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Abstract

A novel online algorithm to segment multiple objects in

a video sequence is proposed in this work. We develop the

collaborative detection, tracking, and segmentation (CDTS)

technique to extract multiple segment tracks accurately.

First, we jointly use object detector and tracker to gener-

ate multiple bounding box tracks for objects. Second, we

transform each bounding box into a pixel-wise segment, by

employing the alternate shrinking and expansion (ASE) seg-

mentation. Third, we refine the segment tracks, by detecting

object disappearance and reappearance cases and merging

overlapping segment tracks. Experimental results show that

the proposed algorithm significantly surpasses the state-of-

the-art conventional algorithms on benchmark datasets.

1. Introduction

Multiple object segmentation (MOS) is the task to ex-

tract multiple segment tracks by separating objects from one

another and from the background in a video sequence. It is

challenging to segment multiple objects in a video, with-

out any prior information about objects or user annotations.

Furthermore, MOS is difficult due to background clutters,

object overlapping, occlusion, disappearance, appearance

variation, and fast motion.

MOS algorithms [1, 2, 4, 15, 16, 21–23, 30–32, 34, 37, 42]

attempt to achieve pixel-wise delineation of as many ob-

jects as possible without user annotations. Most conven-

tional algorithms [1, 2, 4, 15, 16, 21–23, 30, 31, 34, 37, 42]

are offline approaches, which process all frames at once.

In other words, the entire information in a video is re-

quired to achieve the segmentation. These algorithms

gather motion trajectories [1, 2, 4, 21–23, 31] or region pro-

posals [15,16,30,34,37,42] from all frames, and then clus-

ter them into segments. On the other hand, an online ap-

proach, such as [32], extracts objects from each frame us-

ing the information in the current and past frames only. An

offline approach may achieve more accurate segmentation,

but it demands future frames, thereby increasing memory

and computational complexities. In contrast, an online ap-

proach can extract objects sequentially from the first to the

last frames. In this regard, online MOS is more practical

than offline one.

We propose a novel online MOS algorithm to extract seg-

ment tracks for multiple objects in a video sequence. We

develop the collaborative detection, tracking, and segmen-

tation (CDTS) technique to achieve accurate online MOS.

First, we use object detector and tracker jointly to gen-

erate bounding box tracks for multiple objects. Second,

we transform each bounding box into a pixel-wise seg-

ment, by shrinking and expanding foreground regions alter-

nately, and then link it to the corresponding segment track.

This alternate shrinking and expansion (ASE) is performed

sequentially to achieve online MOS. Third, we present

a scheme for segment track management, which exploits

segmentation results to detect object disappearance, object

reappearance, and duplicated segment tracks. Experimen-

tal results demonstrate that the proposed algorithm signifi-

cantly outperforms the state-of-the-art MOS algorithms on

the YouTube-Objects dataset [27] and FBMS dataset [23].

To summarize, this work has the following contributions.

• We simultaneously perform object detection, track-

ing, and segmentation to achieve MOS online, whereas

most conventional algorithms are offline approaches.

• We develop the segment track management scheme to

detect disappearing and reappearing objects and merge

duplicated segment tracks for the same object.

• The proposed algorithm yields remarkable perfor-

mances on the YouTube-Objects and FBMS bench-

marks datasets.

2. Related Work

2.1. Video Object Segmentation

Video object segmentation (VOS) can be classified into

three categories: semi-supervised VOS, single VOS, and

MOS.
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Semi-Supervised VOS: In semi-supervised VOS, user an-

notations are required about target objects in the first frame

of a video sequence. Then, the manually annotated mask

is propagated temporally to achieve segmentation in subse-

quent frames [19, 28, 33, 35, 39]. The region-based particle

filter [35], the seam carving [28], and the occluder-occluded

relationship [39] are used to perform non-rigid tracking of

target objects. Märki et al. [19] propagate user annotations

in the bilateral space. Tsai et al. [33] jointly optimize VOS

and optical flow estimation. Also, Perazzi et al. [25] con-

struct an appearance model (i.e. a support vector machine

classifier) of a target object, by employing user annotations.

However, note that the manual delineation or annotation is

exhausting and inconvenient.

Single VOS: Single VOS algorithms automatically sep-

arate a single primary object from the background in a

video [9, 11, 18, 24, 36, 38, 40], where the primary object

refers to the most frequently appearing object in the video.

They use various cues for the primary object segmenta-

tion. Papazoglou and Ferrari [24] generate motion bound-

aries to find moving objects, but they may fail to extract

static objects. In [11, 18, 40], object proposal techniques

are adopted to determine candidate regions of a primary ob-

ject. However, many false positives, such as background

proposals, are also generated, degrading the segmentation

performance. In [9, 36, 38], saliency maps are used for the

initial estimation of a primary object. These saliency-based

techniques are vulnerable to inaccurate saliency detection

results due to background clutters or background motions.

MOS: MOS algorithms produce multiple segment tracks.

An approach is the motion segmentation that clusters point

trajectories in a video [1, 2, 4, 21–23, 31]. Each motion

segment becomes one segment track. Shi and Malik [31]

adopt the normalized cuts to divide a frame into motion

segments. Brox and Malik [1] perform point tracking to

construct sparse long-term trajectories and divide them into

multiple clusters. Ochs and Brox [21] develop a sparse-to-

dense interpolation scheme to transform sparse clusters into

dense motion segmentation. Ochs et al. [23] segment mov-

ing objects based on both [1] and [21]. Ochs and Brox [22]

employ the spectral clustering to group trajectories based

on a higher-order motion model. Fragkiadaki et al. [4] im-

prove the segmentation performance on boundaries of mov-

ing objects, by analyzing trajectory discontinuities. Chen et

al. [2] adopt a Markov random field model to refine initial

trajectory clusters. These motion segmentation algorithms,

however, cannot segment static objects effectively.

Another approach is based on region proposals. Specif-

ically, region proposals are generated in each frame, and

they are matched between neighboring frames [16] or clus-

tered [15, 37] to yield multiple segment tracks. However,

in [15, 16, 37], different segment tracks may overlap with

one another. In other words, there may be multiple seg-

ment tracks including the same object. Moreover, false pos-

itives may occur, which mostly include background regions.

Among these overlapping or erroneous segment tracks, Tsai

et al. [34] attempt to select true object tracks, by comparing

them with segment tracks in other videos. They also employ

a semantic segmentation scheme to obtain region proposals.

Taylor et al. [32] identify occluders to segment multi-

ple objects online. Also, some MOS algorithms [30, 42]

employ pre-trained object detection techniques. Zhang et

al. [42] propose a segmentation-by-detection framework,

which combines object detection and semantic segmenta-

tion. However, they need the prior information of video-

level object categories. Seguin et al. [30] perform MOS,

guided by object detection and tracking, but they focus on

the segmentation of the person category. In this work, we

also adopt a pre-trained object detector [17] to initialize lo-

cations of multiple objects.

2.2. Multiple Object Tracking

Similar to MOS, multiple object tracking (MOT) also at-

tempts to locate multiple objects in a video. However, it

identifies the location of each object with a bounding box,

instead of pixel-wise segmentation. The MOT problem is

often decomposed into object detection and global data as-

sociation. The MOT algorithms in [7,10,20,41] focus on the

global data association, which finds the optimal path to link

object detection results across frames. On the other hand,

Kim and Kim [12] propose the cooperative detection and

tracking algorithm, in which the tracker restores undetected

objects while the detector guides the tracker to recognize

the disappearance or occlusion of target objects.

3. Proposed Algorithm

The proposed CDTS algorithm yields multiple segment

tracks online without requiring any user annotations. Each

segment track (or spatiotemporal segment) is composed of

segmentation masks of a detected object in the frames, in

which the object occurs. Thus, the output is a sequence of

pixel-wise label maps for frames, and all pixels in a spa-

tiotemporal segment are assigned the same label. The pro-

posed algorithm is an online approach in the sense that it

produces a pixel-wise label map for each frame causally

without using the information in future frames.

Figure 1 is an overview of the proposed CDTS algo-

rithm. First, we generate bounding box tracks for ob-

jects, called object tracks, by employing object detector and

tracker jointly. At the first frame, we use the object detec-

tor to yield a bounding box for each object and initialize an

object track. At each subsequent frame, we generate two

kinds of bounding boxes using the detector and the tracker,

respectively, and match them. For each matched pair, we

select the more accurate box to represent the object, and
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Figure 1. An overview of the proposed algorithm. In 2nd column, dotted and solid boxes depict detection and tracking results, respectively.

link the selected box to the corresponding object track. We

regard unmatched detection boxes as newly appearing ob-

jects, and initialize new object tracks for them. Second, we

identify a pixel-wise segment from each bounding box in

an object track, by shrinking and expanding foreground re-

gions alternately, and add it to the corresponding segment

track. Third, we refine the segment tracks, by handling

object disappearance and reappearance cases and merging

overlapped segment tracks.

3.1. Object Track Generation

Detector: We adopt the object detector R-FCN [17] to lo-

cate objects without manual annotations. Note that other

detectors, such as [6, 29], also can be used instead of R-

FCN. In each frame, we measure the detection scores for

region proposals, obtained by the region proposal network

in [29], using the R-FCN detector and choose only the pro-

posals whose scores are higher than a threshold θdet = 0.5.

Although R-FCN provides category-wise scores, we use the

maximum of those scores. Since the purpose of the pro-

posed algorithm is to extract and delineate objects regard-

less of their categories, we use the maximum score as the

objectness of the proposal.

Tracker: Since many proposals are discarded by the de-

tection threshold θdet, some objects may remain unde-

tected. For example, the detector cannot detect the per-

son within a green box in Figure 2, since he is small and

partially occluded. To boost the recall rate of objects us-

Figure 2. Joint detection and tracking. Dotted and solid rectangles

represent detection and tracking boxes, respectively.

ing temporal correlations in a video, we employ a model-

free tracker [13]. For each detected object in a previous

frame t− 1, the tracker estimates its location in the current

frame t. Specifically, given the ith bounding box b
(t−1)
i in

frame t − 1, a search region is set in frame t and candidate

boxes within the search region are sampled by the sliding

window method. The feature φ(b) of each candidate box b

is described by the combination of an RGB histogram and

an HOG histogram. Then, the bounding box b
(t−1)
i is traced

to the new location in the current frame t, which is given by

b
(t)
i = argmax

b∈R
w

T
i φ(b) (1)

where R denotes the search region and wi is the appearance

model of the target object.

Joint Detection and Tracking: At the first frame, we lo-

cate objects using the detector and initialize an object track

for each detected object. From the second frames, we ex-

tend the object tracks by employing the detector and the
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tracker jointly. As illustrated in Figure 2, there are three

cases after the detection and tracking: an object is included

by 1) both detection and tracking boxes, 2) only detection

box, or 3) only tracking box.

In case 1), a detection box in the current frame and a

tracking box traced from the previous frame include the

same object. In this case, we select the more accurate

box between the two boxes. For example, dotted and solid

yellow rectangles in Figure 2 are detection and tracking

boxes, respectively. Since the cow has a scale variation,

the detector [17] provides a better result than the fixed-

scale tracker [13]. We match detection and tracking boxes

and choose the better box for each matching pair similarly

to [12]. The matching cost Cm(bd, bt) between a detection

box bd and a tracking box bt is defined as

Cm(bd, bt) =

{

||φ(bd)− φ(bt)||
2 if Ω(bd, bt) ≥ θiou

∞ otherwise

(2)

where Ω(bd, bt) is the intersection over union (IoU) ratio

and θiou is set to 0.3. Thus, we match detection and track-

ing boxes only if their IoU ratio is greater than θiou. After

computing all matching costs between detection and track-

ing boxes, we find the optimal set of matching pairs using

the Hungarian algorithm [14], which carries out greedy one-

to-one matching in a bipartite graph. For each matching

pair, we compare the detection scores for the two boxes and

select the better box with the higher score. Suppose that

the tracking box is traced from the ith object track in the

previous frame. Then, the selected box is denoted by b
(t)
i

and is linked to the ith object track to form the extended

track O
(t)
i = {b

(ti)
i , b

(ti+1)
i , . . . , b

(t)
i }, where ti is the first

appearance time of the track.

In case 2), an unmatched detection box is regarded as a

newly appearing object and is used to initialize a new ob-

ject track. A dotted cyan box in Figure 2 shows a detection

result including a new object. In case 3), an unmatched

tracking box is simply linked to the corresponding object

track. Finally, for each object track O
(t)
i , we update the ap-

pearance model wi in (1) using the feature vector φ(b
(t)
i ) of

the bounding box b
(t)
i , as done in [13].

3.2. ASE Segmentation

From the bounding box b
(t)
i of the ith object track in

frame t, we segment out foreground pixels to transform the

object track into a segment track. After over-segmenting

frame t into superpixels, we dichotomize each superpixel

within and near the box b
(t)
i into either foreground or back-

ground class. Notice that we perform the segmentation in-

dependently for each object track.

Over-Segmentation: For the over-segmentation, we com-

pute an ultrametric contour map (UCM) [26] as in Fig-

(a) (b) (c)

(d) (e) (f)

Figure 3. The ASE segmentation of a frame in the “Train0001”

sequence: (a) input frame with a bounding box b
(t)
i

, (b) UCM, (c)

superpixels, (d) preliminary classification, (e) intra-frame refine-

ment, and (f) inter-frame refinement.

ure 3(b). Each region, enclosed by a boundary in the UCM,

becomes a superpixel in Figure 3(c). Let S = {s1, . . . , sM}
be the set of superpixels. For each superpixel sm, we cal-

culate the size ratio ∆(sm, b
(t)
i ) of the intersection region

between sm and b
(t)
i to the superpixel region sm. In other

words, ∆(sm, b
(t)
i ) represents the percentage of pixels in

the superpixel sm that are included in the bounding box b
(t)
i .

Then, we roughly divide S into the foreground region F
(t)
i

and the background region B
(t)
i by

F
(t)
i = {sm : ∆(sm, b

(t)
i ) ≥ θratio}, (3)

B
(t)
i = {sm : 0 < ∆(sm, b

(t)
i ) < θratio}, (4)

where θratio is set to 0.9.

In Figure 3(d), F
(t)
i and B

(t)
i are colored in cyan and red,

respectively. Being constrained by the rectangular shape of

b
(t)
i in Figure 3(a), the preliminarily classified F

(t)
i misses

parts of the object. Also, F
(t)
i includes background pixels.

To improve the segmentation performance, we shrink and

expand the preliminary foreground region alternately in two

steps: intra-frame refinement and inter-frame refinement.

Intra-Frame Refinement: Suppose that the object in b
(t)
i

first appears in the current frame t. In other words, ti = t.

Since the proposed algorithm operates online, it can use

only the information in frame t to refine the foreground re-

gion F
(t)
i for b

(t)
i . For this intra-frame refinement, we con-

strain the foreground region to have intense edge strengths

along its boundary. To this end, we define the boundary

cost, by employing the UCM U (t) for frame t, which is

given by

Cbnd(F
(t)
i ) = −

∑

x∈∂F
(t)
i

U (t)(x) (5)

where ∂F
(t)
i denotes the set of the boundary pixels of the

foreground region F
(t)
i . Due to the minus sign in (5), the
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(a) Input with bounding boxes (b) Preliminary classification (c) Intra-frame shrinking (d) Inter-frame expansion (e) Inter-frame shrinking

Figure 4. Step-by-step segmentation results in the proposed ASE segmentation. From top to bottom, the “Aeroplane0002,” “Boat0003,”

“Cow0002,” and “Horse0014” sequences. Note that each step improves the segmentation performance.

minimization of Cbnd(F
(t)
i ) enforces F

(t)
i to have the max-

imum edge strengths at the boundary pixels.

We refine the foreground region F
(t)
i in (3) to reduce the

boundary cost in (5), by removing superpixels from F
(t)
i

in a greedy manner. Since the joint detection and tracking

in Section 3.1 attempts to include a whole object within a

bounding box, the initial foreground region F
(t)
i in (3), as

well as the bounding box b
(t)
i , includes more false positives

than false negatives. Hence, in the intra-frame refinement,

we only shrink the foreground region by removing super-

pixels from F
(t)
i . Adding new superpixels into F

(t)
i is per-

formed in the inter-frame refinement.

For each superpixel sm ∈ F
(t)
i along the boundary of

F
(t)
i , we compute the boundary cost Cbnd(F

(t)
i \ sm) of

the set difference F
(t)
i \ sm. We then select the optimal

superpixel s∗m to minimize the cost. Then, after removing

s∗m from F
(t)
i , we repeat this process until the boundary cost

stops decreasing. Figure 3(e) shows the shrinking result of

the intra-frame refinement.

Inter-Frame Refinement: In the inter-frame refinement,

we constrain that the refined foreground region should be

similar to the segmentation results in previous frames, while

dissimilar from the background region in the current frame.

To quantify similarity between regions, we extract the fea-

tures f
(t)
f,i and f

(t)
b,i of F

(t)
i and B

(t)
i , respectively, by employ-

ing the bag-of-visual-words (BoW) approach [3]. We de-

sign the LAB BoW feature using the 40 training sequences

in the VSB100 dataset [5]. We quantize the LAB colors, ex-

tracted from the training sequences, into 300 codewords us-

ing the K-means algorithm. By associating each pixel with

the nearest codeword, we obtain the BoW histogram of the

codewords for the pixels in F
(t)
i , and normalize it into the

feature vector f
(t)
f,i . Also, f

(t)
b,i is obtained in the same way.

For the inter-frame refinement, we define a cost function

Cinter(F
(t)
i ,B

(t)
i ) (6)

= α · Ctmp(F
(t)
i ) + Cseg(F

(t)
i ,B

(t)
i ) + Cbnd(F

(t)
i )

where Ctmp is the temporal cost, Cseg is the segmentation

cost, Cbnd is the boundary cost in (5), and α is set to 5.

To achieve temporal consistency, the temporal cost

Ctmp(F
(t)
i ) in (6) enforces the feature of the foreground

region F
(t)
i to be similar to those of the foreground regions

in the previous frames. Specifically,

Ctmp(F
(t)
i ) =

1

Nc

t−1
∑

τ=t−Nc

dχ(f
(t)
f,i , f

(τ)
f,i ) (7)

where Nc specifies the temporal range and is fixed to 10 in

this work. We employ the chi-square distance dχ, which

compares two histograms effectively. On the other hand,

to minimize the similarity between the foreground region

F
(t)
i and background region B

(t)
i , the segmentation cost

Cseg(F
(t)
i ,B

(t)
i ) is defined as

Cseg(F
(t)
i ,B

(t)
i ) = −dχ(f

(t)
f,i , f

(t)
b,i ). (8)

Based on the overall inter cost Cinter in (6), we further

refine the foreground region F
(t)
i , which is already pro-

cessed by the intra-frame refinement. In the inter-frame re-

finement, we perform expansion and shrinking alternately.
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(a) Frame 99 (b) Frame 103 (c) Frame 105 (d) Frame 107 (e) Frame 113 (f) Frame 116

Figure 5. A disappearing and reappearing horse in the “Horse0012” sequence. Bounding boxes and segmented foreground regions are

depicted in cyan. The segment track for the horse is discontinued at frame 105 and then reconnected at frame 113.

Algorithm 1 ASE Segmentation

Input: Bounding box b
(t)
i

in frame t

1: Obtain the set of superpixels S = {s1, . . . , sM} using UCM

2: Classify each sm into F
(t)
i

and B
(t)
i

according to ∆(sm, b
(t)
i

)

3: if the object in b
(t)
i

first appears in frame t then

4: Update F
(t)
i

and B
(t)
i

based on Cbnd(F
(t)
i

)
5: else

6: Update F
(t)
i

and B
(t)
i

based on Cbnd(F
(t)
i

)

7: Update F
(t)
i

and B
(t)
i

based on Cinter(F
(t)
i

,B
(t)
i

)
8: end if

Output: Foreground region F
(t)
i

We first expand the foreground region F
(t)
i using adjacent

superpixels in B
(t)
i . More specifically, for each superpixel

sn ∈ B
(t)
i sharing a boundary with F

(t)
i , we compute the

inter cost Cinter(F
(t)
i ∪ sn,B

(t)
i \ sn). Then, we select the

optimal superpixel s∗n to minimize the cost. We then aug-

ment F
(t)
i by moving s∗n from B

(t)
i to F

(t)
i . This expansion

step is repeated until the inter cost stops decreasing. After

the expansion, we perform the shrinking in a similar way,

by considering the inter cost Cinter(F
(t)
i \ sm,B

(t)
i ∪ sm)

for removing a superpixel sm.

Notice that both expansion and shrinking steps in the

inter-frame refinement use the same cost function and de-

crease it monotonically. Thus, the alternate application of

the expansion and the shrinking eventually converges when

neither expansion nor shrinking can reduce the cost func-

tion. However, in practice, we observe that one iteration of

the expansion and the shrinking provides sufficiently good

segmentation performance. Figure 3(f) shows this inter-

frame refinement example. Figure 4 shows more step-by-

step segmentation results. Algorithm 1 summarizes the

ASE segmentation algorithm.

3.3. Segment Track Management

We manage segment tracks, by observing segmentation

results. As illustrated in Figure 5, a target object may disap-

pear from the view, and a disappeared object may reappear

into the view. Also, as shown in Figure 6(a), a part of an ex-

istent object may be detected as a new object. In this work,

we use segmentation results to detect the disappearance or

reappearance of a target object and to merge duplicated seg-

ment tracks for the same object.

Disappearance and Reappearance: A target object may

be out of the view or be occluded by other objects or the

background. A detection score can be used to identify the

disappearance of an object [12]. However, a severely oc-

cluded object, e.g. the horse in Figure 5(b), yields a very

low detection score, and it may be incorrectly declared as a

disappearance case. We detect disappearance cases more ef-

fectively using the segmentation information. When an ob-

ject disappears in frame t, the segmentation result is likely

to include nearby background regions, as in Figure 5(c).

Thus, we expect that the segmentation result of a disap-

peared object includes background features rather than fore-

ground features. Therefore, using the feature vectors of the

foreground and background regions in previous frames, we

compute two dissimilarities, given by

dfore =
1

Nc

t−1
∑

τ=t−Nc

dχ(f
(t)
f,i , f

(τ)
f,i ), (9)

dback =
1

Nc

t−1
∑

τ=t−Nc

dχ(f
(t)
f,i , f

(τ)
b,i ). (10)

When dfore is larger than dback, we declare that the object

has disappeared and stop tracking it.

Also, a disappeared object may reappear into the view af-

ter some frames, as in Figure 5(e). We attempt to reconnect

a reappearing object to its previous segment track. When

object j is newly detected in frame k, we check whether it

is compatible with a discontinued segment track i. Specifi-

cally, we compare the foreground region F
(k)
j of object j

with F
(t̃i−Nc)
i , . . . ,F

(t̃i−1)
i , where t̃i is the index of the

frame when object i disappears. We compute the dissim-

ilarity

1

Nc

t̃i−1
∑

τ=t̃i−Nc

dχ(f
(k)
f,j , f

(τ)
f,i ) (11)

and reconnect object j to segment track i if the dissimilarity

is smaller than θdis = 0.5.

Mergence: Even though an object in segment track i has

been tracked and segmented up to frame t, its partial re-

gion can be detected as another segment track j. This hap-

pens when the detected bounding box of the partial region
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(a) (b)

Figure 6. Overlapped segment tracks for the same object. Two

segments in (a), covering the same object, are integrated into one

segment in (b) based on the mergence score.

is unmatched by the Hungarian algorithm in Section 3.1. In

Figure 6(a), an existent object F
(t)
i and a newly detected

overlapping region F
(t)
j are colored in blue and yellow, re-

spectively, and their intersection is in magenta. These two

regions, F
(t)
i and F

(t)
j , should be merged. When F

(t)
i and

F
(t)
j overlap each other, we determine whether to merge

them using the mergence score Ψij , given by

Ψij =
λi∪j

1
2 (λi + λj)

(1− dχ(f
(t)
f,i , f

(t)
f,j )) (12)

where λi and λj are the detection scores of the bounding

boxes b
(t)
i and b

(t)
j . Also, λi∪j is the detection score of

the merged box b
(t)
i∪j , depicted by a blue rectangle in Fig-

ure 6(b). The mergence score in (12) considers the ob-

jectness of the merged box as well as the similarity be-

tween the two regions F
(t)
i and F

(t)
j . If Ψij is greater than

θmrg = 0.9, we merge F
(t)
j into F

(t)
i as in Figure 6(b).

4. Experimental Results

We assess the performance of the proposed CDTS algo-

rithm on the YouTube-Objects dataset [27] and the FBMS

dataset [23]. The proposed CDTS algorithm has five thresh-

olds, which are fixed in all experiments: θdet = 0.5,

θiou = 0.3 in (2), θratio = 0.9 in (3) and (4), θdis = 0.5,

and θmrg = 0.9.

4.1. Evaluation on YouTube­Objects Dataset

YouTube-Objects is a large dataset, containing 126

videos for 10 object classes. These videos are challeng-

ing due to appearance change, fast-motion, occlusion, dis-

appearance of objects, and so forth. The pixel-wise ground-

truth is provided by [8]. To assess a segmentation result

quantitatively, we measure the IoU ratio
|Sest∩Sgt|
|Sest∪Sgt|

, where

Sest and Sgt are an estimated segment and the ground-truth,

respectively. Since the proposed algorithm yields multiple

segment tracks, different segment tracks may overlap in a

frame. In such a case, we compute the average of frame-

by-frame detection scores for each segment track. Then,

we keep the foreground region of the best segment track

with the highest average score and discard the foreground

regions of the other segment tracks.

Table 1. Impacts of the intra-frame refinement (Intra), the

inter-frame refinement (Inter), and the segment track management

(STM) on the average IoU performance.

Baseline Baseline Baseline Baseline + Intra

+ Intra + Intra + Inter + Inter + STM

Average 0.581 0.638 0.661 0.672

Ablation Study: Table 1 analyzes the impacts of the intra-

frame refinement, the inter-frame refinement, and the seg-

ment track management on the segmentation performance.

We set preliminary classification results as the baseline. In

Table 1, we observe that the intra-frame refinement im-

proves the average IoU ratio significantly. Moreover, the

inter-frame refinement and then the segment track manage-

ment further improve the performances meaningfully. This

indicates that all three steps are essential for the proposed

algorithm to generate accurate segment tracks.

Quantitative Comparison: Table 2 compares the pro-

posed CDTS algorithm with the conventional single

VOS [9, 24] and MOS [23, 34, 42] algorithms. We obtain

the results of [23, 24, 34, 42] from the paper [34]. We com-

pute the result of [9] using the source code, provided by

the respective author. For comparison, we measure the IoU

ratios using the ground-truth in [8].

The single VOS algorithms [9,24] miss some foreground

regions for videos including multiple objects, since they fo-

cus on the segmentation of a single primary object. In the

MOS category, the proposed CDTS algorithm outperforms

all conventional MOS algorithms [23, 34, 42] significantly.

Specifically, the proposed algorithm yields 0.517, 0.148,

and 0.091 better IoU ratio than [23], [42], and [34], respec-

tively. It is worth pointing out that [42] and [34] require

additional information of video-level object categories and

other videos, respectively, whereas the proposed algorithm

does not. Also, notice that the proposed algorithm is an

online approach, whereas all conventional algorithms are

offline ones.

Qualitative Results: Figure 7 shows examples of MOS re-

sults on the YouTube-Objects dataset. The proposed algo-

rithm segments out multiple objects faithfully. Also, we see

that the proposed algorithm deals with partially occluded

objects in the “Cow” sequence and disappearing objects in

the “Horse” sequence effectively. However, a motorbike

and its rider in the “Motorbike” sequence are extracted to-

gether in some frames, whereas the ground-truth includes

motorbike regions only. This is why the performance on the

motorbike class is relatively low as compared with other

classes in Table 2.

More Results: Although we use the ground-truth in [8] in

this paper, they are too rough and need to delineate objects

more tightly. We hence modified the ground-truth manually

to improve it. More experimental results using this improve

ground-truth are available in supplemental materials.
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Table 2. Performance comparison of the proposed CDTS algorithm with the conventional algorithms on the YouTube-Objects dataset in

terms of the IoU metric, based on the original ground-truth in [8]. The best results are boldfaced.

Aeroplane Bird Boat Car Cat Cow Dog Horse Motorbike Train Average

A. Single VOS

[24] 0.736 0.561 0.578 0.339 0.305 0.418 0.368 0.443 0.489 0.392 0.463

[9] 0.504 0.625 0.312 0.528 0.453 0.367 0.472 0.406 0.240 0.343 0.425

B. MOS

[23] 0.137 0.122 0.108 0.237 0.186 0.163 0.180 0.115 0.106 0.196 0.155

[42] 0.724 0.666 0.430 0.589 0.364 0.582 0.487 0.496 0.414 0.493 0.524

[34] 0.693 0.760 0.535 0.704 0.668 0.490 0.475 0.557 0.395 0.534 0.581

CDTS 0.786 0.758 0.649 0.762 0.634 0.642 0.720 0.523 0.562 0.680 0.672

(a) Airplane (b) Bird (c) Boat (d) Car (e) Cat

(f) Cow (g) Dog (h) Horse (i) Motorbike (j) Train

Figure 7. Segmentation results of the proposed CDTS algorithm on the YouTube-Objects dataset. Extracted objects are colored differently.

Table 3. Comparison of IoU scores on the test sequences in the

FBMS dataset. The best results are boldfaced.

Precision Recall F-measure F-measure≥ 0.75

[23] 0.749 0.601 0.667 20/69

[32] 0.779 0.591 0.672 15/69

CDTS 0.778 0.715 0.745 30/69

4.2. Evaluation on FBMS Dataset

The FBMS dataset [23] is another benchmark for MOS.

It consists of 59 video sequences, which are divided into

29 training and 30 test sequences. Since we use the off-

the-shelf object detector [17], we do not use the training

sequences. For the performance assessment, we use the test

sequences. We obtain the results of the conventional MOS

algorithms [23,32] from the respective papers. For compar-

ison, we use the precision, recall, and F-measure as done

in [23]. An object with F-measure ≥ 0.75 is regarded as

successfully segmented. In Table 3, the proposed algorithm

outperforms the conventional algorithms [23, 32] in terms

of all metrics and extracts more objects successfully.

5. Conclusions

We proposed a novel online MOS algorithm, referred to

as CDTS. We first generated a set of object tracks using the

object detector and tracker jointly. Then, to extract pixel-

wise segments from the boxes in the object tracks, we de-

veloped the ASE segmentation technique. Finally, we per-

formed the segment track management to refine segment

tracks. Experimental results demonstrate that the proposed

algorithm outperforms the state-of-the-art algorithms sig-

nificantly on both the YouTube-Objects and FBMS datasets.
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