
Training Deep Networks to be Spatially Sensitive

Nicholas Kolkin Gregory Shakhnarovich

nick.kolkin@ttic.edu gregory@ttic.edu

Toyota Technological Institute at Chicago

Chicago, IL, USA

Eli Shechtman

elishe@adobe.com

Adobe Research

Seattle, WA, USA

Abstract

In many computer vision tasks, for example saliency pre-

diction or semantic segmentation, the desired output is a

foreground map that predicts pixels where some criteria

is satisfied. Despite the inherently spatial nature of this

task commonly used learning objectives do not incorporate

the spatial relationships between misclassified pixels and

the underlying ground truth. The Weighted F-measure, a

recently proposed evaluation metric, does reweight errors

spatially, and has been shown to closely correlate with hu-

man evaluation of quality, and stably rank predictions with

respect to noisy ground truths (such as a sloppy human an-

notator might generate). However it suffers from compu-

tational complexity which makes it intractable as an op-

timization objective for gradient descent, which must be

evaluated thousands or millions of times while learning a

model’s parameters. We propose a differentiable and effi-

cient approximation of this metric. By incorporating spa-

tial information into the objective we can use a simpler

model than competing methods without sacrificing accu-

racy, resulting in faster inference speeds and alleviating the

need for pre/post-processing. We match (or improve) per-

formance on several tasks compared to prior state of the

art by traditional metrics, and in many cases significantly

improve performance by the weighted F-measure.

1. Introduction

When optimizing a predictive model it is important that

the objective function not only encode the ideal solution

(zero mistakes), but also quantify the relative severity of

mistakes. A common dimension of preference is the desired

tradeoff between precision and recall. One can capture this

tradeoff with a Fβ metric, where β reflects the relative im-

portance of recall compared to precision. While this metric

can quantify the relative importance of false positives and

false negatives, it cannot capture differing severity between

two false positives, or two false negatives. One domain

where differentiating between such errors becomes impor-

[17] SZNCE SZNFw
1

GT Input

(ours) (ours)

Figure 1: A comparison of the previous saliency prediction

state of the art with our SZN model predictions with the

traditional log-loss (SZNCE) and our proposed AFw
β loss

(SZNFw
1

). The top row demonstrates that our loss heav-

ily penalizes for large spatially co-occurring false negatives.

The bottom row demonstrates that the proposed loss heavily

penalizes false positives far from the true object boundary.

tant is the prediction of foreground maps, where the out-

put has many desired properties not captured by notions of

precision or recall, such as smoothness, accuracy of bound-

aries, contiguity of the predicted mask, etc. As a result, two

predictions with the same number of mistakes, or with the

same score on a measure which treats false positives and

false negatives equally (e.g. intersection over union, IoU),

may differ substantially in their perceived spatial quality.

Loss functions derived from per-pixel classification-based

surrogates, such as log-loss are almost universally used in

existing work, but fail to capture both the precision-recall

tradeoff and the spatial sensibilities of this kind.

Margolin et al. [23] proposed a method to quantify these

distinctions when predicting foreground maps. Their Fw
β

measure formalizes two notions. First, false detections are

less severe when close to the object’s true boundary; Sec-

ond, missing an entire section of an object is worse than

missing the same number of pixels scattered across the en-

tire object. These alterations closely match human intuition

5668

and perceptual judgements, and have the additional bene-

fits of being robust to small annotation errors (such as mi-

nor differences between multiple human annotators). The

Fw
β measure is also able to reliably rank generic foreground

maps, such as centered geometric shapes, lower than state

of the art predictions (They show traditional metrics, such

as AUC, lack this property). Despite these positive traits,

their formulation has O(n2) memory and computational re-

quirements where n the number of pixels in the image.

This computational cost poses a particular problem if

the Fw
β metric were used as the training objective for deep

neural networks (DNNs). Normally trained with stochas-

tic gradient descent over large training sets, DNNs require

computing the gradient of the loss many, many, times. This

means that the loss function must be differentiable, and ef-

ficient – two criteria which Fw
β does not meet.

Our primary contribution is a differentiable and compu-

tationally efficient approximation of the Fw
β metric, which

can be used directly as the loss function of a convolutional

neural network (CNN). As a secondary contribution, we

propose a memory-efficient CNN architecture which is ca-

pable of producing high resolution pixel-wise predictions,

taking full advantage of the spatial information provided by

our proposed loss. By combining these two components

we are able to produce high-fidelity, spatially cohesive pre-

dictions, without relying on complex, often expensive pre-

processing (such as super-pixels) or post-processing (such

as CRF inference), resulting in inference speeds an order of

magnitude faster than state of the art in multiple domains.

We do not sacrifice accuracy, achieving competitive or state

of the art accuracy on benchmarks for salient object detec-

tion, portrait segmentation, and visual distractor masking.

2. Background

In this section we discuss the prior work on incorporating

spatial consideration into learning objectives. While multi-

ple objectives have been proposed to capture spatial prop-

erties of prediction maps [2, 25, 26], these have been lim-

ited to structured prediction methods using random fields,

and adds significant complexity when incorporated into a

feed-forward prediction framework like that of CNNs. We

focus on the Fw
β metric, which is decoupled from the pre-

diction framework and upon which we directly build our

approach. We review it below, and also survey the related

work on the segmentation tasks on which we evaluate our

contributions: salient object detection, distractor detection,

and portrait segmentation.

2.1. The Fβ metric family

In a binary classification scenario, with labels y ∈
{0, 1}, when the predicted label ŷ is a mistake ŷ 6= y, it

is either a false positive (FP, ŷ = 1) or a false negative (FN,

ŷ = 0). Performance of any classifier on an evaluation set

can be characterized by its precision #TP/(#TP+#FP)
and its recall #TP/(#TP +#FN).

While precision and recall each only tell part of the story,

one can summarize a classification algorithm’s performance

in a single number, using the Fβ metric

Fβ =
(1 + β2) ∗ Precision ∗Recall

β2Precision+Recall
. (1)

β captures the relative importance of precision compared to

recall (e.g. if precision is twice as important as recall, we

use F2). The well known F1 metric is a special case corre-

sponding to equal importance between precision and recall.

The Fβ metrics is a common benchmark in ’information ex-

traction’ tasks, and in [11] Jansche outlines a procedure to

directly optimize it. This formulation applies to any sce-

nario when Fβ is meaningful, but it cannot encode differ-

ences within the categories of false positive, and false neg-

ative, which are quite meaningful in the highly structured

domain of natural images.

2.2. The Fw
β metric

The standard Fβ is extended in [23] in two ways. First,

it is generalized to handle continuous predictions, ŷ ∈ [0, 1]
(the ground truth y remains binary). The adjusted defini-

tions of the true positive, false positive, true negative, and

false negative are as follows:

E = |Y − Ŷ |
TP = (1− E) · Y
TN = (1− E) · (1− Y)

FP = E · (1− Y)

FN = E · Y

(2)

This holds in the case of predicting a set of values; Y is the

vector of ground truth labels , Ŷ is the vector of predictions,

and · denotes the dot product

The second modification proposed in [23] addresses the

unequal nature of mistakes in binary segmentation (y = 1
implying foreground, y = 0 background), as determined

by the spatial configuration of predictions vs. ground truth.

The authors of [23] suggest a number of criteria for evalu-

ating foreground maps.

First consider false negatives, missed detections of fore-

ground pixels. If random foreground pixels across an object

are undetected, leaving small holes in the foreground, this

is easily corrected via post-processing. However, concen-

trating the same number of errors in one part of the object is

much more perceptually severe and difficult to correct. See

the top row of Figure 1. This is captured by by re-weighting

5669

E ∈ R
n with a matrix A ∈ R

n2

:

A =





1√
2πσ2

e−
d(i,j)2

2σ2 , ∀i, j|yi = 1, yj = 1

1, ∀i, j|yi = 0, i = j

0, otherwise

(3)

This definition of A means that FN error at any given

pixel is calculated by summing over all FN errors in the im-

age, weighted by a gaussian centered at the pixel of interest.

Intuitively, if there are many spatially co-occurring FN pre-

dictions, they will all contribute to each others loss, heavily

penalizing larger sections of missed foreground.

False positives, or erroneous foreground detections, are

treated differently. A false positive near the true boundary

of the object is more acceptable than a distant one. Even hu-

man annotators often do not precisely agree on the bound-

aries of an object. See the bottom row of Figure 1. Mar-

golin et al. [23] quantify this as follows:

B =

{
1, ∀iyi = 1

2− eα·∆i , otherwise
(4)

Ew = min(AE,E) · B (5)

Where ∆i = minj|yj=1 d(i, j), and α = ln(0.5)
5 . Intu-

itively this gives false positives a weight B ∈ (1, 2)n, where

false positives spatially distant from any true positive ap-

proach weight 2, and false positives next to true positives

have weight approximately 1. This penalizes more heavily

far spurious false detection.

TPw, TNw, FPw and FNw are then defined by sub-

stituting Ew in place of E in Eq. 2. and use these terms

to define weighted precision, weighted recall, and the Fw
β

metric.

Pw =
TPw

TPw + FPw

Rw =
TPw

TPw + FNw

Fw
β =

(1 + β2) ∗ Pw ∗Rw

β2Pw +Rw

(6)

2.3. Salient Object Detection

Traditionally salient object detection models have been

constructed by applying expert domain knowledge. Some

methods rely on feature engineering combined with center-

surround contrast concepts motivated by human perception,

where the features are based on color, intensity and tex-

ture [30, 1, 6]. A more advanced perception model was used

in [22] to generate object detections from attended points.

Another approach is using high-level object detectors to

determine local ’objectness’ [14].Many methods combine

both approaches [12, 5, 14, 28]. Other techniques make

Input GT SZNFw
1

Retouched

Figure 2: Examples of distractor detection and removal

(MTurk data set, Sec. 5.4). Ground truth was obtained

by aggregating crowdsourced annotations. Our method

(SZNFw
1

) detects distractors which are then retouched

(hole filled) using Photoshop’s Content Aware Fill.

predictions hierarchically [33], or based on graphical mod-

els [12, 20]. Other expert knowledge includes re-weighting

the model predictions based on the image center or bound-

aries [20, 14, 13, 35].

Deep networks were used in [31] to learn local patch fea-

tures to predict the saliency score at the center of the patch.

However, lack of global information might lead to failure

to detect the interior of large objects. In [16] Kokkinos

combines the task of salient object detection with several

other vision tasks, demonstrating a general multi-task CNN

architecture.

CNNs were used to extract features around super-

pixels [18, 34], as well as combining them with hand-

crafted ones [18]. Li et al. [17] propose a two stream

method that fuses coarse pixel-level prediction, based

on concatenated multi-layer features similar to [24], and

then fusing these with super-pixel predictions (reminiscent

to [18]). The results of [17] and [18] also rely on post-

processing with a CRF.

Our method differs from [18, 17] in two important ways.

Instead of relying upon spatial supervision provided by

super-pixel algorithms, our architecture directly produces a

high resolution prediction. Our proposed spatially sensitive

loss function encourages the learned network to make pre-

dictions that snap to object boundaries and avoid “holes”

in the interior of objects, without any post-processing (e.g.,

CRF). Our model achieves competitive or state-of-the-art

results on all benchmarks. Additionally, training our model

is three times faster than competitive saliency methods,

making it much easier to scale to larger training sets. Per-

forming inference with our model is almost an order of

magnitude faster than any competitive method, and can be

used in a real-time application.

2.4. Distractor Detection

Another task where it is vital to predict accurate and high

resolution foreground maps is distractor detection as pro-

5670

Over-Prediction E EB

GT Under-Prediction E EA

Figure 3: A vizualization on a synthetic example of how

our loss function re-weights mistakes. In the top row we

visualize the down-weighting of false positives near the

true object border. In the bottom-row we show the down-

weighting of false-negatives do not spatially co-occur many

other false-negatives and the increased weight of false neg-

atives which spatially co-occur. True positives are marked

by green, and mistakes are marked in red.

posed by [8]. Distractors are defined as visually salient

parts of an image which are not the photographer’s intended

focus. This task is somewhat similar to salient object detec-

tion, but successful algorithms must go beyond simply de-

tecting all salient objects, and model the image at a global

level to discriminate between the intended focus of the im-

age and the distractors. In [8] Fried et al. propose an

SVM based approach, trained on a relatively small dataset,

which classifies super-pixels extracted by Multiscale Com-

binatorial Grouping (MCG) based on a set of hand-crafted

features. To test the robustness of their approach we gath-

ered a larger dataset with crowdsourced labels. While their

method is able to detect large and well defined distractors, it

struggles to detect non-object distractors such as shadows,

lights and reflections as well as select small objects.

2.5. Portrait segmentation

Portraits are highly popular art form in both photogra-

phy and painting. In most instances, artists seek to make

the subject stand out from its surrounding, for instance, by

making it brighter or sharper or by applying photographic

or painterly filters that adapt to the semantics of the image.

Shen et al. [27] presented a new high quality automatic por-

trait segmentation algorithm by adapting the FCN-8s frame-

work [21]. They also introduced a portrait image segmenta-

tion dataset and benchmark for training and testing.

3. Our Approximate F
w
β loss (AFw

β)

There are three issues that prevent the Fw
β metric as de-

fined in Section 2.2 from being directly optimized as a loss

function. The first is that while the metric is differentiable

almost everywhere, it is not differentiable when y = ŷ, be-

cause d
dŷi

|ŷi − yi| is undefined. In practice, we observed

difficulties optimizing the error using SGD due to the con-

stant value of the gradient for ŷ 6= y (intuitively, because the

gradient doesn’t decrease as the error decreases). We solve

this by replacing the L1 norm with L2: Ei = (ŷi − yi)
2,

which we find to be much easier to optimize.

The second problem is that constructing A (not to men-

tion computing EA) has O(n2) time and space complexity.

However, we can overcome this problem by leveraging con-

volutions. When we unpack the definition of matrix multi-

plication in Equation (3), we can write EA at pixel i as:

(EA)i =
∑

j

[EjAji] =

= yi
∑

j

[yjEj

1√
2πσ2

e
−d(i,j)

2σ2] + (1− yi)
(7)

Note that if d(i, j) ≥ 4σ then 1√
2πσ2

e
−d(i,j)

2σ2 ≈ 0. We

then define yp,q and Ep,q as the ground truth and error re-

spectively at pixel (p, q), and can approximate (EA)i as:

(EA)i ≈ (1− yi)+

+ yi+(p,q)

4σ∑

p,q=−4σ

[y · E]i+(p,q)
1√
2πσ2

e
−

√
p2+q2

2σ2

(8)

If we let σ = θ
4 , we can define a (2θ + 1) × (2θ + 1)

Gaussian convolutional kernel KA, yielding

EA ≈ Y ⊙ ((Y ⊙ E) ∗KA) + (1− Y), where

KA

i,j =
1√
2πσ2

e
−

√
(−θ+i)2+(−θ+j)2

2σ2
(9)

Where ⊙ is element-wise multiplication. Now we don’t

need to store any entries of A, only a(2θ+1)×(2θ+1) ker-

nel and we skip most of the original summation over pixels

j. So the time and space complexity is reduced to O(n+θ2).
In practice, we use θ = 9.

The final problem is that constructing B has complexity

O(n2), because computing ∆i requires finding the mini-

mum d(i, j) over all pixels j, such that yj = 1. However,

if d(i, j) ≥ 25, then Bi = 2 − eα·∆i ≈ 2 in Equation (4).

Our intuition is that B is modeling the region of uncertainty

about an object’s boundary, for which we believe 25 pixels

to be too generous. So we redefine ∆i as:

∆i =

{
∞, if minj d(i, j) > 5

minj d(i, j)
2|yj = 1, otherwise

Squaring the distance so that the region of uncertainty is

assumed to be approximately 5 pixels instead of 25. Now

5671

the time complexity is O(n + φ2) where φ = 5. We can

approximate E⊙B using a convolution with the kernel KB,

a tensor of size φ × φ × φ2, defined at each index (zero

indexed) as:

KB

i,j,k =

{
(−φ+ i)2 + (−φ+ j)2, if k = i ∗ (2φ+ 1) + j

0, otherwise

and we can rewrite B as:

B ≈ Y + (1− Y)⊙ eamink[(Y ∗KB)] (10)

By reformulating the local search for the true object

boundary as a convolution followed by an argmin, we can

leverage the efficient implmentations of these operations al-

ready available in many packages. While our current ar-

chitecture does not suffer from speed or memory issues,

more complicated architectures might benefit from a more

optimized implementation, namely a custom ’minimization

convolution’ that would not store the intermediary result of

(Y ∗KB), and takes advantage of the sparsity of KB.

These changes yield a spatially informed loss function

that can easily be implemented in an existing DNN frame-

work such as Tensorflow. It fully utilizes the GPU, does

not increase training wall clock time noticeably, and yields

better results than more commonly used loss functions for

foreground maps. Compared to an unoptimized implemen-

tation of the original formulation in python, our approxi-

mation takes two orders of magnitude less time to compute

on the CPU, and three orders of magnitude less time on the

GPU, to compute our loss on a 224x224 pixel image, See

section 5.5.

4. Network Architecture

In order to produce accurate foreground maps each pixel

must have a rich feature representation. To achieve this

we utilize Zoomout features [24], which have been ef-

fectively utilized in the semantic segmentation community.

Zoomout features are extracted from a CNN by upsampling

and downsampling the features computed by each convolu-

tional filter to be the same spatial resolution, then concate-

nating the features computed at all layers of the CNN. In

this way, each spatial location is richly described by both

the weakly localized semantic features computed at higher

layers, the strongly localized edge and color detectors com-

puted in the first layers, and everything in between.

4.1. Squeeze Layers

Zoomout features are expressive but have a large mem-

ory footprint, limiting the spatial resolution of predictions

that can be made using them. In tasks like distractor detec-

tion, where the end goal is to precisely localize distractors

Figure 4: Architecture Diagram, note that because the blue

squeeze module is applied to a fully connected layer, it uses

only 1x1 convolutions.

and remove them, a low resolution prediction leads to spa-

tial ambiguity and lower precision. To remedy this prob-

lem we adapt the insights of [10], introducing what we call

Squeeze Modules to our network. A Squeeze Module con-

sists of 2n convolutional filters, n of which are 1 × 1 con-

volutions and n of which are 3× 3 convolutions. Applying

Squeeze Modules to each convolutional layer acts as a di-

mensionality reduction with learned parameters, allowing

us to make predictions at essentially arbitrary resolutions

by setting n to be sufficiently small. In practice we produce

224× 224 predictions, and set n = 64. We refer to our full

architecture as a Squeezed Zoomout Network (SZN).

5. Experiments

We report on experiments with three tasks where we can

expect spatial sensitivity to be important for quality of the

output: salient object detection, portrait segmentation, and

distractor detection. See Sec. 2 for background.

5.1. Training Details

In all experiments we train our SZN using a CNN

(from which the squeezed zoomout features are derived)

pre-trained on ImageNet. As the base CNN we use VGG-

16 [29] for saliency, portraits, and distractors. We train

the SZN architecture using ADAM [15], and train in 3

stages. In the first stage we set the learning rate to 3e-4

5672

for 8 epochs, In the second we set the learning rate to be 1e-

4 for 4 epochs. The base CNN is kept fixed (not fine-tuned)

in the first two stages. In the third stage we set the learn-

ing rate to 1e-5 for 14 epochs, fine-tuning the weights of

the base CNN as well. We augment the training images by

randomly permuting standard data transformations as de-

scribed in [7]: image flips, random noise, changing contrast

levels, and global color shifts.

5.2. Salient Object Detection

We consider four standard data sets for this task:

MSRA-B - 5000 images with pixel level annotations

provided by [13]. Widely used for salient object detec-

tion. Most images contain a single object on a high contrast

background.

HKU-IS - 4447 images with pixel level annotations pro-

vided by [18]. All images with at least one of the following

attributes: multiple salient objects, salient objects touching

boundary, low color contrast, complex background.

ECSSD - 1000 challenging images with pixel level an-

notations provided by [33].

PASCAL-S 850 images from the PASCAL VOC 2010

segmentation challenge with pixel level annotations pro-

vided by [19]. Following the convention of [19] we thresh-

old the soft labels at 0.5.

Evaluation Metrics

Following the convention of [17] [18] we report the F0.3

measure (with oracle access to the optimal threshold for the

soft predictions), area under the receiver-operator charac-

teristic curve (AUROC), and mean absolute error (MAE =
1

W ·H
∑w

i=1

∑H

j=1 |Ŷij − Yij |). While the first two metrics

evaluate whether we rank pixels correctly, MAE captures

absolute classification error. We report the mean of each

metrics on the test set. We also report the Fw
1 metric almost

exactly as formulated by [23], except that for tractibility we

drop terms tied to spatially distant pixels, which are very

expensive to all compute and have a negligable effect on

the loss. While other measures give all errors equal weight,

and a small percentage of pixels predicted differently barely

affects their value, those mislabeled pixels can be perceptu-

ally vital. This is captured by the Fw
1 metric, we provide

examples of this phenomenon in Figure 6

Results and Comparison Following the convention of

[17] [18] we train on 2500 images from MSRA-B, validate

on 500, and test on the remaining 2000. We then use the

same model trained on MSRA-B to generate predictions for

all other datasets. To evaluate our proposed loss function we

compare the performance of our Squeezed Zoomout Net-

work trained with the commonly used cross-entropy loss

function (SZNCE), against the same architecture trained

with the exact same training procedure, but replacing the

cross entropy with our AFw
β loss function. The latter is our

proposed method and we denote it SZNFw
1

from now on.

MC HDHF DCL SZNCE SZNFw
1

[34] [18] [17] ours ours

MSRA-B

MAE 0.054 0.053 0.047 0.052 0.051

AUC 0.975 0.982 0.983 0.987 0.988

F
max
0.3 0.984 0.899 0.916 0.913 0.919

F
w
1 - - 0.816 0.829 0.856

HKU-IS

MAE 0.102 0.066 0.049 0.057 0.057

AUC 0.928 0.972 0.981 0.985 0.987

F
max
0.3 0.798 0.878 0.904 0.891 0.904

F
w
1 - - 0.768 0.788 0.826

ECSSD

MAE 0.100 0.098 0.075 0.069 0.073

AUC 0.948 0.960 0.968 0.981 0.980

F
max
0.3 0.837 0.856 0.924 0.905 0.908

F
w
1 - - 0.767 0.796 0.827

PASCAL-S

MAE 0.145 0.142 0.108 0.106 0.109

AUC 0.907 0.922 0.924 0.954 0.954

F
max
0.3 0.740 0.781 0.822 0.833 0.839

F
w
1 - - 0.670 0.657 0.680

Train Speed 19H 12H 15H 4 H

Test Speed 1.1s 2.5s 0.88s 0.094s

Table 1: Quantitative comparisons between our approach

and other leading methods. MAE and - lower is better;

AUC, Fmax
0.3 , and Fw

1 - higher is better. Italics indicate a

projected training speedup of 1.67 if run on our hardware

We also compare both these models against other compet-

itive techniques, MC [34], HDHF [18], and DCL [17],

these results are summarized in Table 1, and we provide a

qualitative comparison in Figure 5 . While [16], [32],and

[4] report competitive results on some of the same test sets,

they train on 10,000 images, while we only train on 2500,

making the results not directly comparable, and we omit

those methods from 1.

We also use saliency to explore the effectiveness of the

proposed objective function, compared to other reweight-

ing schemes. These include: Dropping either the reweight-

ing by the matrix A or B, using a weighted Cross-Entropy

loss, with double weight given to correctly classifying the

foreground or background, and standard cross entropy, but

ignoring the labels of all pixels in a 3-pixel band around

the borders of the foreground. Each of these reweighting

schemes reduces AUROC by close to 1%, but effect on Fw
1

varies. Most interesting is the large drop in performance

caused by ignoring a 3-pixel border during training, which

seems to indicate that these border pixels contain extremely

important information for learning a higher quality model.

All inference timing results were gathered using a Ti-

tan X GPU and a 3.5GHz Intel Processor. For training

MC [34] used a Titan GPU and a 3.6GHz Intel Processor,

HDHF [18] and DCL [17] both use a Titan Black GPU and

a 3.4GHz Intel Processor.

5673

MC [34] MDF [18] DCL [17] SZNCE (our) SZNFw
1

(our) GT Input

Figure 5: A qualitative comparison of our method with other leading methods on object saliency. SZNCE : our network

trained with cross-entropy loss; SZNFw
1

: our network trained with the proposed AFw
β .

SZNCE SZNFw
1

GT Image SZNCE SZNFw
1

GT Image

Figure 6: A visualization of the perceptual importance of the Fw
β metric on object saliency. On each image, after thresholding

prediction maps at 0.5, there is a less than 5% difference in the IOU score of the outputs of SZNCE and SZNFw
1

, but at least

a 20% percent difference in their Fw
β score. Artifacts present in SZNCE outputs but alleviated in SZNFw

1
outputs include

large interior holes, isolated blobs, and poorly defined outlines.

5674

MTurk Dist9

[8] 0.81 0.67

Ours 0.84 0.87

Human 0.89 -

Table 2: Comparison

with Fried et al. [8] on

distractor detection.
Figure 7: Distractor detection results across dif-

ferent categories in Dist9 dataset

MIoU F
w
1 Test Speed

PFCN [27] 94.20 0.965 0.114s

PFCN+ [27] 95.91 0.972 1.125s

SZNCE 96.53 0.965 0.036s

SZNFw
1

97.13 0.973 0.036s

Table 3: Portrait segmentation results.

PortraitFCN+ [27] augments images

with 3 extra channels, See text for details.

AUROC Fw
1

Proposed 0.988 0.856

Proposed, no A 0.976 0.836

Proposed, no B 0.975 0.835

Cross-Entropy, 2x foreground weight 0.976 0.834

Cross-Entropy, 2x background weight 0.974 0.797

Cross-Entropy, 3pix ’DNC’ band 0.973 0.807

Table 4: Objective function comparison, see text for details

5.3. Portrait Segmentation

Dataset We use the dataset from [27], consisting of 1800

human portrait images gathered from Flickr. A face detec-

tor is run on each image, producing a centered crop scaled to

be an 800x600. The crop is manually segmented using Pho-

toshop’s “quick select”. This dataset focuses on portraits

captured using a front-facing mobile camera (through the

choice of Flickr queries), but includes other portrait types

as well. The dataset is split into 1500 training images and

300 test images. There is a wide variety in the subjects’ age,

clothing, accessories, hair-style, and background.

Results Table 3 shows that by MIoU both our models sig-

nificantly outperform PFCN (PortraitFCN), which uses

only RGB input; and PFCN+, which requires substan-

tial preprocessing (fiducial point detection, computing an

average segmentation mask and aligning it to the input face

location) and additional input channels. While our SZNFw
1

model achieves significantly higher Fw
1 scores than PFCN

and SZNCE , they are only slightly better than PFCN+.

We believe this is due to the spatial guidance used by

PFCN+.

5.4. Distractor Detection

Datasets

MTurk - A dataset of 403 images, with accurate, pixel

level annotations averaged over many (on average 27.8 [8])

humans through Mechanical Turk.

Dist9 - A dataset of 4019 images, gathered via a free

app which removed regions highlighted by users. Because

the ground truth was gathered based on thumb swipes it is

often inexact, and has only weak correspondence with ob-

ject boundaries. To rectify this we used ground truth with

scores averaged over super pixels generated with MCG [3],

where the boundary threshold is set to be 0.1. In this dataset

each pixel is labeled with either one of 9 foreground classes

corresponding to different types of distractors (light, object,

person, clutter, pole, trash, sign, shadow, and reflection) or

background.

Evaluation We evaluate our performance on the MTurk

dataset through 10 fold cross validation, and compare

against the performance of [8] using leave-one-out cross

validation. Note that this disadvantages our method, be-

cause while each model they use for validation is trained on

402 images, each model we use is trained on 362 or 363

images. We also compare against [8] on the Dist9 dataset,

training 10 separate models, one on the entire dataset, and

one each of the 9 small datasets corresponding to one of

the foreground classes. We split the dataset randomly, us-

ing 90% to train and 10% to test. Following the convention

of [8], we measure AUROC on all datasets. The results are

summarized in Table 2, and Figure 7. Note the final col-

umn in Figure 7 averages across categories, while Table 2

averages over the entire dataset.

5.5. Approximation speed

To evaluate the relative speed of our approximation we

compute wall clock time of computing the Fw
β , and AFw

β

scores, averaged on fifteen random images from ECSSD.

While the original Fw
β takes 37 minutes, our approximation

takes 8.7 seconds on a cpu, and 0.33 seconds on a GPU.

6. Discussion and Future Work

We propose a differentiable and efficient objective func-

tion which directly encoding multiple widely desirable spa-

tial properties of a foreground mask. We use this objec-

tive to learn the parameters of a novel “squeezed zoomout”

architecture. resulting in high fidelity foreground maps,

which match or surpass state of the art results for a range

of binary segmentation tasks. Notably, we achieve these

results without relying on any pre-processing (e.g., super-

pixel segmentation) or post-processing (e.g., CRF). An in-

teresting direction for fugure work is to generalize our loss

function to a multi-class setting, for instance semantic seg-

mentation.

5675

