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Abstract

In this paper we present a new method for creating poly-

nomial solvers for problems where a (possibly infinite) sub-

set of the solutions are undesirable or uninteresting. These

solutions typically arise from simplifications made during

modeling, but can also come from degeneracies which are

inherent to the geometry of the original problem.

The proposed approach extends the standard action ma-

trix method to saturated ideals. This allows us to add con-

straints that some polynomials should be non-zero on the

solutions. This does not only offer the possibility of im-

proved performance by removing superfluous solutions, but

makes a larger class of problems tractable. Previously,

problems with infinitely many solutions could not be solved

directly using the action matrix method as it requires a

zero-dimensional ideal. In contrast we only require that

after removing the unwanted solutions only finitely many

remain. We evaluate our method on three applications, op-

timal triangulation, time-of-arrival self-calibration and op-

timal vanishing point estimation.

1. Introduction

The success of geometric computer vision is largely built

on the ability to efficiently and reliably solve systems of

polynomial equations. Minimal solvers are used for ro-

bust model estimation using hypothesis and test frameworks

such as RANSAC.

Naturally there has been a lot of research in computer

vision devoted to constructing better polynomial solvers.

The most common approach is based on the action matrix

method, [29, 5], which reduces the problem to solving a

linear system followed by an eigendecomposition. Early

examples of applications in computer vision were based on

highly problem specific derivations including semi-manual

extraction of Gröbner bases [37, 36]. In [20], Kukelova et

al. presented a system for automatically creating polyno-

mial solvers based on the action matrix method . This gen-
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Figure 1. Solutions to the polynomial system in (23). The solution

set consists of two points and a circle contained in the xz-plane.

Saturating the ideal with y removes any solution where y = 0.

erator has been used to solve many problem in geometric

computer vision, e.g. [21, 39, 38, 32]. Recently an improve-

ment to the automatic generator scheme was proposed [24],

exploiting the inherent relations between the original equa-

tions. In [17] and [20, 30] the authors presented methods

optimizing the so called elimination templates, with respect

to stability and size respectively. With similar goals, Ask

et al. [2] showed how to exploit certain symmetries avail-

able in some polynomial systems. This was later extended

by both Kuang et al. [19] and Larsson et al. [23]. In [5],

Byröd et al. proposed methods to improve numerical accu-

racy by selecting the quotient space basis at runtime using

singular value decomposition (SVD) or by using QR factor-

ization with column pivoting. In [3], Bujnak et al. proposed

two different methods for extracting univariate polynomials

directly from the action matrix. The roots of these polyno-

mials can then be found efficiently using Sturm-sequences

[14], instead of computing the full eigendecomposition of

the action matrix. For an overview of other approaches to

solving systems of polynomial equations see [5] and the ref-

erences therein.

In this paper we present an extension to the action ma-

trix method which allows us to build polynomial solvers for

saturated ideals. Saturation allows us to add constraints that

some polynomials should be non-zero. The most interesting

cases are when the original ideal contains infinitely many

solutions while the saturated ideal is zero-dimensional. For

these problems it is not possible to apply the action matrix
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method directly.

State-of-the-art solvers for problems involving saturated

ideals, e.g. [37, 18, 34, 4], were implemented by manually

constructing equations from the saturated ideal as a pre-

processing step and then applying the standard approach.

These methods are essentially hand-crafted and problem

specific. In contrast our approach is entirely generic and

we have extended the automatic solver generator from [24]

to also handle saturated ideals.

The contributions of this paper are two-fold:

• We provide a theoretical framework for using the ac-

tion matrix method for saturated ideals.

• We show how to apply the theory in practice and pro-

vide an implementation in the automatic solver gener-

ator framework from [24].

2. Background

First let us fix some of the notation which we will use

throughout the paper. We will (mostly) denote vectors with

lower case and bold face, e.g. x,u and b. Matrices will be

uppercase, e.g. A,M and H . For a mapping T : X → Y we

denote the restriction of T to S ⊂ X as T
∣

∣

S
: S → Y . For

equivalence classes we let brackets denote the map which

takes any representative to its class, i.e. [x] denotes the class

which x belongs to, i.e. x ∈ [x].

2.1. Algebraic Geometry

We start with a brief review of some of the facts and

definitions from algebraic geometry. For a more thorough

review on algebraic geometry we recommend [7] and for

how it has been applied in computer vision [5].

The set of all polynomials with n variables and complex

coefficients is denoted C[x1, x2, . . . , xn] or C[X], where

X = (x1, x2, . . . , xn) for short. This set forms a ring

with the usual operations. For any polynomial system

F = {fi(x) = 0}mi=1 there is a corresponding ideal

I(F ) = 〈f1, . . . , fm〉 = {
∑

ihifi | hi ∈ C[X]}. (1)

Closely connected is the set of shared zeros,

V (I) = {x ∈ C
n | f(x) = 0, ∀f ∈ I}, (2)

called an affine variety. The quotient ring C[X]/I consists

of the equivalence classes over I , i.e.

[p] = [q] ⇐⇒ p− q ∈ I. (3)

This also means that p(x) = q(x) for all x ∈ V (I).
The quotient ring C[X]/I has the useful property that

it is finite dimensional as a vector space when there are

finitely many solutions (i.e. there are only finitely many

points in the affine variety V (I)).

2.2. Solving using Action Matrices

In this section we give an overview of the action matrix

method for solving polynomial systems. The goal is to con-

vert the difficult problem of solving the polynomial system

to an eigenvalue problem, for which there exist good nu-

merical methods.

The idea is to consider the operator T I
α : C[X]/I →

C[X]/I , that multiplies with the polynomial α ∈ C[X], i.e.

T I
α[p] = [αp], [p] ∈ C[X]/I. (4)

This operator is linear and if we fix a (linear-)basis {bk}
d
i=1

for C[X]/I we can represent it with a matrix Mα =

(mij) ∈ C
d×d, i.e. [αbi] =

[

∑

jmijbj

]

. Since this equa-

tion holds for any x ∈ V (I) we have

Mαb(x) = α(x)b(x), ∀x ∈ V (I). (5)

where b = (b1, . . . , bd)
T . This means that b and α eval-

uated at the solutions are eigenvectors and eigenvalues of

the constant matrix Mα. Thus if we can recover Mα we

can find the solutions by simply computing its eigendecom-

position. For a more in-depth review, especially on how to

construct the polynomial solvers in practice, we recommend

either [5], [20] or [24].

2.3. Saturations

The main focus of this paper is extending the action ma-

trix method to saturated ideals. For an ideal I ⊂ C[X] we

can define the saturation w.r.t. fs ∈ C[X] as1

Sat(I, fs) = {p | ∃N ≥ 0, fN
s p ∈ I}. (6)

The saturation allows us to essentially remove any solutions

where fs(x) = 0 from the variety. In fact we have that

V (Sat(I, fs)) = V (I) \ V (〈fs〉), (7)

where the closure is taken in the Zariski topology. For proof

of the above property and more information about satura-

tions we recommend Cox et al. [6].

A different approach for removing unwanted solutions is

the so-called Rabinowitsch trick, where an additional vari-

able x0 is added alongside the new equation

1− x0fs(x) = 0. (8)

This will remove any solution where fs(x) = 0. How-

ever we will show examples in the experimental evalua-

tion where this approach leads to much larger elimination

templates compared to working directly with the saturated

ideal.

1Note that while we only saturate with a single polynomial fs ∈ C[X]
here, the saturation can also be defined w.r.t. a polynomial ideal.
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3. Action Matrices in Saturated Ideals

We are now ready to present our main theoretical contri-

bution. Let I = 〈f1, . . . , fm〉 ⊂ C[X] be an ideal such that

J = Sat(I, fs) = {p | ∃N ≥ 0, fN
s p ∈ I} (9)

is zero-dimensional and let {bk}
d
k=1

be a linear basis for the

quotient ring C[X]/J .

The goal is now to lift the properties we need from the

saturated ideal J into the original ideal I . This will allow us

to create an elimination template directly from our original

equations which can be used to find the action matrix from

the saturated ideal.

Lemma 1. For each N ≥ 0 the set {fN
s bk}

d
k=1

is linearly

independent in the quotient ring C[X]/I .

Proof. Assume otherwise. Then there exist some ci ∈ C

such that
∑

i cif
N
s bi ∈ I . From the definition of the satura-

tion we get

fN
s (

∑

icibi) ∈ I =⇒
∑

icibi ∈ J, (10)

which is a contradiction.

For N ≥ 0 define

SN =

[

span {fN
s bk}

d
k=1

]

⊂ C[X]/I. (11)

From Lemma 1 we know that SN forms an d-dimensional

subspace in C[X]/I .

Lemma 2. For each α ∈ C[X] there exists N ≥ 0 such

that

[αp] ∈ SN , ∀p ∈ SN , (12)

i.e. SN is stable under multiplication with α.

Proof. Let α ∈ C[X] and consider [αbk] in C[X]/J . Since

{bk}
d
k=1

spans C[X]/J there exist mij ∈ C such that

[αbi] =
[

∑

jmijbj

]

⇔ pi := αbi−
∑

j

mijbj ∈ J. (13)

By definition there exist some Ni ≥ 0 such that fNi
s pi ∈ I .

Take some N ≥ Ni for all i, then in C[X]/I we have

fN
s pi ∈ I ⇔

[

αfN
s bi

]

=
[

∑

jmijf
N
s bj

]

. (14)

Now for any p ∈ SN we have as [p] =
[
∑

cif
N
s bi

]

. Apply-

ing (14) we get

[αp] =
[
∑

iciαf
N
s bi

]

=
[

∑

i

∑

jcimijf
N
s bj

]

∈ SN ,

(15)

which proves the lemma.

The following theorem will show a useful relationship

between the two multiplication operators

T I
α : C[X]/I → C[X]/I and T J

α : C[X]/J → C[X]/J.
(16)

Theorem 1. For large enough N ≥ 0, the action matrices

corresponding to T I
α

∣

∣

SN
and T J

α are the same with respect

to the basis {fN
s bk}

d
k=1

and {bk}
d
k=1

respectively.

Proof. While C[X]/I may be infinite dimensional as a vec-

tor space, we know from Lemma 2 that ImT I
α

∣

∣

SN
⊂ SN for

large enough N . The rest of the proof follows immediately

by noting that Mα = (mij) from (13) and (14) is indeed the

action matrix for both mappings.

To gain some intuition why this works consider the ac-

tion matrix Mα = (mij) corresponding to T I
α

∣

∣

SN
, i.e.



 Mα







fN
s b



 = α



fN
s b



 . (17)

Note that while this equation is satisfied for all x ∈ V (I),
any solution where fs(x) = 0 will correspond to a zero vec-

tor and not an eigenvector. Thus by computing the eigen-

vectors of Mα it is possible to recover only the solutions in

the saturated ideal.

4. Implementation Details

To apply the theory presented in the previous section in

practice, we extend the method for automatic solver gener-

ation from [24]. The steps taken are outlined below.

1. Generate an instance of the problem with coefficients

in some prime field Zp. This allows for efficient and

accurate computations.

2. Compute the saturated ideal

J = Sat(I, fs) (18)

and find a linear basis {bk}
d
k=1

for Zp[X]/J .

3. Form the polynomials used in the action matrix, i.e.

pi = αbi −
∑

jmijbj ∈ J. (19)

4. By iteration find the smallest N ≥ 0 such that

fN
s pi ∈ I ∀i. (20)

5. Using the method described in [24], find hij ∈ Zp[X]
such that

fN
s pi =

∑

jhijfj (21)

and create the elimination template from these.
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Note that we essentially take the same steps as in [24], but

we instead form the polynomials pi in the saturated ideal.

Then we lift both the basis {bk}
d
k=1

and the polynomials pi
into the original ideal I by multiplying with fN

s . Each of the

steps listed above can be efficiently carried out in algebraic

geometry software such as Macaulay2 [10].

In the implementation we restrict ourselves to saturating

a single monomial. This is however not very limiting, since

if we instead wish to saturate some polynomial f(x) we can

introduce a new variable x0 and the equation x0−f(x) = 0.

Saturating x0 will then be equivalent to saturating f(x) in

the original formulation. Note that this equation is much

simpler compared to (8) since the new variable x0 appears

linearly and is easy to eliminate.

In practice we found that for problems where we need to

saturate a general polynomial f(x), the elimination tem-

plates often become much smaller when the extra vari-

able x0 is not present in the quotient ring basis {bk}
d
k=1

.

This can always be accomplished by choosing a monomial

order where any monomial containing x0 is greater than

any monomial without x0. If this is the case then clearly

LT(x0 − f(x)) = x0 and the normal set of the Gröbner

basis will only contain monomials without x0.

5. Toy Example

We will now show an overview of the steps taken to con-

struct a polynomial solver for a toy example,

Example 1. Consider the following system of equations.











f1 = c0x
2 + c1y

2 + c2z
2 + c3 = 0,

f2 = c0x
2 + c4xy + c2z

2 + c3 = 0,

f3 = c0x
2 + c5yz + c2z

2 + c3 = 0,

(22)

where c0, c1, . . . , c5 ∈ C are constants. Note that while

three quadratic equations in three variables in general have

eight solutions, it is easy to see that this system becomes

degenerate for y = 0.

To construct a polynomial solver for this problem we

start by considering an instance of the system where the co-

efficients are integers, e.g.











f1 = x2 + y2 + z2 − 1 = 0,

f2 = x2 + 2xy + z2 − 1 = 0,

f3 = x2 + 2yz + z2 − 1 = 0.

(23)

A depiction of the solution set for these equations is shown

in Figure 1. For this particular instance we can use alge-

braic geometry software (e.g. [10]) to compute the satura-

tion w.r.t. y.

J = Sat(I, y) = 〈y − 2z, x− z, z2 −
1

6
〉. (24)

This also gives us basis for the quotient ring C[X]/J ,

b0 = 1, b1 = z. (25)

Taking the action polynomial as x we get the action matrix

[

0 1/6
1 0

](

z
1

)

= x

(

z
1

)

, (x, y, z) ∈ V (J). (26)

Thus we have that the polynomials

p1 = xz − 1/6, p2 = x− z, (27)

both lie in J . They are however not in I = 〈f1, f2, f3〉,
but when we multiply these by saturated variable y we can

express them in terms of the original equations,

yp1 = −
z

3
f1 + (

5z

12
−

x

12
)f2 + (

x

12
+

y

6
−

z

12
)f3, (28)

yp2 =
1

2
f2 −

1

2
f3. (29)

Note that in this instance we only needed to multiply by y
to lift p1 and p2 into I , but in general higher powers might

be required.

Now to solve a general instance of (22) we follow the

approach in [24]. The elimination template is formed by

multiplying each of the polynomials fi with the monomials

occurring in the coefficients in (28)–(29), i.e.

{zf1, f2, xf2, zf2, f3, xf3, yf3, zf3}. (30)

Using just linear combinations of these, it is then possible

to recover the polynomials,

yp1 = y(xz −m11z −m12), (31)

yp2 = y(x−m21z −m22), (32)

from which we can extract the action matrix

Mx =

[

m11 m12

m21 m22

]

. (33)

We will in the following sections show how our method

can be applied to a number of real world problems. These

examples will show the benefits of our approach in terms

of ease of construction of solvers without manual saturation

(Section 6 and 7), significant speed-up (Section 7 and 8) and

the benefit over introduction of auxiliary variables as in (8)

(Section 8).

6. Triangulation

In this section we will investigate how our saturation

framework can be used in multiple view triangulation. Geo-

metrically triangulation seems easily done, by simply inter-

secting the back-projected image rays. However to find the
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Figure 2. Error histograms for the dinosaur experiment for the dif-

ferent methods, on a log-scale.

Exec.

Template size # Sol. time

Three view triang.
Stewénius et al. [37] - 47 > 1 s

Byröd et al. [4] (relaxed ideal) 225× 209† 154 60 ms

Byröd et al. [5] (basis select.) 225× 209† 58 3 ms

Our 571× 676 47 10 ms

Our (new param.) 209× 265 50 3 ms

Time-of-Arrival

Kuang et al. [18] (4,6) 966× 925† 38 0.6 s

Kuang et al. [18] (5,5) 1, 386× 1, 539† 42 1.4 s

Our (4,6) 569× 692 38 22 ms

Our (5,5) 938× 1, 301 42 95 ms

Vanishing point est.
Mirzaei et al. [28] 2, 860× 3, 060 40 1.8 s

Our 246× 397 40 5 ms

Table 1. Overview over template sizes for the investigated applica-

tions in the paper. †: Several elimination steps are used, the largest

of the elimination templates is reported.

global minimizer of the reprojection error for many views

is an inherently difficult problem. For two views one can

find the solution by solving a sixth-degree polynomial, [12],

but for three views it becomes numerically and theoretically

harder, and there have many papers dealing with this prob-

lem [37, 4, 5, 22]. There are also iterative methods, that

do not guarantee a global optimum, [1, 16, 25, 13], meth-

ods that minimize the L∞-error [11, 27] and Branch-and-

Bound methods whose worst case convergence is exponen-

tial [15, 26].

6.1. Optimal Three View Triangulation

We will initially model the triangulation problem in three

views in the same way as described in [37]. To find the

optimal solution we want to minimize the reprojection error

minimize
X

3
∑

i=1

(
P 1
i X

P 3
i X

− x
1
i )

2 + (
P 2
i X

P 3
i X

− x
2
i )

2, (34)
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Byröd et al. [5] (using basis selection)

Byröd et al. [5] (without basis selection)

Ground truth

Figure 3. Synthetic triangulation test, comparing our method to

non-linear optimization for different amounts of added image

noise.

where X = [X Y Z 1]T is the unknown 3D-point, and su-

perscript denotes row-index. This is a non-convex problem

and we will solve it by evaluating all local minima. In order

to do this we find the points where the gradient vanishes.

We have the freedom to make projective world coordinate

changes without changing the error function. Similar to [37]

we will use this to simplify our formulation, by choosing a

coordinate system so that the third rows of the cameras are

given by [1 0 0 0], [0 1 0 0] and [0 0 1 0] respectively. This

will in turn change the denominators in (34) to X , Y and Z
respectively. The gradient is easily calculated, but in order

to get polynomial constraints we need to cross-multiply all

the fractions with the denominators. In this way we end up

with three equations, each of total degree 6 – giving rise to a

one-dimensional ideal. In [37] they solved this by manually

saturating the ideal, and after saturation with X , Y and Z
ended up with 47 solutions. But the problem is very badly

conditioned and the authors needed to use 128 bit arith-

metic, making the solver impractically slow to use in prac-

tice. In [4] they used the same parametrization but showed

that, by using a slightly different saturation approach and

then considering a relaxed ideal, a practical solver could be

developed. The solver still suffered from bad conditioning.

In [5] the authors developed new methodology to handle

poor conditioning by numerically choosing the linear ba-

sis during runtime in the minimal solver, using either SVD

or QR factorization. We can use our automatic saturation

process to avoid the cumbersome manual saturation steps.

After saturation with X , Y and Z we end up with 47 so-

lutions and get an elimination template of size 571 × 676.

In order to compare our solver with the publicly available

solver from [5] we ran a simple test on the well-known di-

nosaur sequence. Using 36 calibrated frames with a total of

2592 points, seen in at least three views, we extracted for

each of these points the corresponding first, last and middle

camera. We ran our solver and the solver from [5]. The
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Figure 4. Triangulated points for three real problems using our triangulation method. Left to right: the Notre Dame dataset [35] with

around 120,000 3D-points, the Orebro Castle dataset [31] (around 50,000 3D-points), and the Arts Quad dataset [8] (around 1,400,000

3D-points). Bottom shows histograms for reprojection errors for our method compared to the solutions provided in the original datasets

(which are bundled over all available cameras, hence the slighly larger median error) and the solver from [5].

resulting mean of the reprojection error for all points was

8.90 × 10−5 for both methods. Using the chosen cameras

we can for each point triangulate its 3D position linearly and

then perform non-linear optimization on the reprojection er-

ror. This gave the same error (8.90× 10−5). In Figure 2 the

error histogram is shown for all methods. One can see that

they produce very similar results. Our developed solver has

a runtime of around 10 ms, compared to around 3 ms for the

handcrafted solver from [5].

6.1.1 New Parameterization

We can actually further simplify our problem formulation

by setting the last row of camera three to [0 0 0 1], instead of

as previously [0 0 1 0] (i.e. the third camera’s image plane to

infinity). This means that we don’t need to cross-multiply

with factors of Z. This leads to three equations of total

degree 6, 6 and 5 respectively. Furthermore, in this parame-

terization it turns out that it is sufficient to saturate only one

of the variables. In this case the saturated ideal has 50 solu-

tions. This approach gives a substantially smaller template

of size 209 × 265, and in turn a much faster solver, with

runtime under 3 ms. We have evaluated this new solver on

both synthetic and real data. For a synthetic test, we ran-

domly placed a 3D point and three cameras in a box with

side-length 100. We then randomly chose an orientation for

each camera with the constraint that the point would be visi-

ble, for a field of view of around 70◦. We finally added nor-

mally distributed noise to the projection points with vary-

ing standard deviation. The result of running our algorithm,

for varying degrees of noise, is shown in Figure 3. Also

shown is the corresponding reprojection error for the ran-

domly set ground truth 3D-point as well as the non-linearly

optimized 3D-point position, using the ground truth posi-

tion as initialization. The results for each noise level are

evaluated on 1,000 random instances. We compare our re-

sults with the state-of-the-art solver from Byröd et al. [5].

Note that our solver achieves similar results without the spe-

cial techniques for improving numerics from [5]. For com-

parison we have also included the results from the solver

from [5] without basis selection. To test our triangulation

method on real data, we ran it on three large scale problems

where the camera matrices are available. In Figure 4 tri-

angulated 3D points for the Notre Dame dataset [35] with

around 120,000 3D-points, the Orebro Castle dataset [31]
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with around 50,000 3D-points, and the Arts Quad dataset

[8] with around 1,400,000 3D-points are shown.

7. Time-of-Arrival Self-Calibration

The term Time-of-Arrival (ToA) or alternatively Time-

of-Flight (ToF), denotes the travel time of a signal from a

transmitter to a receiver. If the speed of medium is known

such measurements provide distance measurements from

transmitters to receivers. The ToA self-calibration problem

is the problem of estimating both transmitter positions sj

and receiver positions ri given distance measurements,

dij = ‖ri − sj‖2. (35)

Following [18] we rearrange the equations in (35) into four

types,

d211 = (r1 − s1)
T (r1 − s1), (36)

d21j − d211 = −2rT1 (sj − s1)+s
T
j sj−s

T
1 s1, (37)

d2i1 − d211 = −2(ri − r1)
T
s1+r

T
i ri−r

T
1 r1, (38)

d2

ij−d2

i1−d2

1j+d2

11

−2
= (ri − r1)

T (sj − s1). (39)

Introducing the two matrices

R =
[

(r2 − r1) . . . (rm − r1)
]

(40)

S =
[

(s2 − s1) . . . (sn − s1)
]

(41)

the (m − 1)(n − 1) constraints in (39) can then be written

B = RTS, where

B =









d2

22
−d2

21
−d2

12
+d2

11

−2
. . .

d2

2n−d2

21
−d2

1n+d2

11

−2

...
. . .

...
d2

m2
−d2

m1
−d2

12
+d2

11

−2
. . .

d2

mn−d2

m1
−d2

1n+d2

11

−2









.

(42)

By factorizing B = R̃T S̃, we can almost solve the

self-calibration problem, however the factorization is not

unique. If B = R̃T S̃, then B = R̃TAA−1S̃ is also a valid

factorization. Furthermore both the sender position s1 and

the receiver position r1 are unknown.

Since the choice of coordinate system is arbitrary, one

may without loss of generality set r1 to the origin. Also

since any matrix A can be QR-factorized as a rotation ma-

trix times a triangular matrix, one may assume that A is

triangular, i.e. A = L. These choices fixate most of the

freedom in the coordinate system. Thus we parametrize the

problem with (L,b) so that

r1 = 0, s1 = Lb, ri = L−T R̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n.
(43)

Using this parametrization the equations (36)–(38) become

d211 = b
TH−1

b, (44)

d21j − d211 = S̃T
j H

−1S̃j + 2bTH−1S̃j , (45)

d2i1 − d211 = R̃T
i HR̃i − 2bT R̃i, (46)
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Figure 5. Histogram of log
10

of residuals for solutions using the

solver from Kuang et al. [18] and from proposed system.

using the symmetric matrix H = (LTL)−1. When both

receivers and senders are in general 3D positions, there are

two minimal problems to the time-of-arrival self-calibration

problem – 6 receivers and 4 senders, and 5 receivers and

5 senders [18]. The solution strategy is now to first con-

sider the constraints in (46), which are linear in the un-

knowns (H,b). For the minimal problem with 6 receivers

and 4 senders there are 5 such linear constraints on the 9

parameters in (H,b). Thus it is possible to parametrize

(H,b) as polynomials of degree one in four unknowns

(x1, x2, x3, x4). The remaining equations (44) and (45) in-

volve the inverse of H . By rewriting H−1 = adjH/detH
and multiplying with detH , the remaining four equations

d211 detH − b
T adjHb = 0, (47)

(d21j−d
2
11) detH−S̃T

j adjHS̃j−2bT adjHS̃j = 0 (48)

become polynomial equations in (x1, x2, x3, x4). The prob-

lem has 38 solutions for which detH 6= 0. However there is

a one dimensional variety of solutions for which detH = 0.

The other minimal case with 5 receivers and 5 senders can

in a similar manner be reduced to a system of five equations

(47) and (48) in five unknowns. This problem has 42 solu-

tions for which detH 6= 0. For other cases see [33, 34].

Using our approach we generated solvers for the two

minimal cases (4, 6) and (5, 5). A few different tests were

made to experimentally verify the new solvers and to com-

pare it with previous state-of-the-art as presented in [18].

Firstly, we generated 100 random instances of the problem.

For each such instance we generated the system of polyno-

mial equations and then ran different solvers to obtain all

solutions. These were then compared in terms of template

size, execution time and residuals (in terms of the log10 of

the absolute values of the equations evaluated on the com-

puted solutions). In none of the cases non-linear refinement

on the obtained solutions was used. The residuals are illus-

trated in Figure 5. The underlying problem is numerically

challenging, and one can see that both solvers suffer from

bad conditioning. However, as will be shown next, the min-

imal solvers can still work well for initialization and outlier

removal.
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Figure 6. Comparison of our method and the solver from [18] in a

RANSAC framework for different outlier ratios. Our system is run

with the same running time or number of iterations respectively as

[18].

Secondly, we used the solvers in a RANSAC scheme on

overdetermined problems with 4 receivers and 25 senders.

A few different scenarios were tried with increasing per-

centage of outliers. For this scenario an outlier among the 4

measurement from a sender, renders that whole sender use-

less. Since at least 4×6 outlier-free distance measurements

are needed for a hypothesis and at least one other set of

4 × 1 outlier-free distance measurement from a 7th sender

is needed to verify the solution, the problem can become

impossible to solve already with 19 outliers among the 100

measurements. We thus only tried outlier percentages in the

span 0-10 percent. The result is shown in Figure 6.

8. Vanishing Point Estimation

In [28] the authors present a method for estimating the

vanishing points in a Manhattan world. It is based on solv-

ing the following minimization problem optimally,

min
R

J =
N
∑

i=1

(nT
i Rmi)

2, RTR = I, det(R) = 1, (49)

where ni is the known vanishing point in the canonical

frame for each line i given by its unit normalized repre-

sentation mi. The sought R is the rotation matrix that takes

the camera to the canonical frame. The rotation is then pa-

rameterized using the Cayley-Gibbs-Rodrigues formulation

using s
T = [s1, s2, s3 ], and

R(s) =
(1− s

T
s)I + 2[s]× + 2ssT

1 + sT s
, (50)

where [s]× is the cross-product matrix. The solution to (49)

is found by enumerating all stationary points of J , by cal-

culating the derivatives of (49) with respect to s and setting

these to zero. The equations are given by

fj(s) = (1 + s
T
s)
∂J ′

∂sj
− 4sjJ

′ = 0, j = 1, 2, 3, (51)

where J ′(s) = (1+s
T
s)2J(s). The affine variety related to

(51) contains a one-dimensional solution set corresponding
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Figure 7. Vanishing point estimation RMS consistency on the York

Urban dataset [9]. The figure shows that our method gives the

same results as [28] on this dataset.

to the imaginary hypersphere 1+ s
T
s = 0. This means that

the standard action matrix method cannot be used directly.

In [28] the authors solve this by introducing an auxiliary

variable s0 and a new equation, f0 = s0(1 + s
T
s)− 1 = 0,

which results in a zero-dimensional solution set, containing

at most 40 solutions. This results in a stable, but compa-

rably slow solver, based on an elimination template of size

2, 860× 3, 060.

We have tested our automatic saturation methodology

on this problem, by directly solving (51) and saturate with

1 + s
T
s = 0. This results in an orders of magnitude faster

solver with an elimination template of size 246 × 397. In

order to compare the numerical properties of our solver we

evaluated it on the same dataset as in [28], namely the York

Urban Dataset (YUD), [9]. In Figure 7 the cumulative his-

togram of the consistency error is shown for our method

compared to [28] and the ground truth estimate. The con-

sistency error is defined as the RMS of sin−1(vT
i mj) over

all lines j for each image, where vi is the corresponding es-

timated vanishing point. One can note that we get the same

distribution as [28] (see their paper for the discussion on

the slighly better results compared to the ground truth es-

timate). The average running time of our solver on YUD

is 5 ms, compared to 1.8 s for [28]. This corresponds to a

speed-up of more than a factor of 300, which shows that in

this case it is much more beneficial to saturate directly com-

pared to introducing an auxiliary variable as in (8). Our fast

solver is also more suited to be used in a RANSAC frame-

work, to eliminate errors in the classification of the lines.

9. Conclusions

In this paper we have presented a new technique for

building polynomial solvers for saturated ideals. In con-

trast to previous approaches the method avoids explicitly

computing generators of the saturated ideal at runtime and

instead lifts the problem into the original ideal. We believe

that our method will help future research, enabling a whole

new class of problems to be addressed in an efficient man-

ner.
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[2] E. Ask, Y. Kuang, and K. Åström. Exploiting p-fold symme-

tries for faster polynomial equation solving. In International

Conference on Pattern Recognition (ICPR), 2012. 1

[3] M. Bujnak, Z. Kukelova, and T. Pajdla. Making minimal

solvers fast. In Computer Vision and Pattern Recognition

(CVPR), 2012. 1

[4] M. Byröd, K. Josephson, and K. Åström. Fast optimal three
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