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Abstract

This work addresses the task of non-blind image decon-

volution. Motivated to keep up with the constant increase

in image size, with megapixel images becoming the norm,

we aim at pushing the limits of efficient FFT-based tech-

niques. Based on an analysis of traditional and more re-

cent learning-based methods, we generalize existing dis-

criminative approaches by using more powerful regulariza-

tion, based on convolutional neural networks. Additionally,

we propose a simple, yet effective, boundary adjustment

method that alleviates the problematic circular convolution

assumption, which is necessary for FFT-based deconvolu-

tion. We evaluate our approach on two common non-blind

deconvolution benchmarks and achieve state-of-the-art re-

sults even when including methods which are computation-

ally considerably more expensive.

1. Introduction

Image deblurring is a classic image restoration problem

with a vast body of work in computer vision, signal process-

ing and related fields (see [25] for a fairly recent survey). In

this work, we focus on the case of uniform blur, where the

observed blurred image y = k⊗x+η is obtained via con-

volution of the true image x with known blur kernel (point

spread function) k and additive Gaussian noise η. The task

of recovering x is then called (non-blind) image deconvolu-

tion. Note that although the assumption of uniform blur

is often not accurate [12, 15], such image deconvolution

techniques can in fact outperform methods which assume

a more realistic non-uniform blur model [cf. 12]. Further-

more, image deconvolution can be used as a building block

to address the removal of non-uniform blur [cf. 28].

When it comes to image deconvolution methods, it is

useful to broadly separate them into two classes: (1) those

where the most costly computational operations are a fixed

number of Fourier transforms or convolutions, and (2) those

which require more expensive computation, often due to (it-

erative) solvers for large linear systems of equations. While

the first class of methods can scale to large megapixel-sized

images, the latter class generally falls short in this regard.

These computationally demanding methods often exhibit

high restoration quality [e.g., 20, 31], but typically need sev-

eral minutes, or more, to deconvolve images of 1 megapixel

(see current deblurring benchmarks [e.g., 12, 24]). Of

course, this runtime issue is even more severe for images

that are multiple times larger, which are common nowa-

days. While the power of computers increases each year,

so does the size of images taken by typical cameras. For

the reasons outlined above, in this paper we focus on a class

of deconvolution methods where the fast Fourier transform

(FFT) is the most expensive operation, with computational

complexity O(n log n) for input size, i.e. pixel count, n.

Note that, while our proposed method is very efficient, we

even slightly outperform state-of-the-art techniques which

are considerably more computationally expensive.

Since image deconvolution is mathematically ill-posed

in the presence of noise, some form of regularization has

to be used to recover a restored image. A classic fast FFT-

based deconvolution method is the Wiener filter [27], which

uses quadratic regularization of the expected image spec-

trum to obtain the restored image in closed form. How-

ever, it is well-known that quadratic regularization is not

ideal for natural images, which we assume here. Hence,

better methods [e.g., 13, 26] employ sparse regularization

and iterative optimization, where each iteration is similar to

a Wiener filter. More recently, the advent of discriminative

deblurring [22] has generalized these methods to yield even

higher quality results without increasing the computational

demands [9, 21, 28]. In Section 2, we study these tradi-

tional FFT-based deconvolution methods and their more re-

cent learning-based extensions. Based on this analysis, we

propose a new, generalized learning-based approach utiliz-

ing the power of convolutional neural networks in Section 3.

In order to improve the quality of the restored image

even further, we address the often neglected topic of image

boundary handling. FFT-based deconvolution hinges on a

blur model which assumes a convolution with periodic (cir-

cular) boundary conditions. Unfortunately, this assumption

is almost never satisfied for blurred natural images, such

as typical photographs degraded by camera shake or mo-

tion blur. To alleviate this problem, an observed blurred

image is typically padded and pre-processed by an “edgeta-
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per” operation1 [cf. 19], which applies additional circular

convolution to only the boundary region of the padded im-

age. However, we want to go beyond this dated boundary

processing approach. Towards this end, we take inspiration

from recent work [2, 16] and devise a simple, yet effective,

boundary adjustment strategy that can easily be applied to

any FFT-based deconvolution method, without introducing

additional parameters or computational cost.

We show the efficacy of our proposed model and bound-

ary adjustment method in various non-blind deconvolution

experiments in Section 4, before we conclude in Section 5.

In this work, we solely focus on non-blind deconvolu-

tion, while recent research in the field has arguably shifted

its focus towards blind deconvolution, which aims to esti-

mate both the blur kernel k and the restored image x. How-

ever, most of these approaches make use of non-blind de-

convolution steps [e.g., 4, 29]. Recent discriminative meth-

ods [23, 28] alternate between updating the blur kernel and

employing non-blind deconvolution to update the restored

image. Hence, it remains important to develop better non-

blind techniques.

In summary, our main contributions are threefold:

• We generalize discriminative FFT-based deconvolu-

tion approaches by using more powerful regularization

based on convolutional neural networks.

• We propose a simple and effective boundary adjust-

ment method that alleviates the problematic circular

convolution assumption, which is necessary for FFT-

based deconvolution.

• We obtain state-of-the-art results on non-blind decon-

volution benchmarks, even when including methods

that are computationally considerably more expensive.

2. Review of FFT-based deconvolution

We consider the common blur model

y = k⊗ x+ η, (1)

where the observed corrupted image y is the result of cir-

cular convolution of the image x with blur kernel k plus

Gaussian noise with variance σ2, i.e. η ∼ N (0, I/λ) with

precision λ = 1/σ2 and I being the identity matrix. For

notational convenience, we assume all variables in bold to

be vectors (lower case) or matrices (upper case).

2.1. Traditional approaches

A classic solution to obtain an estimate of the restored

image is given by the Wiener filter [27] as

x̂ = F−1

(
F(k⊛ y)

|F(k)|2 + n/s

)
, (2)

1cf. MATLAB’s edgetaper function.

where F corresponds to the two-dimensional discrete

Fourier transform and n = 1/λ and s are the expected

power spectra of the noise and image, respectively. Note

that k ⊛ y = F−1(F(k) ⊙ F(y)) denotes correlation of

y and k, where ⊙ is the entrywise (Hadamard) product and

v is the complex conjugate of v. All other operations in

Eq. (2), such as division, are applied entrywise.

The Wiener filter is very efficient due to FFT-based infer-

ence, but not state-of-the-art anymore. Many modern meth-

ods are based on minimizing an energy function

E(x) =
λ

2
‖k⊗ x− y‖2 +

∑
i
1Tρi(fi ⊗ x), (3)

where the data term stems from the blur model of Eq. (1),

and the regularization term with i = 1, . . . , N is based

on penalty functions ρi, applied entrywise to responses of

linear filters fi, which most commonly are simple image

derivative filters [e.g., 13]. If quadratic penalty functions

are used, i.e. ρi(u) =
β
2u

2, then x̂ = argmin
x
E(x) yields

the same form as the Wiener filter of Eq. (2), except that the

spectrum s is replaced by β
∑

i|F(fi)|
2:

x̂ = F−1

(
F
(
k⊛ y

)

|F(k)|2 + β
λ

∑
i|F(fi)|2

)
. (4)

It is well-known that quadratic regularization leads to in-

ferior restoration results for natural images. High-quality

results can be achieved by using sparse (non-quadratic) reg-

ularization terms, e.g. with hyper-Laplacian penalty func-

tions ρi(u) = |u|α and 0 < α ≤ 1 [13]. Unfortunately, this

makes energy minimization more complicated. To address

this issue, it has been shown helpful to use half-quadratic

splitting [10, 26], in this context also known as quadratic

penalty method [cf. 17, § 17.1]. To that end, the energy is

augmented with latent variables z = {z1, . . . , zN} as

Eβ(x, z) =
λ

2
‖k⊗ x− y‖2

+
∑

i
1Tρi(zi) +

β

2
‖fi ⊗ x− zi‖

2, (5)

such that E(x) = limβ→∞Eβ(x, z). Energy minimization

is now carried out in an iterative manner, where the latent

variables and the restored image are updated at each step t:

zt+1
i = argmin

zi
Eβ(x

t, z) = ψi(fi ⊗ xt) (6)

xt+1 = argmin
x
Eβ(x, z

t+1). (7)

In Eq. (6), ψi = proxρi/β is a 1D shrinkage function ob-

tained as the proximal operator of penalty ρi with parame-

ter β−1 [cf. 18]. Note that β needs to be increased during

optimization such that the result of the optimization closely

resembles a solution to the original energy of Eq. (3). By

combining Eqs. (6) and (7), we obtain the following update
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equation for the restored image at step t:

xt+1 = F−1

(
F
(
k⊛ y + β

λφ(x
t)
)

|F(k)|2 + β
λ

∑
i|F(fi)|2

)
(8)

with φ(xt) =
∑

i
fi ⊛ ψi(fi ⊗ xt). (9)

Note that Eq. (8) has the same form as Eq. (4) when using

a quadratic penalty, with the only difference that the term
β
λφ(x

t), based on the current image estimate xt, appears in

the numerator. While this change may seem insignificant,

it does lead to deconvolution results of much higher quality

when Eq. (8) is applied iteratively [13, 26].

Note that there are many different variants of splitting

methods [cf. 8] besides the one that we presented above,

such as the popular alternating direction method of multi-

pliers (ADMM) [cf. 17, § 17.4]. Applied in our context,

ADMM is actually an extension of the splitting approach of

Eqs. (5) to (9) with the benefit of converging more quickly

to a minimum of Eq. (3). However, such improved conver-

gence behavior is not relevant for us, since we will use a

discriminative generalization of Eqs. (8) and (9) that does

not aim to minimize Eq. (3) anymore.

2.2. Discriminative learning­based approaches

Discriminative non-blind deblurring has been proposed

by Schmidt et al. [20] through “unrolling” iterative half-

quadratic optimization for a fixed small number of steps.

Good results can be achieved by learning specialized model

parameters for each of the few optimization steps. Schmidt

and Roth [21] applied this idea to the iterative FFT-based

deconvolution updates of Eq. (8) by learning step-specific

weights βt, shrinkage functions ψit, and linear filters fit to

directly optimize the quality of the restored image, instead

of minimizing Eq. (3). Crucial to their approach is that they

directly modeledψit as differentiable functions with closed-

form expressions, which allowed them to use standard loss-

based training with gradient-based methods. They called

the resulting model a cascade of shrinkage fields (CSF).

Zhang et al. [30] adopted a similar approach to shrink-

age fields, but used fixed horizontal and vertical image gra-

dient filters fit and replaced univariate shrinkage functions

ψit with standard convolutional neural networks (CNNs).

However, they did not train the CNNs to directly optimize

image quality. In the context of combining low-level and

high-level image processing, Diamond et al. [9] extended

shrinkage fields specifically for color images by replacing

shrinkage functions with CNNs that operate independently

in the spatial domain but exploit correlations between color

channels. Schuler et al. [23] addressed discriminative blind

deconvolution by making use of CNNs and alternating up-

dates of the restored image and blur kernel. However, their

image updates are based on a simple Wiener filter, where

they used a flat spectrum n/s = β1 with learned scalar β.

3. Our approach

Given the insights from the previous section, we now

introduce our own approach which further generalizes the

formulation of discriminative methods. After that, we de-

scribe our second contribution, which is a simple, yet ef-

fective boundary adjustment technique. An overview of our

full approach is illustrated in Fig. 1.

Although in a limited manner, previous work [9, 30] has

already attempted to replace the 1D shrinkage functions ψi

in Eq. (9) with CNNs that go beyond pixel-independent pro-

cessing. However, we want to go further than just replacing

ψi and instead propose to replace φ (Eq. 9) altogether with

a CNN, thereby generalizing Eq. (8), since numerator and

denominator are no longer coupled through shared filters fi.

As a result, we alter the update step to

xt+1 = F−1

(
F
(
k⊛ y + 1

ωt(λ)
φCNN
t (xt)

)

|F(k)|2 + 1
ωt(λ)

∑
i|F(fit)|2

)
, (10)

where we make explicit that we learn a specialized CNN-

based term φCNN
t for every step t besides the linear filters fit.

Furthermore, we replace λ with a learned scalar function

ωt(λ) that acts as a noise-specific regularization weight; this

is necessary, because simply using λ = 1/σ2 based on noise

level σ empirically leads to sub-par results. Most previous

work [e.g., 13, 20, 21, 23] addressed this issue by learning

a fixed regularization weight ωt, hence they need to train a

separate model for each noise level σ. In contrast, Eq. (10)

generalizes well to a range of noise levels if exposed to them

during training (cf. Section 4). Note that we also remove the

scalar weight β, since it can be absorbed into ωt(λ), which

we parameterize as a multilayer perceptron.

In general, our motivation is to push the limits of a

flexible and powerful regularization, without breaking the

efficient FFT-based optimization, which is made possible

by the assumptions underlying the common blur formation

model of Eq. (1). To improve the quality of the restored

image even further, we should also make sure that these

assumptions are satisfied, which specifically are: (1) con-

volution is carried out with circular (periodic) boundary

conditions and (2) that noise is additive and drawn pixel-

independently from a Gaussian distribution.

While the Gaussian noise assumption can be problem-

atic, especially in low-light conditions, we are not going

to address this here. Instead, we focus on the issue that

the circular convolution assumption is especially troubling

for typical blurred photographs, since it can lead to strong

restoration artifacts [cf. 19]. A more realistic blur model is

that the convolution y = k ⊗V x does not go beyond the

image boundary2 of x. As a result, the observed blurred

image y ∈ R
m is actually smaller than the true image

2Often called convolution with “valid” or “inner” boundary conditions.
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λ

φCNN
t (xt)

ϕt(y,k,x
t)

Eq. (17)

F−1

(
F
(
k⊛ ϕt(y,k,x

t) + 1
ωt(λ)

φCNN
t (xt)

)

|F(k)|2 + 1
ωt(λ)

∑
i|F(fit)|2

)

Eq. (16)

ωt(λ)

xt+1

o
n

e
m

o
d
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g
e

(1.5)−2

Figure 1: Overview for one model stage. We propose an extension of iterative FFT-based deconvolution methods, which update the

restored image xt → xt+1 at each step t. Specifically, we generalize shrinkage fields [21] by removing unnecessary parameter sharing

and replacing pixel-wise applied shrinkage functions with CNNs (φCNN
t ) that operate on the whole image, i.e. can take advantage of spatial

dependencies between pixels (see Fig. 6 for an example). Additionally, we take inspiration from [2, 16] and propose a simple, yet effective,

strategy to better adhere to the circular blur assumption that underlies all FFT-based deconvolution methods; to that end, we replace the

observed blurred image y with ϕt(y,k,x
t).

x ∈ R
n, i.e. m < n. Hence, we would ideally like to use

unknown boundary conditions, i.e. disable the blur model

at the boundary and only use the regularization term. Un-

fortunately, only determinate boundary conditions may lead

to structured optimization problems that admit fast infer-

ence [cf. 2, 16]. Of those, circular boundary conditions are

arguably the most appealing, since they lead to equation

systems with matrices that can be diagonalized in Fourier

space, hence admit fast and closed-form image updates as

presented throughout this section. Given this, we seek to

modify the observed blurred image y to better adhere to the

circular blur model, which we discuss next.

3.1. Boundary adjustment

A common boundary pre-processing step is to first pad

the observed blurred image y ∈ R
m by replicating its edge

pixels3 with linear operator Pr ∈ R
n×m such that Pry ∈

R
n has the same size as the true image x ∈ R

n. This is

followed by the classic edgetaper operation [cf. 19] to arrive

at the modified blurred image

ỹ = edgetaper(Pry,k), (11)

which better adheres to the circular blur model. While this

pre-processing approach goes a long way to reduce restora-

tion artifacts, it is several decades old and does not solve the

problem completely.

In order to come up with a better approach, Matakos et

al. [16] and Almeida and Figueiredo [2] proposed to change

the blur model from Eq. (1) to

y = C(k⊗ x) + η, (12)

where convolution is still carried out with periodic bound-

ary conditions, but the result is cropped via multiplication

3Often called padding with “replicate” or “edge” mode.

with matrix C ∈ R
m×n, such that only the inner part is

retained, which is of the same size as the observed blurred

image y. Note that C(k⊗ x) = k⊗V x corresponds to the

more realistic blur assumption, as described above. Using

common regularizers, both [2, 16] then develop an efficient

deconvolution algorithm based on the ADMM framework.

Since at the core of their approach is also a quadratic

splitting technique, we can adopt it to extend Eq. (5). To

that end, we replace k⊗x by the latent vector u and impose

a soft constraint based on weight γ that favors both terms to

be equal. With such a modification, we arrive at

Eβ,γ(x, z,u) =
λ

2
‖Cu− y‖2 +

γ

2
‖k⊗ x− u‖2

+
∑

i
1Tρi(zi) +

β

2
‖fi ⊗ x− zi‖

2, (13)

where again E(x) = limβ→∞,γ→∞Eβ,γ(x, z,u), but

based on the new blur model of Eq. (12).

We now employ the same alternating optimization as we

have used in Eqs. (5) to (7), but based on Eq. (13) and with

the additional update step ut+1=argmin
u
Eβ,γ(x

t, zt,u).
Note that the update steps for x and z actually do not

change, the difference is only that u has taken the place

of y (and γ that of λ). Again, we combine all equations to

obtain the update of the restored image at step t as

xt+1 = F−1

(
F
(
k⊛ ϕ(y,k,xt) + β

γφ(x
t)
)

|F(k)|2 + β
γ

∑
i|F(fi)|2

)
, (14)

where φ is defined as in Eq. (9) and

ϕ(y,k,xt) =
(
λ
γC

TC+I
)
−1(λ

γC
Ty+(k⊗ xt)

)
(15)

= MI

(
αP0y+(1−α)(k⊗ xt)

)
+ME

(
k⊗ xt

)

with α = λ/(λ + γ), P0 = CT, and “masking” matrices

MI and ME for interior and exterior (i.e. boundary) pixels,
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k

y

+ =

ME ·
(
k⊗ xt

)
P0 · y ϕt(y,k,x

t)

Figure 2: Boundary adjustment approach of Eq. (17) for t > 0. The current best estimate xt, the blurred image y and the blur kernel k

are used to construct two images (middle), which are combined to give the boundary-adjusted observation (right). The circular blur model

behind FFT-based deconvolution methods assumes knowledge of the circularly blurred boundary regions of the true image x. Since these

are not available, we instead employ our current best estimate xt as a proxy for x and artificially blur its boundaries to be used instead.

This allows us to better adhere to the circular blur model and as a consequence obtain image deconvolution results of higher quality.

respectively. The diagonal matrix MI = P0C ∈ R
n×n has

entries of 1 for all interior pixels and zeros otherwise; multi-

plication with ME = I−MI conversely retains all exterior

pixels, while setting all interior pixels to zero (cf. Fig. 2).

Note that multiplication with P0 performs 0-padding, i.e.

MIv can be understood as first cropping the boundary of v

with subsequent padding of zeros.

While Eq. (15) may look complicated at first glance, its

role can be understood quite easily. First, if we compare

Eq. (8), which does not use any boundary adjustment, to

Eq. (14), we find that y has been replaced by ϕ(y,k,xt).
Hence, we can interpret Eq. (15) as padding y with the

boundary of k ⊗ xt (a circularly blurred copy of the cur-

rent estimate of the deconvolved image); furthermore, the

interior of y is replaced by a convex combination of y and

k⊗ xt based on weight α ∈ [0, 1].
Intuitively, it is very sensible to pad y with the bound-

ary of k ⊗ xt, but only if xt is already similar to the true

image x. By doing this, we essentially modify y to better

adhere to the circular blur assumption. However, replac-

ing the boundary in such a way does not seem to be a good

idea for t = 0, since x0 is usually initialized as the edgeta-

pered blurred image ỹ (Eq. 11) and thus is typically very

dissimilar to the true image x. Consequently, we adopt this

boundary modification approach only for t > 0.

For t = 0, we use the standard edgetapered image ỹ.

Furthermore, we choose not to use a convex combination of

k ⊗ xt and y for the interior pixels; since the blur model

of Eq. (1) is actually valid for the interior pixels, we simply

use y as is. Overall, this leads us to modify our previously

chosen update equation (Eq. 10) to arrive at our final model

xt+1 = F−1

(
F
(
k⊛ϕt(y,k,x

t) + 1
ωt(λ)

φCNN
t (xt)

)

|F(k)|2 + 1
ωt(λ)

∑
i|F(fit)|2

)
(16)

with the boundary adjustment function

ϕt(y,k,x
t) =

{
ỹ if t = 0

P0y +ME

(
k⊗ xt

)
if t > 0,

(17)

which we visualize in Fig. 2. Our boundary strategy of

Eq. (17) is very simple, yet effective (cf. Section 4.3), does

not add any parameters or increase the computational bur-

den, and can easily be applied to existing FFT-based decon-

volution methods.

4. Experiments

In the following we conduct experiments with our pro-

posed model for the task of non-blind image deconvolu-

tion. We compare our results to the state-of-the-art on two

popular datasets, both in terms of average peak signal-to-

noise ratio (PSNR) and test runtime. Additional experi-

ments show the effectiveness of our boundary strategy (Sec-

tion 4.3) as compared to the common edgetapering (Eq. 11).

Our implementation4 is based on Keras [6] and Tensor-

Flow [1], allowing us to make use of built-in GPU accelera-

tion and automatic differentiation for all model parameters.

4.1. Model configuration and training

For all experiments, we parameterize φCNN
t (cf. Fig. 1)

with a common CNN architecture of six sequential convo-

lutional layers with 3×3 kernels. While the first five layers

each have 32 feature channels followed by ELU [7] acti-

vations, the final layer outputs a single channel and does

not use a non-linear activation function. We choose a small

multilayer perceptron to specify ωt(λ), using 3 hidden lay-

ers of 16 neurons each (with ELU activations); the final out-

put neuron goes through a softplus activation function to en-

sure positivity. Finally, at each step t we use 24 linear filters

fit of size 5×5 pixels for the denominator of Eq. (16).

Our full model consists of several identically structured

stages as defined in Eq. (16), each taking as input the predic-

tion made by its predecessor. Since each stage hinges on the

(fast) Fourier transform and all stages together form a sin-

gle deep network, we call our model Fourier Deconvolution

Network (FDN). Following [5, 21], who report their best

4Code is available on our webpages.
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Figure 3: Top row. Examples of simulated blur kernels from [20],

which we use for model training. Bottom row. The 8 blur kernels

used in the benchmark datasets [15, 24].

results with a greedy training scheme, we first train each

successive stage individually. Since each stage is differen-

tiable, we also investigate to jointly finetune the parameters

of all stages in an end-to-end fashion. We apply Adam [11]

to minimize negative PSNR as our objective function.

We use grayscale images from the Berkeley segmenta-

tion dataset [3] to train our model, specifically by extract-

ing random patches that we then synthetically blur with a

randomly selected blur kernel. To that end, we make use

of simulated kernels taken from [20] (see top row of Fig. 3

for some examples). We add Gaussian noise to the blurred

image and subsequently use 8-bit quantization for all pixels.

For all experiments, we train on 3000 random image

patches x, which are blurred with kernels k of sizes up to

37× 37 to yield blurred images y of 284× 284 pixels each.

4.2. Evaluation

We evaluate our model on two well-known benchmark

datasets. The one compiled by Levin et al. [15] consists

of four 255 × 255 grayscale images, each optically blurred

with a set of eight real-world blur kernels to yield 32 im-

ages in total. The eight kernels are shown in the bottom row

of Fig. 3. The standard deviation σ of Gaussian noise on

these blurred images is commonly stated as 1% of the dy-

namic range [e.g., 23, 24], i.e. σ = 2.55 for typical images

with pixel values 0 . . . 255. However, we found this to be

inaccurate and empirically determined σ to be closer to 1.5.

Sun et al. [24] use the same eight blur kernels as Levin

et al., but apply each of them to synthetically blur 80 higher

resolution images (long side scaled to 1024 pixels), yield-

ing a benchmark dataset of 640 images in total. Finally,

1% Gaussian noise (i.e., σ = 2.55) is added to each image

before 8-bit quantization.

Instead of following the common practice [e.g., 20, 21,

23] of training a specialized model for each noise level σ
(here, 1.5 and 2.55), we instead learn a more versatile model

from training data with various amounts of noise. Specifi-

cally, we create our training images by adding noise with

σ uniformly chosen at random from the interval [1.0, 3.0],
which allows us to train a single model that yields excellent

results on both benchmark datasets. Please see the supple-

mental material for results that were obtained from models

trained for either a single σ or wider range of noise levels.

Method σtrain Levin [15] Sun [24]

FDN10
G (ours) [1.0, 3.0] 34.98 (1.5) 32.62 (2.55)

FDN10
T (ours) [1.0, 3.0] 35.09 (1.5) 32.67 (2.55)

CSF3
pw. [21] 0.5 33.481 (0.5)

CSF5
5×5

(trained by us)

1.5 34.06 (1.5)

2.55 32.21 (2.55)

EPLL [31] – 34.75 (1.5) 32.462 (2.55)

RTF [20]
0.5 33.973 (0.5)

2.55 32.49 (2.55)

Levin [14] – 33.822 (?)

Table 1: Results for non-blind deblurring benchmarks. Av-

erage PSNR for two well-known deblurring benchmarks [15, 24],

where each method uses the ground truth blur kernels. The sec-

ond column denotes the noise level that the respective method was

trained for, whereas the small numbers in parentheses in columns

3 and 4 denote the noise level assumed or given as input at test

time. The upper part of the table shows efficient FFT-based meth-

ods, while methods in the lower part have higher computational

cost. Scores marked with 1, 2 and 3 quoted from [21], [24] and

[20], respectively; others computed with publicly available code.

As mentioned above, we consider two training variants:

First, we greedily train our FDN model with 10 stages,

which we abbreviate as FDN10
G . Second, we use the pa-

rameters from FDN10
G as initialization to jointly finetune all

stages and denote the resulting model as FDN10
T . We apply

our two models to both benchmark datasets. Note that we

strictly adhere to the evaluation protocol of the respective

dataset to ensure a fair comparison, which includes discard-

ing regions close to the border of each image.

Table 1 shows the results of our models compared to

other state-of-the-art methods on both datasets. We outper-

form our strongest competitors (EPLL [31] and RTF [20],

respectively) by around 0.2 – 0.3 dB. Please see Fig. 7 for

a qualitative comparison. While this performance improve-

ment may not seem very large, it is important to note that

our approach is orders of magnitude faster than both EPLL

and RTF (Section 4.4), neither of which can use efficient

FFT-based inference.

While the FFT-based deconvolution method CSF [21]

has similar computational cost as our approach, we do out-

perform it on the benchmarks of Sun et al. and Levin et

al. by large margins of around 0.5 and 1 dB, respectively.

Note that our improvements are already compared to more

powerful CSF models5 that we trained on datasets of the

same size as ours. One major reason for the inferior perfor-

5We use 24 filters of 5×5 pixels, since this most closely resembles our

FDN model. A simpler pairwise CSF as used in [21] performed much

worse in our tests. CSF results are already saturated after 5 stages.
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(a) Edgetapered input (b) Traditional edgetapering (c) Our method (d) Difference of (b) and (c) (e) Ground truth

Figure 4: Example result of the proposed boundary adjustment method. Output of our greedy ten-stage model with our proposed

boundary adjustment method (c) compared to just using traditional edgetapering (b). The boundary region outside the green inner square

is discarded for the final output. While most of the changes are close to the image border, the difference image (d) shows that our boundary

approach also has an effect on details within the image.

mance of CSF is due to its use of edgetapering after each

stage, which is clearly inferior to our boundary adjustment

strategy (Section 4.3). In particular, we find that the perfor-

mance of our FDN10
G model would deteriorate by a substan-

tial 0.74 dB on the benchmark of Levin et al. if we used the

same boundary approach as CSF does.

4.3. Boundary adjustment comparison

We compare our proposed boundary adjustment (BA)

strategy (Our BA, cf. Eq. 17 and Fig. 2) to the traditional

edgetapering method (ET once, cf. Eq. 11); Fig. 4 provides

an illustration for an example image. Since the CSF model

[21] additionally crops its current estimate of the restored

image after each stage and re-applies edgetapering to it (ET

each), we also compare against this BA method.

Furthermore, we not only compare these BA strategies

within our FDN model, but also apply them to the CSF

model and a standard Wiener filter. To that end, we train

separate variants of each model that only differ in their BA

strategy, but are otherwise trained in exactly the same way.

The results of our evaluation on the benchmark of Levin

et al. [15] are shown in Fig. 5; more details can be found in

the supplemental material. First, we find that our BA strat-

egy is always superior to using edgetapering, which also

demonstrates the applicability to other FFT-based deconvo-

lution methods. Especially remarkable is that we can boost

the performance of a Wiener filter by over 1 dB when we

apply it iteratively with our BA method. Second, the re-

sults allow us to better analyze the respective contributions

from the CNN-based regularization on one hand, and our

BA strategy on the other hand. Using ET each, after 5
stages we only see a modest improvement of 0.16 dB with

our FDN model over CSF. However, we see a boost twice

as large (0.32 dB) when using Our BA, which suggests that

31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

34.24 34.32

34.64

31.75

33.08

34.06 34.09
34.32

Wiener, ET once

Wiener50, Our BA

CSF5
5×5, ET each

CSF5
5×5, ET once

CSF5
5×5, Our BA

FDN5
g
, ET each

FDN5
g
, ET once

FDN5
g
, Our BA

Figure 5: Comparison of boundary adjustment methods. Av-

erage PSNR (in dB) on the benchmark of Levin et al. with dif-

ferent boundary adjustment (BA) strategies. Vertical partitions of

bars correspond to respective model stages. Our BA method shows

a clear improvement over edgetapering (ET). See text for details.

our BA approach is actually important to exploit our more

flexible CNN-based regularization. Third, we find that the

performance of FDN does not improve further after stage 3
with ET each; this does not apply to our BA, which enables

FDN to increase the PSNR by 0.58 dB within stages 4 – 106.

4.4. Runtime

As mentioned before, when it comes to runtime, we find

it useful to distinguish between deconvolution methods that

admit efficient FFT-based inference on one hand, and much

more computationally demanding methods, such as EPLL

[31] and RTF [20], on the other hand. Furthermore, FFT-

based methods employ closed-form update steps and thus

offer predictable runtime. In contrast, slower methods typ-

ically need to use iterative equation system solvers, whose

runtime may vary significantly based on the given image

and blur kernel.

6Stages 6 – 10 not shown in Fig. 5 for fair comparison to 5-stage CSF.
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ω0(λ) = 261.6 ω1(λ) = 2036.9 ω2(λ) = 701.1 ω3(λ) = 1211.2 ω4(λ) = 968.4
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Figure 6: CNN outputs with associated weights (top) and model predictions (bottom) for first 5 stages of FDN10
G . From left to right,

we show the CNN outputs φCNN
t (xt) with their associated noise-specific weights ωt(λ) and the predictions xt+1 with t ∈ {0 . . . 4} for an

example image (bottom far left, associated ground truth shown above; λ = 1/1.52). The green lines delineate the padded boundary region.

(a) EPLL (26.75 dB) (b) RTF (26.91 dB) (c) FDN10

t
(27.21 dB) (d) Ground truth

Figure 7: Comparison of deconvolution results. Result of our finetuned ten-stage model (c) compared to two state-of-the-art methods,

EPLL (a) and RTF (b), for a challenging image from the Sun et al. benchmark. Our FDN model is able to restore fine details even in highly

textured image regions. Images are best viewed magnified on a screen.

While the specific runtime of a method depends on soft-

ware implementation and computing hardware, we find it

instructive to give ballpark numbers for some of the meth-

ods shown in Table 1. Our ten-stage model takes around

0.15 seconds for the small images from the dataset of Levin

et al. (255 × 255 pixels), and roughly 0.75 seconds for

the somewhat larger images from Sun et al. (less than 1
megapixel). These numbers are based on our TensorFlow

implementation with an NVIDIA Titan X GPU.

Whereas CSF should have similar or slightly lower run-

time compared to our method, EPLL and RTF are orders of

magnitude slower. Based on their public CPU-based imple-

mentations, we find that they take around 1 minute for the

small images from Levin et al., and in the order of 5 – 10
minutes for the bigger Sun et al. images. While it is not en-

tirely fair to compare such numbers to our GPU-based run-

times, it is evident that these slower methods are not practi-

cal for large images of potentially many megapixels.

5. Conclusion

We generalized efficient FFT-based deconvolution meth-

ods, specifically shrinkage fields, by introducing a CNN at

each stage to provide more powerful regularization. Our

model keeps all the benefits of fast FFT-based inference

and discriminative end-to-end training, yet is shown to out-

perform much less efficient state-of-the-art methods on two

non-blind deblurring benchmarks. We also proposed a sim-

ple, yet effective, scheme to better cope with the effects of

the circular boundary assumption imposed by FFT-based in-

ference. This method is generic, free of parameters, and

shown to improve restoration results at essentially no extra

cost. There are various avenues for future work, including

the extension to blind deconvolution and non-uniform blur.
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