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Abstract

In experimental fluid dynamics, the flow in a volume of

fluid is observed by injecting high-contrast tracer particles

and tracking them in multi-view video. Fluid dynamics re-

searchers have developed variants of space-carving to re-

construct the 3D particle distribution at a given time-step,

and then use relatively simple local matching to recover

the motion over time. On the contrary, estimating the opti-

cal flow between two consecutive images is a long-standing

standard problem in computer vision, but only little work

exists about volumetric 3D flow. Here, we propose a varia-

tional method for 3D fluid flow estimation from multi-view

data. We start from a 3D version of the standard varia-

tional flow model, and investigate different regularization

schemes that ensure divergence-free flow fields, to account

for the physics of incompressible fluids. Moreover, we pro-

pose a semi-dense formulation, to cope with the computa-

tional demands of large volumetric datasets. Flow is esti-

mated and regularized at a lower spatial resolution, while

the data term is evaluated at full resolution to preserve the

discriminative power and geometric precision of the local

particle distribution. Extensive experiments reveal that a

simple sum of squared differences (SSD) is the most suit-

able data term for our application. For regularization, an

energy whose Euler-Lagrange equations correspond to the

stationary Stokes equations leads to the best results. This

strictly enforces a divergence-free flow and additionally pe-

nalizes the squared gradient of the flow.

1. Introduction

The basis of experimental fluid dynamics is to observe

the flow in a volume of fluid. In order to densely visual-

ize the flow of the (transparent) fluid in the whole volume,

one can use a method called Particle Imaging Velocime-

try (PIV) [1, 31]: Tracer particles are injected into the fluid

and their motion is recorded with multiple high-speed cam-

eras. The 3D setup is illustrated in Fig. 1 and an exemplary

video frame is shown in Fig. 2.

Applications include the analysis and design of hydro-

Figure 1. Volumetric flow estimation. From 3D particle distribu-

tions at consecutive time-steps (top), reconstruct a dense motion

field V. xyz-components of the estimated flow field (bottom).

dynamically efficient vehicles and machines, or behavioral

studies of aquatic organisms that live in flowing water.

While early variants of PIV operated in a 2D plane (im-

plemented by illuminating only a thin slice of the volume

with a laser light-sheet), the trend is to observe fluid flow

in 3D. The (synchronized) multi-view video is processed

in two steps. First, per time-step, all views are used to re-

cover the 3D particle distribution, often using variants of

space-carving (so-called tomographic particle imaging ve-

locimetry, or Tomo-PIV). Second, motion vectors are esti-

mated by dense matching between consecutive 3D recon-

structions. From the perspective of computer vision, the

matching step employs rather simplistic methods, essen-

tially exhaustive winner-takes-all matching of local 3D win-

dows, followed by some sort of heuristic smoothing. Here,

we ask the obvious question: Can we improve PIV with

modern optic flow estimators, while still handling realistic,

high-resolution fluid dynamics data?

We base our approach on a 3D extension of the primal-

dual solution [5, 28] of variational flow estimation [17].

Modeling the problem in the 3D domain allows us to ex-

ploit the physical properties of our scenario for regulariza-

tion, which no longer hold in a 2D image projection. Here,

we prefer a variational approach and first-order methods [5],

because these methods have a manageable memory foot-
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Figure 2. Particle image from one view, with zoomed detail.

print and offer the possibility to include the aforementioned

physical constraints. As in the 2D case, [7, 36, 37], we

prefer to use window-based data terms rather than per-pixel

brightness constancy. For our (soft, probabilistic) particle

volumes, where all particles look the same, we posit that

matching information can still be found in the local patterns

of the particles.

Standard regularizers, like a quadratic penalty on the the

gradients of the flow field or total variation (TV), do not

consider the special properties of liquids, which are incom-

pressible and thus should have a divergence-free flow field.

Regularizers which penalize divergence have been tried for

both 2D and 3D problems [2, 13, 14]. Here, we propose

an energy whose optimality conditions correspond to the

stationary Stokes equations. This energy formulation inte-

grates nicely into our optimization framework and leads to

the desired incompressibility constraint on the flow field.

A challenge of 3D flow estimation is the high compu-

tational cost, as the number of voxels, respectively vari-

ables, increases cubically with the resolution. On one hand,

one could argue that lower-resolution reconstruction is suf-

ficient, because the effective resolution of PIV is limited by

the particles’ size and density. On the other hand, naively

down-sampling the volume will drastically smooth out the

local particle likelihood, and thereby destroy both robust-

ness against mismatches and localization accuracy. We

therefore propose a semi-dense approach, where flow vec-

tors are computed (and regularized) on a lower-resolution

grid, while the data-term is evaluated at full resolution to

retain the precision and robustness of the original particle

distribution. We demonstrate that the results of the semi-

dense approach are comparable to per-voxel flow estima-

tion, but able to handle large volumetric datasets recorded

with modern high-resolution sensors. In our experiments,

the proposed method is superior to simple local flow es-

timation and, without any post-processing, delivers results

comparable with the best available 3D fluid flow methods.

2. Related Work

In experimental fluid mechanics, particle imaging ve-

locimetry (PIV) is the estimation of a dense velocity field

in a fluid volume with the help of tracer particles and op-

tical images [1, 31]. Though traditionally focusing on 2D

motion on a single laser sheet, recent PIV approaches also

tackle 3D velocity fields [11, 33]. Elsinga et al. [11] were

the first to handle high particle densities in 3D with their to-

mographic particle image velocimetry (Tomo-PIV) method.

Per time-step, the particle distribution in the volume of in-

terest is reconstructed from multi-view imagery. The veloc-

ity field is estimated by subsequent 3D cross-correlation of

large local 3D windows (in PIV terminology “interrogation

volumes”) containing the reconstructed particles. The large

size of the interrogation volumes, determined by the practi-

cally viable particle density, limits the spatial resolution of

the reconstructed flow field. More recent methods have fo-

cused on post-processing multiple consecutive two-view ve-

locity fields with the help of a dynamic model to increase re-

construction quality [25]. Technical approaches include it-

erative volume deformation with adaptive window sizes [8],

methods in the spirit of Lucas-Kanade tracking [6] and re-

constructing trajectories of particle patterns over time [21].

Schanz et al. [33] propose tracking of individual particles

over long time sequences instead. While tracking individ-

ual particles is certainly an option to refine PIV results, the

basic two-frame case is arguably better captured by dense

flow estimation, which more naturally matches the continu-

ous and physically constrained nature of flowing fluids. Fur-

thermore, individual particle tracking recovers the flow only

at particle locations. Hence, additional post-processing is

needed to interpolate sparse tracks to a grid and to apply

the relevant physical constraints [12, 34]. Heitz et al. [14]

point out potential research directions for variational PIV

and advocate the use of correct physical constraints, focus-

ing mainly on 2D problems. Alvarez et al. [2] were, to

our knowledge, the first to present a variational model of

3D-PIV that accounts for the physical properties of incom-

pressible fluids. However, their method is applicable only

as refinement after an initial flow estimation with another

(not physically grounded) model. Even so, results are only

shown for small toy volumes (up to 256×128×144 voxels).

Also related is work by Gregson et al. [13], who pro-

pose a flow reconstruction algorithm for dye-injected two-

media fluids, primarily aiming for visually pleasing results

over small volumes (≈1003 voxels). Their data contains

more structural information than our particle images, hence

the step from 2D to 3D is less ambiguous. On the other

hand, spatial information is available only in areas where

dye is visible, thus multiple time steps are needed to densely

cover the domain. Technically, they show that the pressure-

projection step, commonly used for fluid simulations, is

equivalent to a projection on the divergence-free subspace,

which they formulate as a proximal operator. Like theirs,

our scheme is also motivated by physical properties of flu-

ids, additionally we show that our regularizer emerges from

a proper energy formulation, naturally derived from the

stationary Stokes equations. It is therefore not necessary,

2566



to perform the – computationally expensive – reprojection

onto the subspace of divergence-free motion fields in each

iteration of the algorithm. Instead, we can include incom-

pressibility as a hard constraint. With modern optimization

techniques, this leads to a much more efficient algorithm.

In the field of medical image processing, volumetric flow

estimation is used to register 3D scans from different imag-

ing modalities, e.g., computer tomography (CT) and mag-

netic resonance imaging (MRI). In medical imaging, 3D

flow estimation [16, 23, 26, 29] is further important for ap-

plications that aim to compensate 3D organ motion in time-

resolved medical image sequences (e.g., due to respiration).

Recently, 2D optical flow benchmarks have been dom-

inated by label-based methods [7, 24], propagation meth-

ods [4, 18], neural regression networks [10] and models

that exploit scene-specific properties like semantics [35, 3].

Most of these models do not scale well to the volumetric do-

main and struggle heavily with memory consumption. Fur-

ther, it is not obvious how to incorporate physical proper-

ties of the problem into any of them. Finally, our particle

data does not provide any semantic, structural or textural

cues. Consequently, we feel that a variational approach is

the most suitable one for our application scenario.

3. Approach

Our 3D flow estimation pipeline from multiple perspec-

tive images is depicted in Figure 3. Starting from ≥3 syn-

chronous images of the volume, seeded with tracer parti-

cles, we perform a 3D reconstruction with our own imple-

mentation of the tomographic reconstruction technique –

essentially a soft version of space-carving, which outputs

a 3D voxel space of “particle presence probabilities”, see

Sec. 3.1. Two such 3D volumes from consecutive time-

steps then serve as input for 3D flow estimation. We prefer

to work with floating-point scores that indicate the proba-

bility of a voxel being occupied, rather than take hard deci-

sions about the presence or absence of particles. Our main

contribution, the volumetric flow estimation, is described in

Section 3.2. We review the primal-dual approach, introduce

data terms, regularizers and complete cost functions for the

3D fluid case, and explain the semi-dense flow estimation.

Figure 3. Flow estimation pipeline. (left) 2D input data, (middle)

3D reconstruction, (right) 3D flow estimation from 2 time steps.

3.1. Tomographic Reconstruction

For 3D reconstruction we follow the Tomo-PIV ap-

proach and implement the MART algorithm [15]. Addi-

tionally, after each MART iteration we apply anisotropic

Gaussian smoothing (3×3×1 voxels) to the reconstructed

volume, to account for elongated particle reconstructions

along the z-axis due to the camera setup [9]. MART is an

iterative solver for the inverse problem

∑

j∈Ri

ωi,jE(Xj,Yj,Zj)=I(xi,yi), (1)

where I(xi,yi) denotes the observed pixel intensities,

E(Xj,Yj,Zj) the unknown voxel intensities and Ri is a

list of all voxels traversed by the viewing ray through pixel

(xi,yi). The weight ωi,j∈[0,1] depends on the distance be-

tween the voxel center and the line of sight and is essentially

equivalent to an uncertainty cone around the viewing ray, to

account for aliasing of discrete voxels. For each pixel i in

every camera, and for each voxel j, the following update

step is performed:

E(Xj,Yj,Zj)
k+1=E(Xj,Yj,Zj)

k

·
(

I(xi,yi)
/

∑

j∈Ri

ωi,jE(Xj,Yj,Zj)
k
)ωi,j

.
(2)

The result of the 3D reconstruction is a N×M×L voxel

space with a scalar intensity value per voxel, where high

intensity indicates high likelihood that the voxel is occu-

pied by a particle. With increasing number/density of par-

ticles the ambiguity increases, since multiple 3D configu-

rations are plausible that would reproject to the given im-

ages. These ambiguities lead to so-called “ghost parti-

cles” [22], which cannot be ruled out with the available ev-

idence. Therefore, our flow estimation algorithm will have

to deal with particles that do not actually exist. Ghost par-

ticles are on average lower in intensity than true particles.

However, the imaging setup also leads to intensity varia-

tions between true particles, such that ghost particles can-

not be filtered by thresholding. We prefer not to heuristi-

cally resolve ambiguities at an early stage, and instead use

the soft, noisy occupancy probabilities as input for 3D flow

estimation.

MART tends to decrease also the probabilities of true

particles, see Figure 4. We found it advantageous to apply

non-linear contrast stretching to the volume before the sub-

sequent flow computation: Eout=(Ein)
γ, with γ=0.7.

3.2. Volumetric Flow

Given two 3D volumes V0,V1:Ω→R
+, defined over the

volumetric domain Ω⊂R
3, we aim to reconstruct the 3D

motion field v:Ω→R
3. The functional v=(u,v,w)T repre-

sents a mapping of points p in V0 to points (p+v) in V1.

Like 2D optical flow, the problem is ill-posed when rely-

ing only on the local similarity ED(V0,V1,v). The solution

is to incorporate prior information into the model, in the

form of a regularizer ES(v). The optimal flow field can
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Figure 4. Histogram of true and ghost particle intensities after non-

linear contrast stretching.

then be found by minimizing the energy

λED(V0,V1,v)+ES(v)→min
v

. (3)

To minimize (3), we write the problem as a saddle-point

problem and apply the primal-dual algorithm, following [5].

Despite the high frame-rate of the cameras, particles travel

multiple voxels between successive frames. To handle these

larger motions, we embed the problem in a coarse-to-fine

scheme and repeatedly linearize V1 at the intermediate so-

lution, to obtain a convex approximation of our data term.

The coarse-to-fine scheme implicitly uses a larger neighbor-

hood for the data term at coarser pyramid levels.

Historically, optical flow estimation tries to avoid local

assumptions about the motion and use pixelwise brightness

constancy (BCA) as data cost ED [17]. However, BCA

turns out to not work well for noisy data, and recent work

prefers patch-based data terms from the stereo matching lit-

erature, e.g. [7, 36, 37]. The weakness of BCA is aggra-

vated by the low density of the evidence in PIV data (in our

case ≈0.0003 particles per voxel). To alleviate this prob-

lem, we tried different patch-based data costs and found the

sum of squared differences (SSD) in a neighborhood win-

dow to work well. We also tried more robust data terms like

Census and CSAD [37], but found them to perform worse.

It appears that for particle flow setups, the focus lies on high

accuracy of the flow vectors, whereas robustness is less cru-

cial due to controlled lighting and high contrast particles.

Thus, there is no need to sacrifice sensitivity for robustness

of the similarity measure.

We further experimented with different regularizers ES.

In the flow literature, regularization usually amounts to

smoothing the flow field. The ancestral smoothness term is

quadratic regularization (QR) [17], later it emerged that the

more robust Total Variation (TV) [32, 39] was often prefer-

able. Formally, these regularizers are defined as

TV(v)=

∫

Ω

|∇u|+|∇v|+|∇w|dx,

QR(v)=
1

2

∫

Ω

|∇u|2+|∇v|2+|∇w|2dx.

(4)

In our work we choose |·|:=‖·‖2. Our main focus lies on

the estimation of flow in fluids, especially water. The in-

compressibility of water – and many other fluids – implies

a divergence-free flow field, it is thus natural to regularize

by prohibiting or penalizing divergence. To that end, we

investigate the stationary Stokes equations:

−µ△v+∇p=f subject to ∇·v=0. (5)

Here, the Laplace operator △ is applied component-wise

on the flow field v. Eq. (5) can be interpreted as follows:

An external force field f acts on the fluid and leads to a

deformation. Both, incompressibility and viscosity (viscos-

ity constant µ) prevent the fluid from simply following f .

The pressure field p has to compensate for differences in

force and motion field, leading to an equilibrium. It should

be mentioned that (5) lacks the transport equations (iner-

tia part) of the full Navier-Stokes model of fluid dynam-

ics. However, the basic optical flow model only looks at 2

frames, and for very short time intervals (5) can serve as

reasonable approximation.

The stationary Stokes equations (5) correspond to the

Euler-Lagrange equations of the following energy:

min
v

max
p

∫

Ω

µ

2
(|∇u|2+|∇v|2+|∇w|2)+〈∇·v,p〉−〈v,f〉dx

(6)

In this saddle-point problem, the pressure p takes the role of

a Lagrange multiplier for the incompressibility condition.

In our reconstruction task, the role of the term 〈v,f〉 for the

force field is filled by the data term, i.e. we can interpret the

remaining terms as a regularizer. Eq. (6) suggests to employ

quadratic regularization on the flow field, and to apply the

incompressibility condition as a hard constraint:

QRD∞(v)=
1

2

∫

Ω

|∇u|2+|∇v|2+|∇w|2+ δ{0}(∇·v)dx,

(7)

with δC the indicator function of the convex set C. Indeed,

this physically motivated regularization scheme nicely fits

into our optimization framework, and leads to the best re-

sults for our data.

A price to pay is that the regularizer is no longer strongly

convex, so we cannot accelerate the optimization as in [5].

We therefore also test a version where the incompressibility

constraint is replaced by a soft penalty, while keeping the

the quadratic regularization of the gradients:

QRDα(v)=
1

2

∫

Ω

|∇u|2+|∇v|2+|∇w|2+α (∇·v)2dx. (8)

Estimation Algorithm. We minimize our proposed en-

ergy functional (3) in a discrete setting and partition the

domain Ω into a regular voxel grid. The objective is to

assign a displacement vector vp:=v(p)∈R3 to each voxel

p∈p={1...N}×{1...M}×{1...L}, so v∈V :=R
3NML. We
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briefly review the primal-dual approach [5] for problems of

the form

min
v

F (Dv)+G(v), (9)

where D:V→Y is a linear operator that depends on the

form of the regularizer. G denotes the discretized version of

the data term from (3) and F one of the investigated regular-

izers from (4, 7, 8). In case of QR or TV, the linear mapping

D implements the finite differences to approximate the spa-

tial gradient of the flow in each coordinate direction, which

leads to Y :=Y 1×Y 2×Y 3=R
3NML×R3NML×R3NML. In

order to base our regularizer also on the divergence of the

flow field, either as hard (7) or as soft (8) constraint, we ex-

tend the linear mapping D accordingly. Through a linear

approximation of the 3D divergence based on finite (back-

ward) differences, we arrive at Y :=Y 1×Y 2×Y 3×Y 4. Here

Y 4∈RNML holds the dual variables for the incompressibil-

ity constraint, respectively penalty; the pressure field (5).

For convex F and G we get the primal-dual form

min
v∈V

max
y∈Y

〈Dv,y〉−F ∗(y)+G(v), (10)

where F ∗(y):=maxv∈Vv
Ty−F (y) denotes the conjugate

of F . In this form the problem can be solved by iteratively

updating v and y according to

vk+1=(I+τ∂G)−1(vk−τDTyk)

yk+1=(I+σ∂F ∗)−1(yk+σD(2vk+1−vk)).
(11)

The data and smoothness terms are decoupled and the up-

dates of the primal and dual variables can be solved point-

wise, c.f . [5]. In particular, the proximal operator for F ∗ for

TV is given by the pixel-wise projection ∀p∈p:

(

(I+σ∂F ∗)−1(yi)
)

p
=

yi
p

max(1,‖yi
p‖2)

(12)

onto the unit ball for i=1,2,3. Similarly, for QR and QRDα

the proximal operator is defined as

(

(I+σ∂F ∗)−1(yi)
)

p
=yi

p

αi

αi+σ
, (13)

with αi=1. In case of QRDα we additionally have α4:=α.

In case we utilize hard incompressibility constraints, ele-

ments from Y 4 remain unchanged and are only affected

by the explicit gradient steps. For further details refer

to [5, 37].

The SSD data cost has the form

SSD(v)=

∫

Ω

∫

Ω

[V0(x)−V1(x+v(z))]
2BN(z−x)dxdz,

(14)

where BN is a box filter of width |N |. After discretization

we arrive at the following cost for a single pixel p:

SSD(p,vp)=
∑

q∈N (p)

|V0(q)−V1(q+vp)|
2ω(q−p), (15)

where we have set ω(q−p)= 1
|N (p)| . A locally valid, con-

vex approximation would be a 1st-order Taylor-expansion

around q+vp for all voxels q∈N (p). However, this re-

quires, at each location, the computation of the gradient for

all |N (p)| voxels in the neighborhood. A computationally

more efficient idea is to expand (15) around the current flow

estimate v0,q for each voxel q. I.e., after multiplying with λ

we use as convexified data term:

GSSD(p,vp)=λ
∑

q∈N (p)

|V0(q)−V1(q+v0,q) (16)

−(vp−v0,q)
T∇V1|(q+v0,q)|

2ω(q−p).

With this formulation the gradients and volumes must be

evaluated only once per voxel, namely at the current flow

estimate. The proximal map for the SSD at pixel p amounts

to solving a small quadratic problem per voxel to update vp:

(

(I+τ∂G)−1(v̂)
)

p
=argmin

vp

1

2τ
(v̂p−vp)

2+GSSD(p,vp).

(17)

Semi-Dense Flow. For large volumes the global optimiza-

tion of (10) is both computationally expensive and memory-

hungry. However, fluid flow is somewhat special: The need

for very high image resolution arises mainly from the data

term. Image gradients are present only along particle sil-

houettes, hence, the resolution must be chosen such that a

voxel is at most 1
2 particle diameter, to ensure individual

particles are visible. Moreover, the PIV literature recom-

mends particle diameters >2 pixels in order to avoid peak

locking effects (bias towards integer values) [30, 31]. On

the contrary, by reconstructing the flow field only from the

particles one makes an implicit assumption that each par-

ticle’s motion is representative of the surrounding volume

– patterns smaller than the spacing between two particles

cannot be resolved for lack of evidence. The effective reso-

lution of the flow is thus significantly lower.

We exploit that situation: Flow vectors are estimated at a

lower grid resolution (per default we use a spacing of h=4
original voxels), whereas the data cost is nevertheless eval-

uated at full resolution, so as to preserve the particle bound-

aries implicit in the high-frequency gradients. If required,

missing flow vectors can be interpolated from the sparser

grid, without significant loss of accuracy. We do this in our

evaluation. Note, besides computational savings the sparser

flow grid has the additional advantage that the regularizer

operates over larger, more meaningful spatial scales.

Local Flow Baseline. As a baseline, and to assess dif-

ferent data costs independent of the regularization scheme,

we implement a simple local flow estimation similar to the

local correlation schemes used in standard PIV. The base-

line crops a 3D interrogation volume around each pixel of
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the first volume, and exhaustively computes the similarity

to the second volume at all possible voxel positions within

±5 voxels per dimension. The best position is refined to

sub-voxel accuracy by fitting a quadratic polynomial to the

similarity scores in a 3×3×3 neighborhood.

The local matching strategy, without any explicit regular-

ization, requires very large interrogation volumes to guar-

antee a fairly unique particle distribution. E.g., Elsinga et

al. [11] suggest 41×41×41 voxels, so that each volume con-

tains on average 25 particles. Note, the overlap between

these large interrogation volumes also reduces the effective

resolution of the flow field considerably, therefore also local

methods often compute only a semi-dense flow field [11].

4. Evaluation

For a quantitative evaluation of our fluid flow method

we use data from the Johns Hopkins Turbulence Database

(JHTDB) [20, 27], which provides a direct numerical sim-

ulation of isotropic turbulent flow in incompressible fluids.

To separate the mutual influence of tomographic and 3D

flow reconstruction, we show results for the full pipeline,

including our simple particle reconstruction from images,

and when computing the flow from noise-free, ground truth,

particle volumes. Moreover, we analyze the influence of

different cost functions, window sizes, particle densities

and spacings of flow vectors and compare various regular-

izers. Additional evaluation results, also on experimental

data, can be found in the supplemental material.

Setup. We follow the test setup of “test case D” of the

4th International PIV Challenge [19]. The challenge took

place in conjunction with the 17th International Symposium

on Applications of Laser Techniques to Fluid Mechanics,

where participants from industry and academia handed in

results of their approaches on provided input data. Unfor-

tunately no ground truth data of the challenge is provided,

such that we had to generate new data with similar specifi-

cations using existing flow-fields from the JHTDB. Follow-

ing the guidelines in [19], we use the same discretization

level as [19] to obtain a volume of 1024×512×352 voxels

and read out the ground truth flow fields at each voxel po-

sition. The average magnitude of the 3D displacements is

1.9 voxel units, with a maximum of 5.4 voxels. To gen-

erate input data, tracer particles were randomly sampled

inside the volume and rendered to four symmetric camera

views with viewing angles of ±35◦ w.r.t. the yz-plane of

the volume, respectively ±18◦ w.r.t. the xz-plane. Images

have 1500×800 pixels, with intrinsics chosen such that the

area of one projected voxel matches approximately the pixel

area, and have standard 8-bit intensity range. The amount

of particles is chosen to yield a density of 0.1 particles per

pixel in image space, corresponding to ≈ 3
10000 particles.

per 3D voxel, or 0.4 particles in a 11×11×11 window. Par-

ticles are rendered with varying diameters up to a maximum

of 3 pixels, and varying brightness. Figure 2 shows the ren-

dered image for one of the four cameras.

Tomographic Reconstruction. We reconstruct the par-

ticle volume for each time-step with 5 MART iterations

(+ anisotropic Gaussian smoothing after each iteration, see

above) and run the 3D flow estimation on the raw MART

outputs. I.e., we do not attempt to reconstruct explicit 3D

particle locations, but rather continue with a 3D dense map

of occupancy scores. In contrast, the quality metrics for our

tomographic reconstruction pipeline requires discrete parti-

cles. T obtain them, we threshold the occupancy scores at

Imin=0.01 and run non-maxima suppression with a 3×3×3
kernel (c.f . [19]). To control the experiments for errors and

ambiguities of the reconstruction step, we additionally gen-

erate noise-free occupancy volumes directly from the simu-

lation, using trilinear interpolation to map non-integer par-

ticle coordinates to particle intensities.

As a quality metric for the static reconstruction part in

isolation, Elsinga et al. [11] defined the quality factor

Q=

∑

E(i)·Er(i)
√

∑

E(i)2·
∑

Er(i)2
, (18)

where E(i) and Er(i) are the voxel intensity values of the

estimated reconstruction and the reference volume. A fur-

ther common metric, the power ratio, is defined as

PR=
NT

NG

( 〈IT〉

〈IG〉

)2

, (19)

with NT ,NG the number of true and ghost particles, and

〈IT〉〈IG〉 their mean intensities. For details see [19].

With our basic re-implementation of MART, we reach

a quality factor Q=0.77. Our method reconstructs 98% of

the true particles, but generates approximately three times

as many ghost particles (3.32·NT ), leading to a power ratio

of PR=13.1. Note, most ghost particles have lower inten-

sities than true particles (see Figure 4). The reconstruction

algorithm was not the focus of our work and ranks in the

middle of the field when compared to other participants of

the PIV challenge [19]. The best, highly engineered meth-

ods achieve quality factors little below 1 and power ratios

>100. Nevertheless, even with this simple reconstruction

front-end, our flow estimation is competitive with the best

published methods – see below.

Volumetric Flow. In all tests we use coarse-to-fine esti-

mation with a pyramid scale factor of 0.95, 8 pyramid lev-

els, 20 warps and 30 inner iteration per pyramid level. Un-

less specified otherwise, we use SSD with an IV of size 113

as data-term, QRD∞ for regularization, step-size h=4 in

the semi-dense approach, and a particle density of 0.1 parti-

cles per pixel. We use the average endpoint error (AEE) and
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average angular error (AAE) as error metrics for our evalu-

ation. To illustrate the reconstruction quality, we visualize

a single xy-slice (z=60) of the flow field’s u-component in

Figure 5. Although a few small-scale details are lost, our

method provides a fairly detailed picture of the flow.

Regularizers. In Table 1 we show results of our approach

for different regularizers. In contrast to 2D flow, our volume

setup is not a projection of the 3D world, there are no dis-

continuities due to occlusion boundaries. Modeling in the

3D domain allows us to utilize physical constraints, which

would be much harder in a 2D projection. In our opinion,

this is why simpler, but physically less accurate proxy con-

straints like piecewise constancy (TV) work better in 2D,

but not for our volumetric fluid flow. Overall, quadratic gra-

dient regularization combined with a hard constraint on the

divergence of the flow field (QRD∞) achieves the best re-

sults. Furthermore, we tested different values of α for the

soft penalty variant QRDα in Table 2, reporting also the av-

erage absolute divergence (AAD) of the resulting flow field.

TV QR QRDα QRD∞

AEE 0.462 0.408 0.371 0.369

AAE 12.664 11.541 10.553 10.478

Table 1. Average endpoint error (AEE) and average angular error

(AAE) for different regularizers. Volume: 1024×512×352.

α 0 1 12 32 64 128

AEE 0.408 0.400 0.380 0.373 0.371 0.375

AAD 0.023 0.023 0.012 0.010 0.009 0.010

Table 2. Average endpoint error (AEE) and average absolute di-

vergence (AAD) for varying α.

Interrogation Volume Size. We further investigated dif-

ferent sizes of the interrogation volume IV (i.e. the 3D

matching window used for data cost computation) and show

results in Table 3. Our experiments suggest an IV size

of 113, which compares favorably with the large windows

(413) needed by local methods. A bigger IV size of 133 or

153 leads to no significant improvement.

IV 7 9 11 13 15

AEE 0.406 0.380 0.369 0.364 0.365

AAE 11.523 10.783 10.478 10.351 10.408

Table 3. Reconstruction quality in dependence of the IV size.

Particle Density. In order to be comparable with [19],

we chose a particle density of 0.1 particles per pixel (ppp)

for our experiments. The performance for different densi-

ties is compared in Tab. 4. Best results are achieved with

0.075ppp, indicating that, at higher densities, ambiguities

in the 3D reconstruction impair the flow estimation.

ppp 0.05 0.075 0.1 0.125 0.15

AEE 0.349 0.340 0.369 0.448 0.571

AAE 9.810 9.571 10.478 12.929 16.736

Table 4. Influence of the particle density per pixel (ppp) on the

reconstruction quality.

Stepsize. To justify our semi-dense flow computation at

reduced resolution, we compare the results with different

spacing h for a smaller volume of 256×256×256, for which

computation at full resolution is still tractable. Table 5

confirms that discretizing the flow field at a bit lower res-

olution than the data term causes no loss in quality. In

fact, h=2 gave the best results, even beating the full res-

olution h=1. This suggests that realistic flow fields are in-

deed locally smooth at the resolution of single particles, and

longer-range regularization improves the result. For the full

volume (1024×512×352) and a step-size of h=2 we get an

AEE of 0.341 voxel. We point out that the underlying flow

field was generated for the PIV competition as a realistic

example to challenge state-of-the-art flow estimation. The

complexity (respectively, smoothness) of the flow pattern is

representative of real, relevant fluid dynamics experiments.

h 1 2 4 6

AEE 0.347 0.342 0.362 0.468

AAE 10.484 10.334 10.859 14.383

Table 5. Average endpoint error (AEE) and average angular error

(AAE) for flow vector spacing. Volume: 256×256×256.

Noise-free Input. Next, we test the flow algorithm alone,

starting from a noise-free particle volume, see Table 6. Per-

formance improves significantly, suggesting that the flow

estimation would perform even better in conjunction with a

more sophisticated 3D reconstruction, e.g. using data from

multiple time-steps to discard ghost particles [25, 38].

ppp 0.05 0.075 0.1 0.125 0.15

AEE 0.298 0.253 0.227 0.210 0.199

AAE 8.301 7.064 6.326 5.860 5.538

Table 6. Flow estimation from noise-free particle volume for dif-

ferent particle densities.

Multiple Time-steps. Even though focusing on flow esti-

mation between two time-steps we tried a simple extension

to multiple time-steps. Following [13], the flow at the cur-

rent time-step is initialized by the estimated fluid motion

of the previous time-step. This allows one to skip coarser

pyramid levels and compute the flow directly at the highest

resolution. However, the quantitative gain in performance is

marginal (AEE of 0.362 after 3 time-steps instead of 0.369

for two-frame result).

Comparison with other Methods. Since we do not have

access to the ground truth from the PIV Challenge [19], or
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Figure 5. xy-slice of the flow in X-direction. left: Ground truth. center: Estimated from noise-free particle distribution. right: Estimated

from MART reconstruction.

to any of the participating methods, we unfortunately cannot

directly compare to their results. However, we have gen-

erated our test setup according to the specifications of the

challenge, using the same flow database. Hence, we believe

that the results are roughly comparable. The best perform-

ing methods in the challenge are DLR, LaVision and TUD.

All three use information from more than 2 time steps to

improve both the filtering of the 3D reconstruction and the

motion estimation. DLR uses a combined PIV and particle

tracking approach termed “shake the box” [33]. In a post-

processing step they penalize divergence and high spatial

frequencies. LaVision, a heavily engineered commercial

software, and TUD both use a form of motion tracking-

enhanced MART for reconstruction [25]. For the actual

3D PIV processing both methods use a combination of it-

erative volume deformation per time-step [8] and fitting of

second-order polynomial trajectories to corresponding par-

ticle patterns over multiple time-steps [21]. Apparently, the

two competitors only differ in their choice of parameters. In

the challenge, DLR achieved best results with ≈0.25 vox-

els endpoint error (at a reconstruction power ratio of >100),

LaVision and TUD reach endpoint errors ≈0.32 voxels. All

other challenge participants report AEE>0.45 voxels.

Assuming that the datasets are indeed comparable, our

result is the best for a 2-frame method, and close to LaV-

ision and TUD, who both exploit temporal coherence and

highly optimized particle reconstruction codes. Moreover,

the results for the noise-free particle reconstruction suggest

that with a more sophisticated 3D reconstruction front-end,

even the DLR result is within reach with only 2 time steps.

We reiterate that, while we did our best to match the specifi-

cations of the PIV challenge, there inevitably will be differ-

ences between the datasets and the comparison is not exact.

To establish a reasonable 2-frame baseline for our

method on the exact same dataset, we compare it to the ex-

haustive local flow baseline described in Section 3.2. The

results are displayed in Table 7 for different cost functions.

We show results for both the whole pipeline with 3D parti-

cle reconstruction and a noise-free particle volume (c.f . Ta-

ble 6). For efficiency we only estimate and evaluate the

local flow on a sparse grid with 16 voxel spacing (this does

not change the result of local exhaustive search).

As discussed, the local method requires large neighbor-

hood sizes to compute the similarity. Thus, high-frequency

SSD NCC SAD Census QRD∞

reconst. 0.457 0.438 0.483 2.455 0.369

noise-free 0.416 0.408 0.425 0.446 0.227

Table 7. Average endpoint error (AEE) for the local flow baseline.

Best result of the proposed scheme (SSD+QRD∞) carried over

from Table 1 and 6 for comparison.

variations of the flow cannot be recovered well. Best re-

sults are achieved with SSD and NCC as data term, using

an IV size of 413. Even so, all tested cost functions have

end point errors >0.4 voxels. Especially for the noise-free

particle volume, errors are significantly higher than for our

divergence-free variational scheme.

5. Conclusion

We have presented a volumetric flow estimation method,

primarily aimed at fluid flow reconstruction via particle

imaging velocimetry. Technically, our method is a 3D ver-

sion of the canonical model for variational optical flow, aug-

mented with a physically based regularizer for incompress-

ible fluids. To handle realistic, high-resolution PIV data,

we exploit that the flow field inherently has lower resolution

than the particle images and process the data at two differ-

ent resolutions: High resolution for the data term, which

depends on small tracer particles, and lower resolution for

the flow vectors and the regularization. Our method delivers

high-quality flow estimates that compete with the state-of-

the-art, although it is based on a rather naive particle recon-

struction step and uses only information from two consec-

utive time steps. These limitations directly determine our

future work: The next steps are flow estimation over longer

time intervals, in order to exploit additional temporal con-

sistency constraints; and a tighter coupling between flow es-

timation and 3D reconstruction, so as to mitigate the errors

in the current (precomputed and frozen) particle volumes.

On a general note, there is still room for improvement

in particle imaging velocimetry. We believe that a closer

cooperation between researchers from fluid dynamics and

computer vision could significantly boost the development

of future 3D-PIV systems.
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Lagrangian particle tracking at high particle image densities.

Experiments in Fluids, 57(5), 2016.

[34] J. F. Schneiders and F. Scarano. Dense velocity reconstruc-

tion from tomographic ptv with material derivatives. Exper-

iments in Fluids, 57(9), 2016.

[35] L. Sevilla-Lara, D. Sun, V. Jampani, and M. Black. Optical

flow with semantic segmentation and localized layers. CVPR

2016.
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