.
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Figure 1. Our model predicts steering angle commands from an input raw image stream in an end-to-end manner. In addition, our model

generates a heat map of attention, which can visualize where and what the model sees. To this end, we first encode images with a CNN and

decode this feature into a heat map of attention, which is also used to control a vehicle. We test its causality by scrutinizing each cluster of

attention blobs and produce a refined attention heat map of causal visual saliency.

2. Related Works

2.1. End­to­End Learning for Self­driving Cars

Self-driving vehicle controllers can be classified as: me-

diated perception approaches and end-to-end learning ap-

proaches. The mediated perception approach depends on

recognizing human-designated features (i.e., lane markings

and cars) in a controller with if-then-else rules. Some ex-

amples include Urmson et al. [27], Buehler et al. [4], and

Levinson et al. [20].

Recently there is growing interest in end-to-end learn-

ing vehicle control. Most of these approaches learn a con-

troller by supervised regression to recordings from human

drivers. The training data comprise video from one or more

vehicle cameras, and the control outputs (steering and pos-

sible acceleration and braking) from the driver. ALVINN

(Autonomous Land Vehicle In a Neural Network) [21] was

the first attempt to use neural network for directly mapping

images to navigate the direction of the vehicle. More re-

cently Bojarski et al. [3] demonstrated good performance

with convolutional neural networks (CNNs) to directly map

images from a front-view camera to steering controls. Xu et

al. [28] proposed an end-to-end egomotion prediction ap-

proach that takes raw pixels and prior vehicle state signals

as inputs and predicts a sequence of discretized actions (i.e.,

straight, stop, left-turn, and right-turn). These models show

good performance but their behavior is opaque and uninter-

pretable.

An intermediate approach was explored in Chen et al. [6]

who defined human-designated interpretable intermediate

features such as the curvature of lane, distances to neigh-

boring lanes, and distances from the front-located vehicles.

A CNN is trained to produce these features, and a simple

controller maps them to steering angle. They also gener-

ated deconvolution maps to show image areas that affected

network output. However, there were several difficulties

with that work: (i) use of the intermediate layer may cause

degradation of control accuracy (ii) the intermediate feature

descriptors may provide a limited and ad-hoc vocabulary

for explanations and (iii) the authors noted the presence of

spurious input features but there was no attempt to remove

them. By contrast, our work shows that state-of-the-art driv-

ing models can be made interpretable without sacrificing

accuracy, that attention models provide more robust image

annotation, and causal analysis further improves explana-

tion saliency.

2.2. Visual Explanation

In a landmark work, Zeiler and Fergus [31] used “de-

convolution” to visualize layer activations of convolutional

networks. LeCun et al. [18] provides textual explanations

of images as automatically-generated captions. Building

on this work, Bojarski et al. [2] developed a richer notion

of ”contribution” of a pixel to the output. However a dif-

ficulty with deconvolution-style approaches is the lack of

formal measures of how the network output is affected by

spatially-extended features (rather than pixels). Attention-

based approaches like ours directly extract areas of the im-
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age that did not affect network output (because they were

masked out by the attention model), and causal filtering fur-

ther removes spurious image areas. Hendricks et al. [13]

trains a deep network to generate specific explanation with-

out explicitly identifying semantic features. Also, Justin

Johnson [16] proposes DenseCap which uses fully convolu-

tional localization networks for dense captioning, their pa-

per achieves both localizing objects and describing salient

regions in images using natural language. In reinforcement

learning, Zrihem et al. [30] proposes a visualization method

to interpret the agents action by describing Markov Deci-

sion Process model as a directed graph on a t-SNE map.

3. Method

3.1. Preprocessing

Our model predicts continuous steering angle com-

mands from input raw pixels in an end-to-end manner. As

discussed by Bojarski et al. [3], our model predicts the

inverse turning radius ût (= r−1

t , where rt is the turning

radius) at every timestep t instead of steering angle com-

mands, which depends on the vehicle’s steering geometry

and also result in numerical instability when predicting near

zero steering angle commands. The relationship between

the inverse turning radius ut and the steering angle com-

mand θt can be approximated by Ackermann steering ge-

ometry [22] as follows:

θt = fsteers(ut) = utdwKs(1 +Kslipvt
2) (1)

where θt in degrees and vt (m/s) is a steering angle and

a velocity at time t, respectively. Ks, Kslip, and dw are

vehicle-specific parameters. Ks is a steering ratio between

the turn of the steering and the turn of the wheels. Kslip rep-

resents the relative motion between a wheel and the surface

of road. dw is the length between the front and rear wheels.

Our model therefore needs two measurements for training:

timestamped vehicle’s speed and steering angle commands.

To reduce computational cost, each raw input image

is down-sampled and resized to 80×160×3 with nearest-

neighbor scaling algorithm. For images with different raw

aspect ratios, we cropped the height to match the ratio be-

fore down-sampling. A common practice in image classi-

fication is to subtract the mean RGB value computed on

the training set from each pixel [12, 24]. This is effective

to achieve zero-centered inputs which are originally in dif-

ferent scales. Driving datasets, however, do not show that

various scales. For instance, the camera gains are (automat-

ically or in advance) calibrated to capture such high-quality

images in a certain dynamic range. In our experiment,

we could not obtain significant improvement by the use of

mean subtraction. Instead, we change the range of pixel

intensity values and convert to HSV colorspace, which is

commonly used for its robustness in problems where color

description plays an integral role.

We utilize a single exponential smoothing method [15]

to reduce the effect of human factors-related performance

variation and the effect of measurement noise. Formally,

given a smoothing factor 0 ≤ αs ≤ 1, the simple exponen-

tial smoothing method is defined as follows:

(

θ̂t
v̂t

)

= αs

(

θt
vt

)

+ (1− αs)

(

θ̂t−1

v̂t−1

)

(2)

where θ̂t and v̂t are the smoothed time-series of θt and vt,

respectively. Note that they are same as the original time-

series when αs = 1, while values of αs closer to zero have

a greater smoothing effect and are less responsive to recent

changes. The effect of applying smoothing methods is sum-

marized in Section 4.4. Note that the use of Kalman filter

could be better for fighting measurement noise but suffers

from obtaining a long-term composite effect. Our use of the

exponentially smoothing methods, therefore, can be justi-

fied by obtaining a long-term integral of controls.

3.2. Encoder: Convolutional Feature Extraction

We use a convolutional neural network to extract a set of

encoded visual feature vector, which we refer to as a convo-

lutional feature cube xt. Each feature vectors may contain

high-level object descriptions that allow the attention model

to selectively pay attention to certain parts of an input image

by choosing a subset of feature vectors.

As depicted in Figure 1, we use a 5-layered convolu-

tion network that is utilized by Bojarski et al. [3] to learn

a model for self-driving cars. As discussed by Lee et

al. [19], we omit max-pooling layers to prevent spatial lo-

cational information loss as the strongest activation prop-

agates through the model. We collect a three-dimensional

convolutional feature cube xt from the last layer by push-

ing the preprocessed image through the model, and the out-

put feature cube will be used as an input of the LSTM lay-

ers, which we will explain in Section 3.3. Using this con-

volutional feature cube from the last layer has advantages

in generating high-level object descriptions, thus increasing

interpretability and reducing computational burdens for a

real-time system.

Formally, a convolutional feature cube of size

W×H×D is created at each timestep t from the last con-

volutional layer. We then collect xt, a set of L = W × H

vectors, each of which is a D-dimensional feature slice for

different spatial parts of the given input.

xt = {xt,1, xt,2, . . . , xt,L} (3)

where xt,i ∈ R
D for i ∈ {1, 2, . . . , L}. This allows us

to focus selectively on different spatial parts of the given

image by choosing a subset of these L feature vectors.
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3.3. Coarse­Grained Decoder: Visual Attention

The goal of soft deterministic attention mechanism

π({xt,1, xt,2, . . . , xt,L}) is to search for a good context vec-

tor yt, which is defined as a combination of convolutional

feature vectors xt,i, while producing better prediction ac-

curacy. We utilize a deterministic soft attention mecha-

nism that is trainable by standard back-propagation meth-

ods, which thus has advantages over a hard stochastic atten-

tion mechanism that requires reinforcement learning. Our

model feeds α weighted context yt to the system as dis-

cussed by several works [23, 29]:

yt = fflatten(π({αt,i}, {xt,i}))

= fflatten({αt,ixt,i})
(4)

where i = {1, 2, . . . , L}. αt,i is a scalar attention weight

value associated with a certain grid of input image in such

that
∑

i αt,i = 1. These attention weights can be inter-

preted as the probability over L convolutional feature vec-

tors that the location i is the important part to produce

better estimation accuracy. fflatten is a flattening function,

which converts the input feature matrix into a 1-D fea-

ture vector to be used by the dense layer for LSTM. yt is

thus D×L-dimensional vector that contains convolutional

feature vectors weighted by attention weights. In tradi-

tional models [23, 29], π({αt,i}, {xt,i}) maps L×D con-

volutional feature cubes to the D dimension only by using

the α weighted average context, i.e.,
∑L

i=1
αt,ixt,i, which

is but prone to remove spatial information. In our approach,

π({αt,i}, {xt,i}) is identity function to preserve spatial in-

formation.

As we summarize in Figure 1, we use a long short-

term memory (LSTM) network [14] that predicts the inverse

turning radius ût and generates attention weights {αt,i} at

each timestep t conditioned on the previous hidden state ht

and a current convolutional feature cube xt. More formally,

let us assume a hidden layer fattn(xt,i, ht−1) conditioned on

the previous hidden state ht−1 and the current feature vec-

tors {xt,i}. The attention weight {αt,i} for each spatial lo-

cation i is then computed by multinomial logistic regression

(i.e., softmax regression) function as follows:

αt,i =
exp(fattn(xt,i, ht−1))

∑L

j=1
exp(fattn(xt,j , ht−1))

(5)

Our network also predicts inverse turning radius ût as an

output with additional hidden layer fout(yt, ht) conditioned

on the current hidden state ht and α weighted context yt.

To initialize memory state ct and hidden state ht of

LSTM network, we follow Xu et al. [29] by averaging of

the feature slices x0,i at initial time fed through two addi-

tional hidden layers: finit,c and finit,h.

c0 = finit,c

(

1

L

L
∑

i=1

x0,i

)

, h0 = finit,h

(

1

L

L
∑

i=1

x0,i

)

(6)

As discussed by Xu et al. [29], doubly stochastic reg-

ularization can encourage the attention model at different

parts of the image. At time t, our attention model predicts

a scalar β=sigm(fβ(ht−1)) with an additional hidden layer

fβ conditioned on the previous hidden state ht−1 such that

yt = sigm(fβ(ht−1))fflatten({αt,ixt,i}) (7)

We use the following penalized loss function L1:

L1(ut, ût) =

T
∑

t=1

|ut − ût|+ λ

L
∑

i=1

(

1−

T
∑

t=1

αt,i

)

(8)

where T is the length of time steps, and λ is a penalty coef-

ficient that encourages the attention model to see different

parts of the image at each time frame. Section 4.3 describes

the effect of using regularization.

3.4. Fine­Grained Decoder: Causality Test

The last step of our pipeline is a fine-grained decoder,

in which we refine a map of attention and detect local vi-

sual saliencies. Though an attention map from our coarse-

grained decoder provides probability of importance over a

2D image space, our model needs to determine specific re-

gions that cause a causal effect on prediction performance.

To this end, we assess a decrease in performance when a

local visual saliency on an input raw image is masked out.

We first collect a consecutive set of attention weights

{αt,i} and input raw images {It} for a user-specified T

timesteps. We then create a map of attention, which we

referMt as defined:Mt = fmap({αt,i}). Our 5-layer con-

volutional neural network uses a stack of 5 × 5 and 3 × 3
filters without any pooling layer, and therefore the input im-

age of size 80× 160 is processed to produce the output fea-

ture cube of size 10 × 20 × 64, while preserving its aspect

ratio. Thus, we use fmap({αt,i}) as up-sampling function

by the factor of eight followed by Gaussian filtering [5] as

discussed in [29] (see Figure 2 (A,B)).

To extract a local visual saliency, we first randomly sam-

ple 2D N particles with replacement over an input raw im-

age conditioned on the attention map Mt. Note that, we

also use time-axis as the third dimension to consider tem-

poral features of visual saliencies. We thus store spatio-

temporal 3D particles P ← P ∪ {Pt, t} (see Figure 2 (C)).

We then apply a clustering algorithm to find a local

visual saliency by grouping 3D particles P into clusters

{C} (see Figure 2 (D)). In our experiment, we use DB-

SCAN [10], a density-based clustering algorithm that has
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Figure 2. Overview of our fine-grained decoder. Given an input raw pixels It (A), we compute an attention map Mt with a function

fmap (B). (C) We randomly sample 3D N = 500 particles over the attention map, and (D) we apply a density-based clustering algorithm

(DBSCAN [10]) to find a local visual saliency by grouping particles into clusters. (E, F) For each cluster c ∈ C, we compute a convex

hull H(c) to define its region, and mask out the visual saliency to see causal effects on prediction accuracy (see E, F for clusters 1 and 5,

respectively). (G, H) Warped visual saliencies for clusters 1 and 5, respectively.

advantages to deal with a noisy dataset because they group

particles together that are closely packed, while marking

particles as outliers that lie alone in low-density regions.

For points of each cluster c and each time frame t, we com-

pute a convex hullH(c) to find a local region of each visual

saliency detected (see Figure 2 (E, F)).

For points of each cluster c and each time frame t, we

iteratively measure a decrease of prediction performance

with an input image which we mask out a local visual

saliency. We compute a convex hull H(c) to find a local,

and mask out each visual saliency by assigning zero values

for all pixels lying inside each convex hull. Each causal

visual saliency is generated by warping into a fixed spatial

resolution (=64×64) as shown in Figure 2 (G, H).

4. Result

4.1. Datasets

As explained in Table 1, we obtain two large-scale

datasets that contain over 1,200,000 frames (≈16 hours)

collected from Comma.ai [8], Udacity [26], and Hyundai

Center of Excellence in Integrated Vehicle Safety Sys-

tems and Control (HCE) at Berkeley. These three datasets

acquired contain video clips captured by a single front-

view camera mounted behind the windshield of the vehi-

cle. Alongside the video data, a set of time-stamped sensor

measurement is contained, such as vehicle’s velocity, accel-

eration, steering angle, GPS location and gyroscope angles.

Thus, these datasets are ideal for self-driving studies. Note

that, for sensor logs unsynced with the time-stamps of video

data, we use the estimates of the interpolated measurements.

Videos are mostly captured during highway driving in clear

weather on daytime, and there included driving on other

road types, such as residential roads (with and without lane

markings), and contains the whole driver’s activities such

as staying in a lane and switching lanes. Note also that, we

exclude frames when the vehicle stops which happens when

v̂t <1 m/s.

4.2. Training and Evaluation Details

To obtain a convolutional feature cube xt, we train the

5-layer CNN explained in Section 3.2 by using additional 5-

layer fully connected layers (i.e., # hidden variables: 1164,

100, 50, and 10, respectively), of which output predicts the

measured inverse turning radius ut. Incidentally, instead

of using addition fully-connected layers, we could also ob-

tain a convolutional feature cube xt by training from scratch

with the whole network. In our experiment, we obtain the

10×20×64-dimensional convolutional feature cube, which

is then flattened to 200×64 and is fed through the coarse-

grained decoder. Other recent types of more recent expres-

sive networks may give a performance boost over our CNN

configuration. However, exploration of other convolutional

architectures would be out of our scope.

We experiment with various numbers of LSTM layers

(1 to 5) of the soft deterministic visual attention model but

did not observe any significant improvements in model per-

formance. Unless otherwise stated, we use a single LSTM

layer in this experiment. For training, we use Adam opti-

mization algorithm [17] and also use dropout [25] of 0.5 at

hidden state connections and Xavier initialization [11]. We

randomly sample a mini-batch of size 128, each of batch

contains a set Consecutive frames of length T = 20. Our

model took less than 24 hours to train on a single NVIDIA

Titan X Pascal GPU. Our implementation is based on Ten-

sorflow [1] and code will be publicly available upon publi-

cation.

Two datasets (Comma.ai [8] and HCE) we used were

available with images captured by a single front-view cam-

era. This makes it hard to use the data augmentation tech-

nique proposed by Bojarski et al. [3], which generated im-

ages with artificial shifts and rotations by using two addi-

2946



Dataset

Comma.ai [8] HCE Udacity [26]

# frame 522,434 80,180 650,690

FPS 20Hz 20Hz/30Hz 20Hz

Hours ≈ 7 hrs ≈ 1 hr ≈ 8 hrs

Condition Highway/Urban Highway Urban

Location CA, USA CA, USA CA, USA

Lighting Day/Night Day Day

Table 1. Dataset details. Over 16 hours (>1,200,000 video frames)

of driving dataset that contains a front-view video frames and cor-

responding time-stamped measurements of vehicle dynamics. The

data is collected from two public data sources, Comma.ai [8] and

Udacity [26], and Hyundai Center of Excellence in Vehicle Dy-

namic Systems and Control (HCE).

tional off-center images (left-view and right-view) captured

by the same vehicle. Data augmentation may give a perfor-

mance boost, but we report performance without data aug-

mentation.

4.3. Effect of Choosing Penalty Coefficient λ

Our model provides a better way to understand the ra-

tionale of the models decision by visualizing where and

what the model sees to control a vehicle. Figure 3 shows

a consecutive input raw images (with sampling period of

5 seconds) and their corresponding attention maps (i.e.,

Mt = fmap({αt,i})). We also experiment with three differ-

ent penalty coefficients λ ∈ {0, 10, 20}, where the model

is encouraged to pay attention to wider parts of the image

(see differences between the bottom 3 rows in Figure 3 ) as

we have larger λ. For better visualization, an attention map

is overlaid by an input raw image and color-coded; for ex-

ample, red parts represent where the model pays attention.

For quantitative analysis, prediction performance in terms

of mean absolute error (MAE) is explained on the bottom

of each figure. We observe that our model is indeed able

to pay attention on road elements, such as lane markings,

guardrails, and vehicles ahead, which is essential for human

to drive.

4.4. Effect of Varying Smoothing Factors

Recall from Section 3.1 that the single exponential

smoothing method [15] is used to reduce the effect of hu-

man factors variation and the effect of measurement noise

for two sensor inputs: steering angle and velocity. A robust

model for autonomous vehicles would yield consistent per-

formance, even when some measurements are noisy. Fig-

ure 4 shows the prediction performance in terms of mean

absolute error (MAE) on a comma.ai testing data set. Var-

ious smoothing factors αs ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 1.0}
are used to assess the effect of using smoothing methods.

Dataset Model
MAE in degree [SD]

Training Testing

Comma.ai [8]

CNN+FCN [3] .421 [0.82] 2.54 [3.19]

CNN+LSTM .488 [1.29] 2.58 [3.44]

Attention (λ=0) .497 [1.32] 2.52 [3.25]

Attention (λ=10) .464 [1.29] 2.56 [3.51]

Attention (λ=20) .463 [1.24] 2.44 [3.20]

HCE

CNN+FCN [3] .246 [.400] 1.27 [1.57]

CNN+LSTM .568 [.977] 1.57 [2.27]

Attention (λ=0) .334 [.766] 1.18 [1.66]

Attention (λ=10) .358 [.728] 1.25 [1.79]

Attention (λ=20) .373 [.724] 1.20 [1.66]

Udacity [26]

CNN+FCN [3] .457 [.870] 4.12 [4.83]

CNN+LSTM .481 [1.24] 4.15 [4.93]

Attention (λ=0) .491 [1.20] 4.15 [4.93]

Attention (λ=10) .489 [1.19] 4.17 [4.96]

Attention (λ=20) .489 [1.26] 4.19 [4.93]

Table 2. Control performance comparison in terms of mean ab-

solute error (MAE) in degree and its standard deviation. Control

accuracy is not degraded by incorporation of attention compared

to an identical base CNN without attention. Abbreviation: SD

(standard deviation)

With setting αs=0.05, our model for the task of steering es-

timation performs the best. Unless otherwise stated, we will

use αs as 0.05.

4.5. Quantitative Analysis

In Table 2, we compare the prediction performance

with alternatives in terms of MAE. We implement alter-

natives that include the work by Bojarski et al. [3], which

used an identical base CNN and a fully-connected network

(FCN) without attention. To see the contribution of LSTM,

we also test a CNN and LSTM, which is identical to ours

but does not use the attention mechanism. For our model,

we test with three different values of penalty coefficients

λ ∈ {0, 10, 20}.

Our model shows competitive prediction performance

than alternatives. Our model shows 1.18–4.15 in terms of

MAE on testing dataset. This confirms that incorporation

of attention does not degrade control accuracy. The average

run-time for our model and alternatives took less than a day

to train each dataset. The Udacity dataset contains more

hard-to-predict drivers activities than other two datasets.

For instance, this dataset is mostly collected while driv-

ing on residential roads with many turns at intersections.

This is a challenge for a simple end-to-end controller but

our method still shows reasonable performance.
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Figure 3. Attention maps over time. Unseen consecutive input image frames are sampled at every 5 seconds (see from left to right). (Top)

Input raw images with human drivers demonstrated curvature of path (blue line) and predicted curvature of path (green line). (From the

bottom) We illustrate attention maps with three different regularization penalty coefficients λ ∈ {0, 10, 20}. Each attention map is overlaid

by an input raw image and color-coded. Red parts indicate where the model pays attention. Data: Comma.ai [8]
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Figure 4. Effect of applying a single exponential smoothing

method over various smoothing factors from 0.01 to 1.0. We

use two different penalty coefficients λ ∈ {0, 20}. With setting

αs = 0.05, our model performs the best. Data: Comma.ai [8]

4.6. Effect of Causal Visual Saliencies

Recall from Section 3.4, we post-process the attention

networks output by clustering it into attention blobs and

filtering if they have an causal effect on network output.

Figure 5 (A) shows typical examples of an input raw im-

age, an attention networkss output with spurious attention

sources, and our refined attention heat map. We observe

our model can produce a simpler and more accurate map

of visual saliency by filtering out spurious attention blobs.

In our experiment, 62% and 58% out of all attention blobs

are indeed spurious attention sources on Comma.ai [8] and

HCE datasets (see Figure 5 (B)).

5. Discussion

The proposed method highlights regions that causally

influence deep neural perception and control networks for

self-driving cars. Thus, it would be worth exploring a po-

tential overlap between the causally salient image areas and

what and where human drivers is really paying their atten-

tion while driving. Due to the lack of data capturing hu-

man drivers’ gaze movement, we leave this comparison to

a future work. Das et al. [9] recently reported that several

attention-based visual question answering (VQA) models

tend to look at different regions of the image unlike as hu-

mans do. However, this comparison is still an active re-

search area for self-driving cars.

Along with devising the fine-grained decoder, we may

consider using feature-level masking approach. Masking

out convolutional features of attended region can provide

a computationally efficient way by removing multiple for-

ward passes of the convolutional network. This approach,

however, may suffer from low deconvolutional spatial res-

olution, which makes challenge to view as a unit apart and

divide the whole attention map into distinct attended ob-

jects, such as cars or lane markings.

6. Conclusion

We described an interpretable visualization for deep self-

driving vehicle controllers. It uses a visual attention model

augmented with an additional layer of causal filtering. We

tested with three large-scale real driving datasets that con-

tain over 16 hours of video frames. We showed that (i)

incorporation of attention does not degrade control accu-

racy compared to an identical base CNN without attention

(ii) raw attention highlights interpretable features in the im-

age and (iii) causal filtering achieves a useful reduction in

explanation complexity by removing features which do not

significantly affect the output.
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Figure 5. (A) We illustrate examples of (left) raw input images, their (middle) visual attention heat maps with spurious attention sources,

and (right) our attention heat maps by filtering out spurious blobs to produce simpler and more accurate attention maps. (B) To measure

how much the causal filtering is simplifying attention clusters, we quantify the number of attention blobs before and after causal filtering.
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