
From Point Clouds to Mesh using Regression

L’ubor Ladický

ETH Zürich

lubor.ladicky@inf.ethz.ch

Olivier Saurer

ETH Zürich

saurero@inf.ethz.ch

SoHyeon Jeong

ETH Zürich

sohyeon.jeong@inf.ethz.ch

Fabio Maninchedda

ETH Zürich

fabiom@inf.ethz.ch

Marc Pollefeys

ETH Zürich, Microsoft

marc.pollefeys@inf.ethz.ch

Abstract

Surface reconstruction from a point cloud is a standard

subproblem in many algorithms for dense 3D reconstruc-

tion from RGB images or depth maps. Methods, performing

only local operations in the vicinity of individual points, are

very fast, but reconstructed models typically contain lots

of holes. On the other hand, regularized volumetric ap-

proaches, formulated as a global optimization, are typically

too slow for real-time interactive applications.

We propose to use a regression forest based method,

which predicts the projection of a grid point to the surface,

depending on the spatial configuration of point density in

the grid point neighborhood. We designed a suitable feature

vector and efficient oct-tree based GPU evaluation, capable

of predicting surface of high resolution 3D models in mil-

liseconds. Our method learns and predicts surfaces from an

observed point cloud sparser than the evaluation grid, and

therefore effectively acts as a regularizer.

1. Introduction

There is an increasing demand in creating compelling

3D models from 2D image sets. Current reconstruction

pipelines can build 3D models from millions of images at

city scale [1]. Others have optimized the reconstruction

process for real-time applications and showed that the full

pipeline can run on commodity smart phones [27, 14, 19,

25]. While the reconstruction process has been highly op-

timized one of the challenges which remains is the effi-

cient extraction of a triangular mesh from a point cloud.

While standard dense reconstruction approaches provide

noisy depth measurements the approach we are seeking for

needs to be robust towards noisy measurements, outliers

and needs to be able to cope with varying point cloud den-

sities.

Surface reconstruction algorithms can mainly be divided

into two categories, which are volumetric approaches and

surface based methods. Various algorithms have been pro-

posed for volumetric integration of depth measurements, we

refer here to the most closely related publications. Cur-

less et al. [7] compute the signed distance for each point

and extract an isosurface at the zero crossing using march-

ing cubes. The method expects the input depth maps of

similar scale and density, and lacks global regularization

and only averages depth measurements locally, leading to

holes at places where the point cloud is sparse. Real-time

variants of this approach have been used in [19, 17, 11]. To

extend the surface into neighboring areas with no measure-

ment, local surface reconstruction methods such as variants

of moving least squares [5] have been proposed, however

they often struggle with small density of points, especially

with extrapolation into holes. To overcome this problem,

Fuhrmann et al. [10] propose a fusion algorithm that copes

with depth maps of varying resolutions, allowing to simul-

taneously represent low resolution regions as well as high

resolution details. They use an oct-tree representation to

store the signed distance field at various scales. Similarly

Ummenhofer et al. [30] proposed to globally optimize the

signed distance field on a hierarchical oct-tree. While those

algorithms provide very compelling results, they operate in

terms of hours and are therefor not suitable for real-time ap-

plications. Zach et al. [34] formulates the depth integration

task as a global optimization problem. They use a L1 data

fidelity term to be more robust towards noise and outliers.

While the method provides impressive results it is restricted

by its computation time and memory consumption. In [33]

Zach proposed a robust and memory efficient approach to

integrate range images. Using recent advances in optimiza-

tion Savinov et al. [23] formulate the visibility constraints

as high order potentials over rays and solves it using non-

convex relaxation methods. This method is currently the

state-of-the-art on the Middlebury dataset [24], however, it

takes days to run on high resolution models.

13893

Surface-based methods parametrize the problem in terms

of basis functions and formulate the optimization problem,

which either fits the point cloud data [4], or minimizes the

difference between the gradient of indicator function of sur-

face interior and input normals of the point in the point

cloud [12]. Recently, various forms of basis functions and

additional regularizations have been proposed [20, 8].

We propose to use a regression forest [3] based method,

which predicts the projection of a grid point to the surface,

depending on the spatial configuration of point density in

the grid point neighborhood. We designed a suitable fea-

ture vector and efficient oct-tree based GPU evaluation, ca-

pable of predicting surface of higher resolution 3D models

in milliseconds. Our method learns and predicts surfaces

from an observed point cloud sparser than the evaluation

grid and therefore effectively acts as a regularizer. To our

knowledge, our method is the first learning based surface re-

construction, with the exception on the not directly related

work of Firman et al. [9], that formulates the prediction of

unobserved (occluded) structures as a regression task.

2. Method description

Our algorithm predicts the projection of a given grid

point to a surface, which is eventually used to calculate the

signed distance of this grid point. The final surface is es-

timated as a 0-isosurface of the predicted signed distance

field (SDF) using the marching cubes algorithm.

The projection πS(x) of a point x to the surface S is

defined as:

πS(x) = arg min
x′∈S

|x′ − x|. (1)

The projection difference ∆S(x) is defined as a vector be-

tween the point and its projection:

∆S(x) = x− πS(x). (2)

The unsigned distance of a point x to the surface S can be

calculated as:

dS(x) = |∆S(x)|. (3)

Let nS(x) be the normal of a surface S in a point x. The

sign in the signed distance sS(x) can be determined based

on the agreement of the projection difference ∆S(x) with

the normal in the point projected to the surface nS(πS(x)):

sS(x) = dS(x)sgn(∆S(x) · nS(πS(x))), (4)

where the signed distance is positive outside and negative

inside of the surface S. Thus, we have established, that

given the projection difference of a point and the normal

field we can determine the signed distance. Note, that we do

not need exact normals to determine the sign of the signed

distance; it is sufficient to use any approximation, which

does not differ from correct normal by more than 90 de-

grees, for example a direction of a viewing ray. The trans-

lation invariance of the projection difference (the projection

difference stays the same, if we shift both a surface and a

point) makes it suitable to be used as a regressed vector in

learning. We discuss other alternatives in Section 2.5. The

schematic description of our algorithm is depicted in Fig-

ure 1.

2.1. Learning method

Our goal is to choose the learning method and design a

feature vector, which can train the following:

∆S(x) := f(Φ(x)), (5)

where Φ(x) is a yet to be chosen feature vector for a point

x and f(.) is the regression function predicting a projection

difference. The advantage of using projection difference as

the regressed vector is, that it is independent on orientation,

and thus it can be reliably predicted using only positions

of points without using normals. We are interested in the

prediction over a discrete grid, thus we approximate the set

of points in a point cloud by the density field ρ(x) using

trilinear interpolation of a constant 1 for each particle, and

formulate the regression problem as:

∆S(x) := f(ρ(x+ x
′)), (6)

where x + x
′ ∈ N(x) and N(x) is the neighborhood of

x of the size depended on the range of predicted projection

difference. Recent advances in machine learning suggest,

that the best method for learning a quantity based on spa-

tial context of features ρ(x + x
′) are convolutional neural

networks (CNNs) [6]. However, due to their large compu-

tational requirements to train large 3D models [21] and the

slow evaluation, we decided to use regression forests [3],

which were already successfully applied to similar context-

based learning problems [28, 15].

2.2. Feature vector

The main weakness of tree-based methods is that we

have to hand-design a robust feature vector, such that de-

cisions (typically based on individual dimensions of the

feature vector) can rapidly decrease the variance of output

quantity. A naïve density feature ρ(x + x
′) in single point

in the neighborhood does not have this property due to the

sparseness of the points in a point cloud. Instead of a single

point densities, we use more robust total densities Ω(x+B)
over boxes B ∈ B placed relative to x:

Ω(x+B) =
∑

x′∈B

ρ(x+ x
′). (7)

The final feature vector Φ(x) is a concatenation of these

individual features over a large set of randomly generated

boxes B. Intuitively, these features can rapidly decrease the

variance of projection difference with a single decision - for

example, all training samples with a zero total density in a

3894

Figure 1. Schematic description of our algorithm. Given a point cloud, we generate a density map using trilinear interpolation. Using this

density map, we predict the projection to the surface (RGB corresponds to XYZ coordinates of the projection difference), and calculate the

signed distance field by estimating the sign from the scalar product of each projection vector with a corresponding normal (red is outside,

blue is inside, the darker the closer to the surface). Finally, the marching cubes algorithm is applied to obtain the final mesh.

large box to the left from an evaluate sample, have a positive

x-coordinate of a projection difference. Furthermore, this

feature vector is robust to noise and can be trained to ignore

uncorrelated outliers. Individual feature dimensions can be

evaluated using integral volumes in a similar fashion to [31,

26, 16].

2.3. Regression forest training

Given a set of training feature vectors Φ(xi) and their

ground truth projection differences ∆(xi), we aim to find a

function f(.), minimizing the expected squared loss func-

tion:

L =
∑

i∈D

(f(Φ(xi))−∆(xi))2, (8)

where D is the set of training samples. The cost function

is optimized greedily [3] for each node N over set of data

points DN , that ended up in this node based on previous

decisions in a tree. In each step the most discriminative

decision stump Φ(xi)j ≥ θj for each node N is found by

brute-force search for j and θj by minimizing:

LN =
∑

i∈DN

R

(µ(DN
R)−∆(xi))2+

∑

i∈DN

L

(µ(DN
L)−∆(xi))2,

(9)

where DN
R is the set of samples satisfying Φ(xi)j ≥ θj ,

DN
R = DN \DN

L is its complement, and µ(D′) is the mean

of a set D′. This procedure is iteratively applied either till

the depth of a tree reaches predefined limit, or the number of

training sampled in a given node is below a chosen thresh-

old. The final prediction of the projection difference for a

given leaf node N is the mean µ(DN) over data DN , that

ended up in this node. Final regression forest predictions

are calculated as an average over multiple trees, trained for

different subsets of data or using randomly sampled subset

of dimensions for each decision.

2.4. Adaptive evaluation of the regressor

An evaluation starts with trilinear interpolation of points

and normal into a density grid and a normal grid, required

to correctly determine the sign of the signed distance. To

avoid the possibility of no particle in a projected point to

the surface, the normal grid is calculated in lower resolution

(4×4×4 sub-sampling) than the point density. The approxi-

mation does not cause any problems in practice (except very

thin surfaces with different densities on both sides), because

the sign calculation does not require exact normals. The

next step is the calculation of an integral volume for den-

sity, which can be done in linear time with respect to the

number of grid cells.

In practice, we avoid any unnecessary calculation far

from the surface. First, we split the volume into boxes

of the size 8 × 8 × 8 cells. We extend each box by K

cells every direction and check that there is no point in

this box, we have a guarantee, that the surface is at least

K cells far. This test can be done with a single box eval-

uation using preprocessed integral images and for K = 8
we are typically able to avoid 90% of forest evaluations.

For the remaining occupied boxes, we iteratively evaluate

the forest (tree) over an oct-tree for 4 × 4 × 4, 2 × 2 × 2
and 1 × 1 × 1 scales. We determine, whether it is nec-

essary to evaluate the next subdivision of an n × n × n

cell, based on the values of the maximum unsigned distance

dmax = maxxk∈C |∆S(xk)| and the minimum unsigned

distance dmin = minxk∈C |∆S(xk)| of corners of a cell,

where C is the set of corners of a cell. Using triangular in-

equality we show, that there can not be a point inside the

cell that belongs to the surface, if dmax + dmin >
√
3n|c|,

where |c| is the cell size. We relax this condition (to accom-

modate the error of the regressed projection difference) by

adding a slack ϵ. If the condition is satisfied, we skip further

evaluation on a lower level in the pyramid. In practice, GPU

implementation gets faster by skipping the 2×2×2 step. For

the remaining cells, we evaluate the signed distance from

the projection difference using equation (4). We avoid ex-

trapolation of the surface too far from the data point, we

flip the sign of the distance of a cell only if the unsigned

distance is less than a threshold (we used an 8 cells thresh-

old in experiments). Eventually, we smooth the obtained

signed distance field with a gaussian filter with σ = 0.5|c|
and evaluate marching cubes to get the final surface mesh.

3895

2.5. Alternative formulations

Regressing the projection difference was not the only al-

ternative. We considered two other options - the direct re-

gression of absolute distance and the regression of signed

distance from the reconstructed surface.

The absolute distance can be successfully regressed us-

ing regression forests, because proposed decision stumps do

provide strong cues about the distance leading to a rapid de-

crease of variance during training. Intuitively, no points in

a large box [−K,K]3 give a strong cue, that the surface is

at least K cells. Otherwise, a sufficient number of points

above the noise level in such a box suggest, the surface is

closer than
√
3K. Combining such cues one could quickly

determine the correct absolute distance (similarly to projec-

tion) after a few decision. However, the use of absolute dis-

tance suffers from two main weaknesses. First, the isosur-

face has to be extracted at a non-zero ϵ value. Theoretically,

this can be fixed by shifting all points by ϵ in the negative

normal direction, but this does not work well in practice

with only approximate estimates of normals. Second, the

extraction of surface from an unsigned distance would gen-

erate two surfaces - one outside and one inside.

Another option we considered was a direct prediction of

signed distance, which can not be predicted without the in-

clusion of normals in the feature vector. Construction of

separate normal-based feature vector would lead to a sig-

nificant slowdown of a method. The approaches directly

incorporating normals in density (such as a point x placed

with a positive weight to x+nδ and with a negative weight

to x − nδ) turned out to lose the ability to predict sub-cell

signed distances. Intuitively, it is very hard to think of a sim-

ple decision stump, that can rapidly decrease the variance,

by giving a strong cue to distinguish between the signed dis-

tance higher and lower than given threshold. Despite sev-

eral other attempts (such as regressing both the signed and

the unsigned distance together), we failed to reproduce the

quality of the results, we were able to achieve by regressing

the projection difference or absolute distance.

3. Data generation

While there are many ways to capture high quality scans

using LiDAR, Kinect etc. it turned out to be sufficient to

use synthetic models to train the proposed regressor. Since

the rendered point clouds do not exactly represent the noise

distribution and the point density of the real data, which is

hard to replicate due to different noise sources and vary-

ing textureness of the scene. Typically stereo algorithms

provide high point densities in texture rich areas while no

reconstruction is possible in textureless regions. However,

as we show, the quality of the synthetic data is sufficient to

train a regressor, that can generalize to the real-world test

data, captured using a mobile phone.

3.1. Synthetic data generation

To train the regression tree we make use of the Model-

Net40 [32] dataset, where the following object classes are

used: Flower Pot, Lamp, Plant, Sink, Toilet and Vase. Mod-

els, which have inconsistent face normal orientations, inter-

secting meshes, only a single side of a thin object (leaf), de-

generate triangles, multiple overlapping triangles lying on

each other etc, were pruned from the dataset. The pruning

was not done due to the difficulty of the data. The final

dataset consists of a total of 405 models. The examples

of 3D meshes from the training set are depicted in Figure 2.

We generated sparse point clouds from the meshed 3D mod-

els by uniformly sampling points over the surface of each

model. Given three vertices {v1, v2, v3} ∈ R
3 of a trian-

gle, a point p ∈ R
3 is uniformly sampled using the convex

combination of the vertices:

p = (1−√
r1)v1 + (1− r2)

√
r1v2 +

√
r1r2v1, (10)

where r1, r2 ∼ U [0, 1]. On average we sample 40k points

per model. Additional Gaussian noise is added to the point

set with a σ of half a grid cell. Eventually, we added 2% of

uniformly distributed outliers.

3.2. Real-world data capture

For real data acquisition, we use a similar methodology

as was proposed by Tanskanen et al. [27] to capture 3D

models with a mobile phone. For sake of completeness we

briefly outline the mobile 3D reconstruction pipeline here.

It consists of two main building blocks, which are the cam-

era pose estimation and the dense reconstruction parts.

3.2.1 Camera pose estimation

The input to our 3D reconstruction pipeline is a continu-

ous image stream and the intrinsic parameters of the cam-

era. At first the 3D reconstruction process is initialized by

tracking 2D feature points between consecutive images and

estimating the camera pose between the current frame and

the first camera frame using the 5-point algorithm [18] em-

bedded in a RANSAC [2] framework. Once the baseline

between the two frames is large enough the scene map is

initialized by triangulating 3D points. The map is used to

estimate the camera pose relative to the scene map by pro-

jecting the map points into the current frame and optimizing

a photo metric error [13, 27]. To be more robust towards

large camera motions, the optimization is performed over

multiple image scales. While the image registration pro-

cess provides fast frame by frame mapping a more accu-

rate camera pose is required for dense reconstruction. We

perform a sliding window bundle adjustment [29] over a

subset of images, which we refer to as keyframes. After

each newly selected keyframe we extend the scene map by

extracting new keypoints using fast corner [22] detection

3896

Figure 2. Examples of synthetic 3D models from ModelNet40 dataset. All models are of the following object classes: Flower Pot, Lamp,

Plant, Sink, Toilet or Vase.

and searching for keypoint correspondences in neighbor-

ing views. Correspondences search is done by matching an

affine transformed 8×8 pixel patch across views. The opti-

mized keyframes are then passed on to the dense reconstruc-

tion part of our pipeline. To achieve real-time performance,

the computations are performed at an image resolution of

640× 480 pixels.

3.2.2 Dense reconstruction

For each pair of keyframes we estimate the depth by

performing a pixel wise correspondence search along the

epipolar line. To be robust towards noise, outliers and small

specularities, the search is done over multiple resolutions,

starting at the lowest resolution and refining the correspon-

dence match by moving down the image pyramid. In our

experiments we use the Sum of Squared Differences (SSD)

as correlation cost with a kernel size of 5 × 5 pixels and

an image scale space of 3 levels. The result is a depthmap

which is typically corrupted by noise due to image sensor

noise, motion blur, rolling shutter effect or lack of texture.

We apply an efficient filtering scheme to remove noisy mea-

surements by enforcing depth consistency across neighbor-

ing views. If a depth measurement obtains sufficient support

from surrounding views the measurement is retained other-

wise it is marked as invalid. The pre-filtered depthmaps are

then smoothed using an edge preserving bilateral filter (ker-

nel size 5× 5), to improve the depth measurements. Finally

different depth estimates are put into the agreement or dis-

carded using a confidence based fusion approach, similar

to Kolev et al. [14]. Here each depth sample is assigned a

confidence weight. If a new depth measurement is in accor-

dance with the existing depth (e.g., within a given range)

the confidence is updated. Only depth samples which ex-

ceed a certain confidence threshold are kept and used in the

proposed regression approach.

4. Experiments

We trained a regressor on the synthetic data, generated as

explained in section 3.1. We used 102 synthetic 3D models

discretized to the resolution 400 × 400 × 400 for training.

Each model was randomly scaled by a value in the range

[2
3
, 3

2
] to get a higher variance of densities in the training

set. Remaining 303 synthetic models were used as a test set.

As training samples we used only grid points with smaller

distance to the surface than 10 cells. Points with projection

distances to two different surfaces within a small margin of

difference of distances below 1 cell and with the angle of

projection differing by more than 45 degrees were ignored

during training. In total, 20 million samples were used for

training. We trained a forest consisting of 4 trees of maxi-

mum depth 20, however, the performance was comparable

using only one tree and all reported results are obtained un-

der this setting. The feature vector consisted of total den-

sities in randomly generated 5000 boxes, surrounding each

grid point. During test time only boxes required to reach the

leaf node are evaluated (at most 20 comparisons).

The qualitative results on the synthetic test set are shown

in Figure 3. Our method managed to obtain surface recon-

structions comparable to the ground truth. Slight errors oc-

curred for very thin objects (such as leaves of plants), where

the noise made the 3D reconstruction thicker, or for con-

cave parts with high curvature, which are rare in this data

set, and thus hard to predict during test time. The quanti-

tative results for varying level of spherical gaussian noise

from σ = 0 to σ = 2|c|, where |c| is the size of the cell,

for varying ranges (0 − 2|c|, .., 8 − 10|c|) of ground truth

distances are reported in table 2. The mean error of projec-

tion near the surface was 0.44|c|, which can be considered

reasonable for a given density of input points. The inclu-

sion of 2% outliers in the artificial test set had (almost) no

effect on the performance. It was very unlikely they were

near the surface (statistically 1-2 points per model), or that

they formed a structure, that was reconstructed. The robust-

ness to very large noise can be only achieved by re-training

for each particular setting. This would have a different set

of applications and is beyond the scope of this paper. The

method already works well (0.66|c| error with no noise),

when we trained the regressor on only 4 handpicked mod-

els, consisting of one flat object (cup), one object with lots

of details (plant), one object with both convex and concave

parts (vase) and one object with varying level of details (toi-

let). Note that our real data test set is of a completely dif-

ferent kind, thus we do not consider training data to be a

3897

boy mask statue elephant face

points 306,018 299,403 246,941 244,167 91,730

resolution 201× 646× 172 228× 326× 89 403× 526× 349 396× 160× 455 215× 289× 182
triangles 1,185,092 936,260 1,361,032 1,542,828 720,688

density 2.8ms 2.7ms 2.7ms 2.6ms 0.8ms

normals 1.1ms 1.2ms 3.5ms 1.0ms 0.3ms

integral volume 8.0ms 1.6ms 25.5ms 8.1ms 4.4ms

tree evaluation 13.0ms 4.9ms 26.0ms 17.2ms 10.3ms

smoothing 2.6ms 1.7ms 7.9ms 2.9ms 1.8ms

total 27.5ms 12.1ms 65.6ms 31.8ms 17.6ms

marching cubes 19.8ms 13.5ms 36.9ms 22.5ms 16.2ms

total with MC 47.3ms 25.6ms 102.5ms 54.3ms 33.8ms

Table 1. Comparison of running times of the GPU implementation of our method on GTX1080 for the 5 models from Figure 5. The

evaluation of our regressor and calculation of signed distance field takes comparable time to the marching cubes algorithm, which is part

of most alternative approaches, including the fastest TSDF method.

mean 0-2|c| 2-4|c| 4-6|c| 6-8|c| 8-10|c|
no noise 0.754 0.440 0.686 0.816 0.941 1.128

σ = 0.5|c| 0.851 0.455 0.783 0.961 1.109 1.221

σ = 1.0|c| 1.129 0.578 0.986 1.281 1.541 1.658

σ = 1.5|c| 1.511 0.684 1.335 1.783 2.104 2.210

σ = 2.0|c| 1.910 0.803 1.647 2.284 2.742 2.839

ratio 100% 25.8% 23.2% 19.8% 16.8% 14.4%

Table 2. The average error of the projection in the cell units |c|
for varying range of ground truth absolute distances (columns)

and varying level of spherical gaussian noise (rows). Note that a

noise in the tangent direction has no influence on the error. Ratio

corresponds to the percentage of samples in each range. Higher

ratio of smaller distances is due to a large number of thin flat

objects in the dataset, such as cups, pots, or vases. In that case,

smaller distance samples are from both sides of both outer and

inner boundaries, higher distance samples are only from outside

of each boundary.

serious issue.

We captured the real-world 3D models using a mobile

phone as explained in Section 3.2. The comparison of our

results with the alternative methods - TSDF, Poisson recon-

struction and TV-L1 can be found in Figure 5. Our method

achieved comparable results to the state-of-the-art. TSDF

models the signed distance field only locally, which results

in a large number of holes in the resulting 3D model. Pois-

son reconstruction is not very robust to outliers and the

extrapolated surfaces fitting the noise are often not visu-

ally pleasant. TV-L1 regularization tries to find a mini-

mal surface, that fits all points. This often leads to filling

the holes, that should not be filled. In general this method

gives the best results, however, for high resolution models it

takes several hours to compute (CPU implementation). Our

method often led to smoother results due to averaging in the

regression forest training. This property is desired for lower

quality point clouds. Additional results for more challeng-

ing objects with high noise and non-Lambertian specular

surfaces are shown in Figure 4.

The running time largely depends on the resolution of

the space, the number of points, ratio of occupied space and

amount of noise. The running times on GTX1080 of the

examples from the Figure 5 with all their parameters are

shown in Table 1. For a model of the size 200× 200× 200
it takes approximately 10 milliseconds to predict the projec-

tion difference and signed distance field. That is compara-

ble to the evaluation of marching cubes (approx 10 millisec-

onds), which is part of most other competing approaches in-

cluding the fastest TSDF [7] (approx 2 + 10 ms). In compar-

ison, Poisson reconstruction for such model takes approxi-

mately 5 seconds and TV-L1 30 seconds on GPU. We im-

plemented our method on the mobile phone, where it can

generate high resolution 3D models in interactive time.

5. Conclusion

We proposed a new surface reconstruction method using

regression forests, capable to reconstructing high resolution

meshes in milliseconds with the quality comparable to the

state-of-the-art. Because the predictions depend only on the

local context, the method can be used to the arbitrary large

point cloud, by splitting the space into a set of regions, over-

lapping by as many cells as the range of the regressor. In the

future work we would like to find a better way of generat-

ing training point clouds, more similar to real-world noisy

data, which seems to be the main problem in our pipeline.

A promising direction is to use high quality 3D reconstruc-

tions obtained by fusing data from multiple depth sensors,

or to generate textured synthetic images with more realistic

rendering.

Acknowledgements L’ubor Ladický is funded by the

Max Planck Center for Learning Systems Fellowship.

3898

Point Cloud Our Result Ground Truth Point Cloud Our Result Ground Truth
Figure 3. Results of our method on synthetic test data. Our method managed to obtain surface reconstructions comparable to the ground

truth. In general, our algorithm performed better on the synthetic than on the real-world data, due to the same sampling method of the input

point clouds in the synthetic training and test sets. Slight errors occurred for very thin objects (such as leaves), or for concave parts with

high curvature (right middle example), which are rare in this data set, and thus hard to predict during test time.

Sample Input Image Sample Depth Map Our Result Input Image Depth Map Our Result
Figure 4. Results of our method on challenging real-world mobile-captured data, that includes non-Lambertian specular surfaces. Despite

a high level of noise and low density of points in reflective areas(the hat of a statue), our method managed to obtain reasonable results.

3899

Sample Input Image TSDF [7] Poisson [12] TV-L1 [34] Our Method
Figure 5. Qualitative comparisons of our method with other approaches. TSDF [7] models the signed distance field only locally, which

results in large number of holes in the resulting 3D model. Poisson reconstruction [12] is not very robust to outliers and the extrapolated

surfaces fitting the noise are often not visually pleasant. TV-L1 [34] regularization tries to find a minimal surface, that fits all points. This

often leads to filling the holes, that should not be filled (for example in the elephant model). In general this method gives the best results,

however, for high resolution models it takes several hours to compute. Our method often led to smoother results, probably due to averaging

in the regression forest training. This property is desired for lower quality point clouds and improved the result for the face reconstruction

example, but on the other hand led to the loss of details in the mask 3D model.

3900

References

[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building rome in a day. In 2009 IEEE 12th

international conference on computer vision. IEEE, 2009. 1

[2] R. C. Bolles and M. A. Fischler. A ransac-based approach to

model fitting and its application to finding cylinders in range

data. In IJCAI, volume 1981, pages 637–643, 1981. 4

[3] L. Breiman. Random forests. In Machine Learning, 2001. 2,

3

[4] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.

Fright, B. C. McCallum, and T. R. Evans. Reconstruction

and representation of 3d objects with radial basis functions.

In Proceedings of the 28th Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’01,

pages 67–76, New York, NY, USA, 2001. ACM. 2

[5] Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, and S.-Y.

Jin. A survey of methods for moving least squares surfaces.

In VGTC Conference on Point-Based Graphics, 2008. 1

[6] Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard,

L. D. Jackel, and D. Henderson. Handwritten digit recogni-

tion with a back-propagation network. In Advances in Neural

Information Processing Systems 2, 1990. 2

[7] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. In Proceedings of the

23rd annual conference on Computer graphics and interac-

tive techniques. ACM, 1996. 1, 6, 8

[8] V. Estellers, M. Scott, K. Tew, and S. Soatto. Robust pois-

son surface reconstruction. In Scale Space and Variational

Methods in Computer Vision: 5th International Conference,

SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4,

2015, Proceedings, 2015. 2

[9] M. Firman, O. Mac Aodha, S. Julier, and G. J. Brostow.

Structured prediction of unobserved voxels from a single

depth image. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016. 2

[10] S. Fuhrmann and M. Goesele. Fusion of depth maps with

multiple scales. In ACM Transactions on Graphics (TOG),

2011. 1

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and

A. Fitzgibbon. Kinectfusion: Real-time 3d reconstruction

and interaction using a moving depth camera. In Proceed-

ings of the 24th Annual ACM Symposium on User Interface

Software and Technology, 2011. 1

[12] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface

reconstruction. In Proceedings of the fourth Eurographics

symposium on Geometry processing, 2006. 2, 8

[13] G. Klein and D. Murray. Parallel tracking and mapping on

a camera phone. In Mixed and Augmented Reality, 2009.

ISMAR 2009. 8th IEEE International Symposium on, pages

83–86. IEEE, 2009. 4

[14] K. Kolev, P. Tanskanen, P. Speciale, and M. Pollefeys. Turn-

ing mobile phones into 3d scanners. In 2014 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3946–3953. IEEE, 2014. 1, 5

[15] L. Ladicky, S. Jeong, B. Solenthaler, M. Pollefeys, and

M. Gross. Data-driven fluid simulations using regression

forests. Transactions on Graphics, 34(6), 2015. 2

[16] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associa-

tive hierarchical CRFs for object class image segmentation.

In International Conference on Computer Vision, 2009. 3

[17] M. Niessner, M. Zollhofer, S. Izadi, and M. Stamminger.

Real-time 3d reconstruction at scale using voxel hashing.

ACM Trans. Graph., 2013. 1

[18] D. Nistér. An efficient solution to the five-point relative pose

problem. IEEE transactions on pattern analysis and machine

intelligence, 26(6):756–770, 2004. 4

[19] P. Ondrúška, P. Kohli, and S. Izadi. Mobilefusion: Real-time

volumetric surface reconstruction and dense tracking on mo-

bile phones. IEEE transactions on visualization and com-

puter graphics, 21(11):1251–1258, 2015. 1

[20] R. Poranne, C. Gotsman, and D. Keren. 3D Surface Recon-

struction Using a Generalized Distance Function. Computer

Graphics Forum, 2010. 2

[21] D. J. Rezende, S. M. A. Eslami, S. Mohamed, P. Battaglia,

M. Jaderberg, and N. Heess. Unsupervised learning of 3d

structure from images. CoRR, 2016. 2

[22] E. Rosten. Fast corner detection. Engineering Department,

Machine Intelligence Laboratory, University of Cambridge.

Available from:< http://mi. eng. cam. ac. uk/er258/index.

html, 2006. 4

[23] N. Savinov, L. Ladicky, C. Hane, and M. Pollefeys. Dis-

crete optimization of ray potentials for semantic 3d recon-

struction. In IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,

2015, 2015. 1

[24] D. Scharstein and R. Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. Interna-

tional Journal of Computer Vision, 2002. 1

[25] T. Schöps, T. Sattler, C. Häne, and M. Pollefeys. 3d modeling

on the go: Interactive 3d reconstruction of large-scale scenes

on mobile devices. In 3D Vision (3DV), 2015 International

Conference on, pages 291–299. IEEE, 2015. 1

[26] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

Boost: Joint appearance, shape and context modeling for

multi-class object recognition and segmentation. In Euro-

pean Conference on Computer Vision, 2006. 3

[27] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer,

and M. Pollefeys. Live metric 3d reconstruction on mobile

phones. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 65–72, 2013. 1, 4

[28] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-

vian manifold: Inferring dense correspondences for one-shot

human pose estimation. In Conference on Computer Vision

and Pattern Recognition, 2012. 2

[29] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-

bon. Bundle adjustmentâĂŤa modern synthesis. In Inter-

national workshop on vision algorithms, pages 298–372.

Springer, 1999. 4

[30] B. Ummenhofer and T. Brox. Global, dense multiscale re-

construction for a billion points. In Proceedings of the IEEE

International Conference on Computer Vision, 2015. 1

3901

[31] P. Viola and M. Jones. Robust real-time face detection. Inter-

national Journal of Computer Vision, 57(2):137–154, 2004.

3

[32] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015. 4

[33] C. Zach. Fast and high quality fusion of depth maps. In

Proceedings of the international symposium on 3D data pro-

cessing, visualization and transmission (3DPVT), volume 1,

page 2. Citeseer, 2008. 1

[34] C. Zach, T. Pock, and H. Bischof. A globally optimal algo-

rithm for robust tv-l 1 range image integration. In 2007 IEEE

11th International Conference on Computer Vision. IEEE,

2007. 1, 8

3902

