
Fast Face-swap Using Convolutional Neural Networks

Iryna Korshunova1,2 Wenzhe Shi1 Joni Dambre2 Lucas Theis1

1Twitter

{iryna.korshunova, joni.dambre}@ugent.be

2IDLab, Ghent University

{wshi, ltheis}@twitter.com

Abstract

We consider the problem of face swapping in images,

where an input identity is transformed into a target iden-

tity while preserving pose, facial expression and lighting.

To perform this mapping, we use convolutional neural net-

works trained to capture the appearance of the target iden-

tity from an unstructured collection of his/her photographs.

This approach is enabled by framing the face swapping

problem in terms of style transfer, where the goal is to ren-

der an image in the style of another one. Building on re-

cent advances in this area, we devise a new loss function

that enables the network to produce highly photorealistic

results. By combining neural networks with simple pre- and

post-processing steps, we aim at making face swap work in

real-time with no input from the user.

1. Introduction and related work

Face replacement or face swapping is relevant in many

scenarios including the provision of privacy, appearance

transfiguration in portraits, video compositing, and other

creative applications. The exact formulation of this prob-

lem varies depending on the application, with some goals

easier to achieve than others.

Bitouk et al. [2], for example, automatically substituted

an input face by another face selected from a large database

of images based on the similarity of appearance and pose.

The method replaces the eyes, nose, and mouth of the face

and further makes color and illumination adjustments in or-

der to blend the two faces. This design has two major lim-

itations which we address in this paper: there is no control

over the output identity and the expression of the input face

is altered.

A more difficult problem was addressed by Dale et

al. [4]. Their work focused on the replacement of faces

in videos, where video footage of two subjects performing

similar roles are available. Compared to static images, se-

quential data poses extra difficulties of temporal alignment,

tracking facial performance and ensuring temporal consis-

tency of the resulting footage. The resulting system is com-

(a) (b) (c)

Figure 1: (a) The input image. (b) The result of face swapping with

Nicolas Cage using our method. (c) The result of a manual face

swap (source: http://niccageaseveryone.blogspot.

com).

plex and still requires a substantial amount of time and user

guidance.

One notable approach trying to solve the related problem

of pupeteering – that is, controlling the expression of one

face with another face – was presented by Suwajanakorn

et al. [29]. The core idea is to build a 3D model of both

the input and the replacement face from a large number of

images. That is, it only works well where a few hundred

images are available but cannot be applied to single images.

The abovementioned approaches are based on com-

plex multistage systems combining algorithms for face re-

construction, tracking, alignment and image compositing.

These systems achieve convincing results which are some-

times indistinguishable from real photographs. However,

none of these fully addresses the problem which we intro-

duce below.

Problem outline: We consider the case where given a

single input image of any person A, we would like to replace

his/her identity with that of another person B, while keeping

the input pose, facial expression, gaze direction, hairstyle

and lighting intact. An example is given in Figure 1, where

the original identity (Figure 1a) was altered with little or no

changes to the other factors (Figure 1b).

We propose a novel solution which is inspired by recent

progress in artistic style transfer [7, 14], where the goal is

to render the semantic content of one image in the style of

another image. The foundational work of Gatys et al. [7]

defines the concepts of content and style as functions in the

3677

http://niccageaseveryone.blogspot.com
http://niccageaseveryone.blogspot.com

alignment realignment stitchinginput

Figure 2: A schematic illustration of our approach. After aligning the input face to a reference image, a convolutional neural network is

used to modify it. Afterwards, the generated face is realigned and combined with the input image by using a segmentation mask. The top

row shows facial keypoints used to define the affine transformations of the alignment and realignment steps, and the skin segmentation

mask used for stitching.

feature space of convolutional neural networks trained for

object recognition. Stylization is carried out using a rather

slow and memory-consuming optimization process. It grad-

ually changes pixel values of an image until its content and

style statistics match those from a given content image and

a given style image, respectively.

An alternative to the expensive optimization approach

was proposed by Ulyanov et al. [31] and Johnson et al. [9].

They trained feed-forward neural networks to transform any

image into its stylized version, thus moving costly compu-

tations to the training stage of the network. At test time,

stylization requires a single forward pass through the net-

work, which can be done in real time. The price of this

improvement is that a separate network has to be trained

per style.

While achieving remarkable results on transferring the

style of many artworks, the neural style transfer method

is less suited for photorealistic transfer. The reason ap-

pears to be that the Gram matrices used to represent the

style do not capture enough information about the spatial

layout of the image. This introduces unnatural distortions

which go unnoticed in artistic images but not in real images.

Li and Wand [14] alleviated this problem by replacing the

correlation-based style loss with a patch-based loss preserv-

ing the local structures better. Their results were the first to

suggest that photo-realistic and controlled modifications of

photographs of faces may be possible using style transfer

techniques. However, this direction was left fairly unex-

plored and like the work of Gatys et al. [7], the approach

depended on expensive optimization. Later applications of

the patch-based loss to feed-forward neural networks only

explored texture synthesis and artistic style transfer [15].

This paper takes a step forward upon the work of Li

and Wand [14]: we present a feed-forward neural net-

work, which achieves high levels of photorealism in gener-

ated face-swapped images. The key component is that our

method, unlike previous approaches to style transfer, uses a

multi-image style loss, thus approximating a manifold de-

scribing a style rather than using a single reference point.

We furthermore extend the loss function to explicitly match

lighting conditions between images. Notably, the trained

networks allow us to perform face swapping in, or near, real

time. The main requirement for our method is to have a

collection of images from the target (replacement) identity.

For well photographed people whose images are available

on the Internet, this collection can be easily obtained.

Since our approach to face replacement is rather unique,

the results look different from those obtained with more

classical computer vision techniques [2, 4, 10] or using im-

age editing software (compare Figures 1b and 1c). While it

is difficult to compete with an artist specializing in this task,

our results suggest that achieving human-level performance

may be possible with a fast and automated approach.

3678

3x128x128

3x64x64

3x32x32

3x16x16

3x8x8 block
32

block
32

block
32

block
32

block
32

+ block
64

+ block
96

+ block
128

+ block
160

conv 1x1
3 maps

block
N

conv 3x3
N maps

conv 3x3
N maps

conv 1x1
N maps

+

upsample

depth
concat

Figure 3: Following Ulyanov et al. [31], our transformation network has a multi-scale architecture with inputs at different resolutions.

2. Method

Having an image of person A, we would like to transform

his/her identity into person B’s identity while keeping head

pose and expression as well as lighting conditions intact.

In terms of style transfer, we think of input image A’s pose

and expression as the content, and input image B’s identity

as the style. Light is dealt with in a separate way introduced

below.

Following Ulyanov et al. [31] and Johnson et al. [9],

we use a convolutional neural network parameterized by

weights W to transform the content image x, i.e. input

image A, into the output image x̂ = fW(x). Unlike pre-

vious work, we assume that we are given not one but a set

of style images which we denote by Y = {y1, . . . ,yN}.

These images describe the identity which we would like to

match and are only used during training of the network.

Our system has two additional components performing

face alignment and background/hair/skin segmentation. We

assume that all images (content and style), are aligned to

a frontal-view reference face. This is achieved using an

affine transformation, which aligns 68 facial keypoints from

a given image to the reference keypoints. Facial keypoints

were extracted using dlib [11]. Segmentation is used to re-

store the background and hair of the input image x, which

is currently not preserved by our transformation network.

We used a seamless cloning technique [23] available in

OpenCV [20] to stitch the background and the resulting

face-swapped image. While fast and relatively accurate

methods for segmentation exist, including some based on

neural networks [1, 19, 22], we assume for simplicity that

a segmentation mask is given and focus on the remaining

problems. An overview of the system is given in Figure 2.

In the following we will describe the architecture of the

transformation network and the loss functions used for its

training.

2.1. Transformation network

The architecture of our transformation network is based

on the architecture of Ulyanov et al. [31] and is shown in

Figure 3. It is a multiscale architecture with branches op-

erating on different downsampled versions of the input im-

age x. Each such branch has blocks of zero-padded convo-

lutions followed by linear rectification. Branches are com-

bined via nearest-neighbor upsampling by a factor of two

and concatenation along the channel axis. The last branch

of the network ends with a 1 × 1 convolution and 3 color

channels.

The network in Figure 3, which is designed for 128×128
inputs, has 1M parameters. For larger inputs, e.g. 256×256
or 512 × 512, it is straightforward to infer the architecture

of the extra branches. The network output is obtained only

from the branch with the highest resolution.

We found it convenient to firstly train the network on

128 × 128 inputs, and then use it as a starting point for the

network operating on larger images. In this way, we can

achieve higher resolutions without the need to retrain the

whole model. Although, we are restrained by the availabil-

ity of high quality image data for model’s training.

3679

2.2. Loss functions

For every input image x, we aim to generate an x̂

which jointly minimizes the following content and style

loss. These losses are defined in the feature space of the

normalised version of the 19-layer VGG network [7, 27].

We will denote the VGG representation of x on layer l as

Φl(x). Here we assume that x and every style image y are

aligned to a reference face. All images have the dimension-

ality of 3×H ×W .

Content loss: For the lth layer of the VGG network, the

content loss is given by [7]:

Lcontent(x̂,x, l) =
1

|Φl(x)|
‖Φl(x̂)− Φl(x)‖

2
2, (1)

where |Φl(x)| = ClHlWl is the dimensionality of Φl(x)
with shape Cl ×Hl ×Wl.

In general, the content loss can be computed over mul-

tiple layers of the network, so that the overall content loss

would be:

Lcontent(x̂,x) =
∑

l

Lcontent(x̂,x, l) (2)

Style loss: Our loss function is inspired by the patch-based

loss of Li and Wand [14]. Following their notation, let

Ψ(Φl(x̂)) denote the list of all patches generated by loop-

ing over Hl×Wl possible locations in Φl(x̂) and extracting

a squared k × k neighbourhood around each point. This

process yields M = (Hl − k + 1) × (Wl − k + 1) neural

patches, where the ith patch Ψi(Φl(x̂)) has dimensions of

Cl × k × k.

For every such patch from x̂ we find the best matching

patch among patches extracted from Y and minimize the

distance between them. As an error metric we used the co-

sine distance dc:

dc(u,v) = 1−
u⊤v

||u|| · ||v||
, (3)

Lstyle(x̂,Y, l) =
1

M

M
∑

i=1

dc
(

Ψi(Φl(x̂)),Ψi(Φl(yNN(i)))
)

,

(4)

where NN(i) selects for each patch a corresponding style

image. Unlike Li and Wand [14], who used a single style

image y and selected a patch among all possible patches

Ψ(Φl(y)), we only search for patches in the same location i,

but across multiple style images:

NN(i) = arg min
j=1,...,Nbest

dc (Ψi(Φl(x̂)),Ψi(Φl(yj))) . (5)

We found that only taking the best matching Nbest < N

style images into account worked better, which here are as-

conv 3x3,
8 maps,
ReLU

input A
identity: X
pose: Y
light: Z

max
pool
2x2

fully
connected,

16 units
 input B

identity: not X
pose: Y
light: Z

 input C
identity: any

pose: Y
light: not Z

Figure 4: The lighting network is a siamese network trained to

maximize the distance between images with different lighting con-

ditions (inputs A and C) and to minimize this distance for pairs

with equal illumination (inputs A and B). The distance is defined

as an L2 norm in the feature space of the fully connected layer.

All input images are aligned to the same reference face as for the

inputs to the transformation network.

sumed to be sorted according to the Euclidean distance be-

tween their facial landmarks and landmarks of the input im-

age x. In this way every training image has a costumized

set of style images, namely those with similar pose and ex-

pression.

Similar to Equation 2, we can compute style loss over

multiple layers of the VGG.

Light loss: Unfortunately, the lighting conditions of the

content image x are not preserved in the generated image x̂

when only using the above-mentioned losses defined in the

VGG’s feature space. We address this problem by introduc-

ing an extra term to our objective which penalizes changes

in illumination. To define the illumination penalty, we ex-

ploited the idea of using a feature space of a pretrained net-

work in the same way as we used VGG for the style and

content. Such an approach would work if the feature space

represented differences in lighting conditions. The VGG

network is not appropriate for this task since it was trained

for classifying objects, where illumination information is

not particularly relevant.

To get the desirable property of lighting sensitivity,

we constructed a small siamese convolutional neural net-

work [3]. It was trained to discriminate between pairs of

images with either equal or different illumination condi-

tions. Pairs of images always had equal pose. We used

the Exteded Yale Face Database B [8], which contains

grayscale portraits of subjects under 9 poses and 64 light-

ing conditions. The architecture of the lighting network is

shown in Figure 4.

3680

(a)

(b)

(c)

Figure 5: (a) Original images. (b) Top: results of face swapping with Nicolas Cage, bottom: results of face swapping with Taylor Swift.

(c) Top: raw outputs of CageNet, bottom: outputs of SwiftNet. Note how our method alters the appearance of the nose, eyes, eyebrows,

lips and facial wrinkles. It keeps gaze direction, pose and lip expression intact, but in a way which is natural for the target identity. Images

are best viewed electronically.

We will denote the feature representation of x in the last

layer of the lighting network as Γ(x) and introduce the fol-

lowing loss function, which tries to prevent generated im-

ages x̂ from having different illumination conditions than

those from the content image x. Both x̂ and x are single-

channel luminance images.

Llight(x̂,x) =
1

|Γ(x)|
‖Γ(x̂)− Γ(x)‖22 (6)

Total variation regularization: Following the work of

Johnson [9] and others, we used regularization to encour-

age spatial smoothness:

LTV (x̂) =
∑

i,j

(x̂i,j+1 − x̂i,j)
2 + (x̂i+1,j − x̂i,j)

2 (7)

The final loss function is a weighted combination of the

described losses:

L(x̂,x,Y) =Lcontent(x̂,x) + αLstyle(x̂,Y)+

βLlight(x̂,x) + γLTV (x̂)
(8)

3. Experiments

3.1. CageNet and SwiftNet

Technical details: We trained a transformation network to

perform the face swapping with Nicolas Cage, of whom we

collected about 60 photos from the Internet with different

poses and facial expressions. To further increase the num-

ber of style images, every image was horizontally flipped.

As a source of content images for training we used the

CelebA dataset [18], which contains over 200,000 images

of celebrities.

Training of the network was performed in two stages.

3681

Figure 6: Left: original image, middle and right: CageNet trained

with and without the lighting loss.

Firstly, the network described in Section 2.1 was trained to

process 128× 128 images. It minimized the objective func-

tion given by Equation 8, where Llight was computed using

a lighting network also trained on 128 × 128 inputs. In

Equation 8, we used β = 10−22 to make the lighting loss

Llight comparable to content and style losses. For the total

variation loss, we chose γ = 0.3 .

Training the transformation network with Adam [12]

for 10K iterations with a batch size of 16 took 2.5 hours

on a Tesla M40 GPU (Theano [30] and Lasagne [6] im-

plementation). Weights were initialized orthogonally [26].

The learning rate was decreased from 0.001 to 0.0001 over

the course of the training following a manual learning rate

schedule.

With regards to the specifics of style transfer, we used

the following settings. Style losses and content loss were

computed using VGG layers {relu3_1,relu4_1} and

{relu4_2} respectively. For the style loss, we used a

patch size of k = 1. During training, each input image was

matched to a set of Nbest style images, where Nbest was

equal to 16. The style weight α in the total objective func-

tion (Equation 8) was the most crucial parameter to tune.

Starting from α = 0 and gradually increasing it to α = 20
yielded the best results in our experiments.

Having trained a model for 128×128 inputs and outputs,

we added an extra branch for processing 256× 256 images.

The additional branch was optimized while keeping the rest

of the network fixed. The training protocol for this network

was identical to the one described above, except the style

weight α was increased to 80 and we used the lighting net-

work trained on 256 × 256 inputs. The transformation net-

work takes 12 hours to train and has about 2M parameters,

of which half are trained during the second stage.

Results: Figure 5b shows the final results of our face swap-

ping method applied to a selection of images in Figure 5a.

Figure 7: Left: original image, middle and right: CageNet trained

on 256 × 256 images with style weights α = 80 and α = 120

respectively. Note how facial expression is altered in the latter

case.

The raw outputs of the neural network are given in Fig-

ure 5c. We find that the neural network is able to intro-

duce noticeable changes to the appearance of a face while

keeping head pose, facial expression and lighting intact.

Notably, it significantly alters the appearance of the nose,

eyes, eyebrows, lips, and wrinkles in the faces, while keep-

ing gaze direction and still producing a plausible image.

However, coarser features such as the overall head shape

are mostly unaltered by our approach, which in some cases

diminishes the effect of a perceived change in identity. One

can notice that when target and input identities have differ-

ent skin colors, the resulting face has an average skin tone.

This is partly due to the seamless cloning of the swapped

image with the background, and to a certain extent due to

the transformation network. The latter fuses the colors be-

cause its loss function is based on the VGG network, which

is color sensitive.

To test how our results generalize to other identities,

we trained the same transformation network using approx-

imately 60 images of Taylor Swift. We find that results of

similar quality can be achieved with the same hyperparam-

eters (Figure 5b).

Figure 6 shows the effect of the lighting loss in the total

objective function. When no such loss is included, images

generated with CageNet have flat lighting and lack shadows.

While the generated faces often clearly look like the tar-

get identity, it is in some cases difficult to recognize the

person because features of the input identity remain in the

output image. They could be completely eliminated by in-

creasing the weight of the style loss. However, this comes

at the cost of ignoring the input’s facial expression as shown

in Figure 7, which we do not consider to be a desirable

behaviour since it changes the underlying emotional inter-

pretation of the image. Indeed, the ability to transfer ex-

3682

Figure 8: Top: original images, middle: results of face swapping

with Taylor Swift using our method, bottom: results of a baseline

approach. Note how the baseline method changes facial expres-

sions, gaze direction and the face does not always blend in well

with the surrounding image.

pressions distinguishes our approach from other methods

operating on a single image input. To make the compari-

son clear, we implemented a simple face swapping method

which performs the same steps as in Figure 2, except for the

application of the transformation network. This step was re-

placed by selecting an image from the style set whose facial

landmarks are closest to those from the input image. The

results are shown in Figure 8. While the baseline method

trivially produces sharp looking faces, it alters expressions,

gaze direction and faces generally blend in worse with the

rest of the image.

In the following, we explore a few failure cases of our ap-

proach. We noticed that our network works better for frontal

views than for profile views. In Figure 9 we see that as we

progress from the side view to the frontal view, the face be-

comes more recognizable as Nicolas Cage. This may be

caused by an imbalance in the datasets. Both our training

set (CelebA) and the set of style images included a lot more

frontal views than profile views due to the prevalence of

these images on the Internet. Figure 9 also illustrates the

failure of the illumination transfer where the network am-

plifies the sidelights. The reason might be the prevalence

of images with harsh illumination conditions in the training

dataset of the lighting network.

Figure 10 demonstrates other examples which are cur-

rently not handled well by our approach. In particular, oc-

cluding objects such as glasses are removed by the network

and can lead to artefacts.

Speed and Memory: A feed-forward pass through the

transformation network takes 40 ms for a 256 × 256 input

image on a GTX Titan X GPU. For the results presented

in this paper, we manually segmented images into skin and

background regions. However, a simple network we trained

for automatic segmentation [25], can produce reasonable

masks in about 5 ms. Approximately the same amount of

CPU time (i7-5500U) is needed for image alignment. While

we used dlib [11] for facial keypoints detection, much faster

methods exist which can run in less than 0.1 ms [24]. Seam-

less cloning using OpenCV on average takes 35 ms.

At test time, style images do not have to be supplied to

the network, so the memory consumption is low.

4. Discussion and future work

By the nature of style transfer, it is not feasible to evalu-

ate our results quantitatively based on the values of the loss

function [7]. Therefore, our analysis was limited to subjec-

tive evaluation only. The departure of our approach from

conventional practices in face swapping makes it difficult to

perform a fair comparison to prior works. Methods, which

solely manipulate images [2, 10] are capable of producing

very crisp images, but they are not able to transfer facial

poses and expressions accurately given a limited number

of photographs from the target identity. More complex ap-

proaches, on the other hand, require many images from the

person we want to replace [4, 29].

Compared to previous style transfer results our method

achieves high levels of photorealism. However, they can

still be improved in multiple ways. Firstly, the quality of

generated results depends on the collection of style images.

Face replacement of a frontal view typically results in bet-

ter quality compared to profile views. This is likely due to

a greater number of frontal view portraits found on the In-

ternet. Another source of problems are uncommon facial

expressions and harsh lighting conditions from the input to

the face swapped image. It may be possible to reduce these

problems with larger and more carefully chosen photo col-

lections. Some images also appear oversmoothed. This may

be improved in future work by adding an adversarial loss,

which has been shown to work well in combination with

VGG-based losses [13, 28].

Another potential improvement would be to modify the

loss function so that the transformation network preserves

occluding objects such as glasses. Similarly, we can try to

penalize the network for changing the background of the in-

put image. Here we used segmentation in a post-processing

step to preserve the background. This could be automated

by combining our network with a neural network trained for

segmentation [17, 25].

3683

Figure 9: Top: original images, bottom: results of face swapping with Nicolas Cage. Note how the identity of Nicolas Cage becomes more

identifiable as the view changes from side to frontal. Also note how the light is wrongly amplified in some of the images.

Further improvements may be achieved by enhancing the

facial keypoint detection algorithm. In this work, we used

dlib [11], which is accurate only up to a certain degree of

head rotation. For extreme angles of view, the algorithm

tries to approximate the location of invisible keypoints by

fitting an average frontal face shape. Usually this results

in inaccuracies for points along the jawline, which cause

artifacts in the resulting face-swapped images.

Other small gains may be possible when using the VGG-

Face [21] network for the content and style loss as sug-

gested by Li et al. [16]. Unlike the VGG network used

here, which was trained to classify images from various cat-

egories [5], VGG-Face was trained to recognize about 3K

unique individuals. Therefore, the feature space of VGG-

Face would likely be more suitable for our problem.

5. Conclusion

In this paper we provided a proof of concept for a fully-

automatic nearly real-time face swap with deep neural net-

works. We introduced a new objective and showed that style

transfer using neural networks can generate realistic images

of human faces. The proposed method deals with a specific

type of face replacement. Here, the main difficulty was to

change the identity without altering the original pose, facial

expression and lighting. To the best of our knowledge, this

particular problem has not been addressed previously.

While there are certainly still some issues to overcome,

we feel we made significant progress on the challenging

problem of neural-network based face swapping. There are

many advantages to using feed-forward neural networks,

e.g., ease of implementation, ease of adding new identities,

ability to control the strength of the effect, or the potential

to achieve much more natural looking results.

Figure 10: Examples of problematic cases. Left and middle: facial

occlusions, in this case glasses, are not preserved and can lead to

artefacts. Middle: closed eyes are not swapped correctly, since no

image in the style set had this expression. Right: poor quality due

to a difficult pose, expression, and hair style.

Photo credits

The copyright of the photograph used in Figure 2 is

owned by Peter Matthews. Other photographs were part

of the public domain or made available under a CC license

by the following rights holders: Angela George, Manfred

Werner, David Shankbone, Alan Light, Gordon Correll,

AngMoKio, Aleph, Diane Krauss, Georges Biard.

3684

References

[1] A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan.

PixelNet: Towards a General Pixel-Level Architecture, 2016.

arXiv:1609.06694v1.

[2] D. Bitouk, N. Kumar, S. Dhillon, P. Belhumeur, and S. K.

Nayar. Face swapping: Automatically replacing faces in

photographs. In ACM Transactions on Graphics (SIG-

GRAPH), 2008.

[3] S. Chopra, R. Hadsell, and Y. Lecun. Learning a similarity

metric discriminatively, with application to face verification.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 539–546. IEEE Press, 2005.

[4] K. Dale, K. Sunkavalli, M. K. Johnson, D. Vlasic, W. Ma-

tusik, and H. Pfister. Video face replacement. ACM Trans-

actions on Graphics (SIGGRAPH), 30, 2011.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2009.

[6] S. Dieleman, J. Schluter, C. Raffel, E. Olson, S. K. Sonderby,

D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly,

J. D. Fauw, M. Heilman, D. M. de Almeida, B. McFee,

H. Weideman, G. Takacs, P. de Rivaz, J. Crall, G. Sanders,

K. Rasul, C. Liu, G. French, and J. Degrave. Lasagne: First

release., Aug. 2015.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jun 2016.

[8] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: Illumination cone models for face recognition un-

der variable lighting and pose. IEEE Trans. Pattern Anal.

Mach. Intelligence, 23(6):643–660, 2001.

[9] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In Computer

Vision - ECCV 2016 - 14th European Conference, Amster-

dam, The Netherlands, October 11-14, 2016, Proceedings,

Part II, pages 694–711, 2016.

[10] I. Kemelmacher-Shlizerman. Transfiguring portraits. ACM

Transaction on Graphics, 35(4):94:1–94:8, July 2016.

[11] D. E. King. Dlib-ml: A Machine Learning Toolkit. Journal

of Machine Learning Research, 10:1755–1758, 2009.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization, 2014. arXiv:1412.6980.

[13] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Te-

jani, J. Totz, Z. Wang, and W. Shi. Photo-Realistic Single Im-

age Super-Resolution Using a Generative Adversarial Net-

work, 2016. arXiv:1609.04802.

[14] C. Li and M. Wand. Combining markov random fields and

convolutional neural networks for image synthesis. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[15] C. Li and M. Wand. Precomputed real-time texture synthe-

sis with markovian generative adversarial networks, 2016.

arXiv:1604.04382v1.

[16] M. Li, W. Zuo, and D. Zhang. Convolutional network for

attribute-driven and identity-preserving human face genera-

tion, 2016. arXiv:1608.06434.

[17] S. Liu, J. Yang, C. Huang, and M. Yang. Multi-objective

convolutional learning for face labeling. In IEEE Conference

on Computer Vision and Pattern Recognition, (CVPR) 2015,

Boston, MA, USA, June 7-12, 2015, pages 3451–3459, 2015.

[18] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face

attributes in the wild. In Proceedings of International Con-

ference on Computer Vision (ICCV), Dec. 2015.

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3431–3440, 2015.

[20] OpenCV. Open source computer vision library. https:

//github.com/opencv/opencv, 2016. [Online; ac-

cessed 24-October-2016].

[21] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In British Machine Vision Conference, 2015.

[22] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:

A Deep Neural Network Architecture for Real-Time Seman-

tic Segmentation, 2016. arXiv:1606.02147.

[23] P. Pérez, M. Gangnet, and A. Blake. Poisson image edit-

ing. In ACM Transactions on Graphics (SIGGRAPH), SIG-

GRAPH ’03, pages 313–318, New York, NY, USA, 2003.

ACM.

[24] S. Ren, X. Cao, Y. Wei, and J. Sun. Face Alignment at 3000

FPS via Regressing Local Binary Features. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 1685–1692, 2014.

[25] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-

tional Networks for Biomedical Image Segmentation, pages

234–241. Springer International Publishing, Cham, 2015.

[26] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact so-

lutions to the nonlinear dynamics of learning in deep linear

neural networks, 2013. arXiv:1312.6120.

[27] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[28] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár.

Amortised MAP Inference for Image Super-resolution. arXiv

preprint arXiv:1610.04490, 2016.

[29] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-

Shlizerman. What makes Tom Hanks look like Tom Hanks.

In 2015 IEEE International Conference on Computer Vision,

ICCV 2015, Santiago, Chile, December 7-13, 2015, pages

3952–3960, 2015.

[30] Theano Development Team. Theano: A Python frame-

work for fast computation of mathematical expressions, May

2016. arXiv:1605.02688.

[31] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. In International Conference on Machine Learn-

ing (ICML), 2016.

3685

https://github.com/opencv/opencv
https://github.com/opencv/opencv

