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Abstract

This paper addresses the problems of feature representa-

tion of skeleton joints and the modeling of temporal dynam-

ics to recognize human actions. Traditional methods gen-

erally use relative coordinate systems dependent on some

joints, and model only the long-term dependency, while ex-

cluding short-term and medium term dependencies. Instead

of taking raw skeletons as the input, we transform the skele-

tons into another coordinate system to obtain the robustness

to scale, rotation and translation, and then extract salient

motion features from them. Considering that Long Short-

term Memory (LSTM) networks with various time-step sizes

can model various attributes well, we propose novel en-

semble Temporal Sliding LSTM (TS-LSTM) networks for

skeleton-based action recognition. The proposed network is

composed of multiple parts containing short-term, medium-

term and long-term TS-LSTM networks, respectively. In

our network, we utilize an average ensemble among mul-

tiple parts as a final feature to capture various temporal

dependencies. We evaluate the proposed networks and the

additional other architectures to verify the effectiveness of

the proposed networks, and also compare them with several

other methods on five challenging datasets. The experimen-

tal results demonstrate that our network models achieve the

state-of-the-art performance through various temporal fea-

tures. Additionally, we analyze a relation between the rec-

ognized actions and the multi-term TS-LSTM features by vi-

sualizing the softmax features of multiple parts.

1. Introduction

Human action recognition is one of many challeng-

ing tasks targeted by computer vision researchers. It has

many important applications including video surveillance,

human-computer interaction, game control, sports video

analysis, etc. Although traditional studies about action

recognition have been focused on recognizing actions from
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Figure 1: System overview of the proposed deep learning

network. The main four phases of the system are com-

posed of coordinate transformation, motion feature extrac-

tion, multi-term LSTMs and ensemble deep learning.

the monocular RGB video sequences, it is hard to fully

capture the human action in 3D space by using monocu-

lar video sensors. With a rapid development of 3D data

acquisition over the past few decades, lots of researches on

human activity recognition from 3D data can have been ac-

tively performed [2].

A human body can be represented by a stick figure called

human skeleton, which consists of line segments linked

by joints, and the motion of joints can provide the key to

motion estimation and recognition of the whole figure [1].

Hence, if we can reliably extract and track a human skele-

ton in 3D space, action recognition can be performed by

classifying the temporal movement of the skeleton. Cur-

rently, reliable joint coordinates can be obtained from the

depth sensor using the real-time skeleton estimation al-

gorithms [15, 22]. These kinds of effective pose estima-

tion technologies have been facilitating studies on skeleton-

based action recognition.

There are two related issues for human skeleton-based

action recognition. The first one is a problem for input data
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variations such as scale, rotation and translation, and the

other is the modeling of the human actions that are variable,

dynamic and similar with each other. Most of the existing

skeleton-based action recognition methods use relative joint

coordinates [17, 16, 6], which can overlook absolute move-

ments of skeleton joints. For the modeling of human ac-

tions, recent researches show that Long Short-Term Mem-

ory (LSTM) networks [6, 24, 10] are superior to temporal

pyramids [17, 12, 16] and hidden markov models [21, 20].

Nevertheless, these kinds of LSTM networks just model the

overall temporal dynamics of skeleton joints without con-

sidering the detailed temporal dynamics of them.

In this paper, we propose novel ensemble temporal slid-

ing LSTM networks for action recognition, in which the en-

semble means a combination of various action attributes.

Fig. 1 gives an overview of our model. Firstly, we trans-

form the coordinates of input skeleton sequences so that the

data can be robust to scale, rotation and translation. Sec-

ondly, instead of using the simple joint positions, we em-

ploy the motion features in terms of temporal differences,

which help our networks to be focused on the actual skele-

ton movements. Thirdly, the motion features are processed

with multi-term LSTMs containing short-term, medium-

term and long-term LSTMs, which allow robustness to vari-

able temporal dynamics. Finally, the multi-term LSTMs

capture a variety of action dynamics through ensemble.

1.1. Related Works

In this subsection, we briefly review the existing litera-

ture closely related to the proposed model of dealing with

the two main issues on human skeleton-based action recog-

nition. The first is feature representation about the skeleton

input sequences, and the other is modeling of the temporal

dynamics for action recognition. Wang et al. [17] repre-

sented the human movement by means of the pairwise rela-

tive positions of the joints for more discriminative features.

Cho et al. [4] normalized the orientation of skeletons so that

each and every skeleton could have its root at the origin.

Using the relative geometry between all pairs of body parts,

Vemulapalli et al. [16] represented the 3D geometric rela-

tion of the body parts in Lie group. Du et al. [6] utilized the

center among hip center, hip left and hip right joint coor-

dinates as the origin of the coordinate system. These kinds

of relative coordinate systems can misinterpret the actions

when classifying the absolute movements of skeleton joints.

Wang et al. [17] extracted the 3D joint position and the lo-

cal occupancy pattern, and then they were processed with

Fourier Temporal Pyramid (FTP) to represent temporal dy-

namics of the actions. Vemulapalli et al. [16] employed

Dynamic Time Warping (DTW) and FTP to handle the is-

sues such as rate variations, temporal misalignment, noise,

etc. Instead of modeling temporal evolution of features, Luo

et al. [12] proposed a new dictionary learning method with

temporal pyramid matching for keeping the temporal infor-

mation. Xia et al. [21] employed the histogram based rep-

resentation of 3D human posture, and then recognized the

actions using discrete Hidden Markov Model (HMM). Wu

and Shao [20] extracted high level skeletal joint features,

and then used them for estimating the emission probability

of HMM to infer the action sequences.

Even though the methods of DTW, FTP and HMM are

useful when dealing with temporal dynamics, the recent uti-

lization of LSTM networks has been showing the superior

performance to model the temporal dynamics than the tradi-

tional methods. Du et al. [6] proposed a hierarchical recur-

rent neural network, in which the temporal representations

of low-level body parts were modeled and combined into

the representations of high-level parts. Zhu et al. [24] de-

veloped an end-to-end fully connected deep LSTM network

with the novel regularization to learn the co-occurrence fea-

tures of skeleton joints. Liu et al. [10] introduced a new

gating mechanism within LSTM to learn the reliability of

sequential data and accordingly adjusted its effect on up-

dating the long-term context information stored in the mem-

ory cell. Since all these researches generally observed only

the long-term memory of human actions, it can be difficult

to completely model various temporal dynamics including

short-term, medium-term actions, etc.

1.2. Contributions

We arrange the main contributions as follows:

• We investigate feature representation for human skele-

ton in order to obtain the robustness to various varia-

tions and extracting salient motions. Experimentally, it

is demonstrated that the feature representation dramat-

ically enhances the performance of action recognition.

• We utilize an ensemble of multi-term temporal slid-

ing LSTM networks, which can capture short-term,

medium-term, long-term temporal dependencies and

even spatial skeleton pose dependency, separately. Un-

like traditional ensemble studies, our models effec-

tively learn various spatial and temporal dynamics in

terms of different action attributes.

• We conduct comprehensive evaluations on the MSR

Action3D dataset [9], UTKinect-Action dataset [21],

NTU RGB+D dataset [14], Northwestern-UCLA

dataset [19] and UWA3DII dataset [13]. The experi-

mental results demonstrate that our network model sig-

nificantly outperforms previously developed methods

for skeleton-based action recognition.

2. System Model

In this section, initially, we introduce the feature repre-

sentation of the proposed system, including a transforma-
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Figure 2: Feature representation processes. (a) Original input skeleton frames (st ). (b) Transformed input skeleton frames

(̂s t ). (c) Extracted salient motion features (x t ).

tion of the input skeletons and an extraction of motion fea-

tures. Next, we present the temporal sliding LSTM used

as a specific module of the system. Finally, we explain the

whole architecture including the training and testing pro-

cesses.

2.1. Feature Representation

As shown in Fig. 2(a), the original input skeletons can

go through an orientation misalignment when the skeletons

are obtained. In other words, even though the skeletons are

included in the same action category, the movements of the

skeletons can have a different attribute due to the orienta-

tion misalignment. In order to solve this problem, we need

to transform the original coordinate system into a human

cognitive coordinate system, which can have an orientation

consistency as depicted in Fig. 2(b).

Let si
t ∈ R3� 1 be the coordinates of the i th joint of the

t th skeleton frame. The transformed skeleton joint coordi-

nates are then given by

ŝ i
t = R � 1(si

t − oR ); ∀i ∈ J; ∀t ∈ T (1)

where J and T denote the sets of the skeleton joint and

frame indexes, respectively. In (1), the rotation matrix R
and the origin of rotation oR are obtained as

R =
�

v1

‖v1‖

�
�
�
�

v2 − Projv 1 (v2)
‖v2 − Projv 1 (v2)‖

�
�
�
�

v1 × v2

‖v1 × v2‖

�
; (2)

oR =
�
sH L

t =0 + sH R
t =0

��
2; (3)

where v1 and v2
1 are the vector vertical to the ground and

to the difference vector between the hip left joint and the hip

right joint of the initial skeleton in each sequence, respec-

tively. In (2), Projv 1 (v2) and v1 × v2 denote the vector

1In order to obtain a vector vertical to v 1 on the plane of containing v 1
and v 2 , we use the GramSchmidt process.

projection of v2 onto v1 and the cross product of the two

vectors, respectively. In (3), sH L
t =0 and sH R

t =0 denote the coor-

dinates of the hip left and right joints of the initial skeleton

of each sequence, respectively.

Fig. 2(c) shows the extraction process of the salient mo-

tion features. Instead of using the skeleton joint coordi-

nates, we use the temporal differences between the two

frames. While the skeleton joint coordinates just focus on

current locations, the motion features can capture the actual

movements of the skeleton joints [8]. Based on this insight,

we additionally utilize the motion features as input features

of the proposed architecture.

Let ŝ t ∈ RSIN � 1 be the transformed skeleton coordinates

of the t th frame and SIN be the input dimension size of the

proposed system. The transformed skeleton coordinates are

then obtained by

ŝ t = concat
�h

ŝ0
t ; ŝ1

t ; :::; ŝ j J j� 1
t

i
; 0

�
; ∀t ∈ T (4)

where concat([elements], 0) and |J | denote the concatena-

tion along the 0th axis of the elements and the number of

elements of set J , respectively. The motion features are

then obtained by

x t = ŝ t − ŝ t � D ; ∀t ∈ T(t ≥ D) (5)

where D is the temporal difference offset. These motion

features can become various forms according to D and are

normalized through dividing them by (D + 1 ). We can use

both the transformed skeleton coordinates and motion fea-

tures as input features. They are scaled into the unit of cen-

timeter, which makes our model perform well.

2.2. Temporal Sliding LSTM

Generally, LSTM networks have been used to model

temporal dynamics [7]. Although the forget gates of LSTM
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