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Abstract

This paper focuses on the task of room layout estima-

tion from a monocular RGB image. Prior works break the

problem into two sub-tasks: semantic segmentation of floor,

walls, ceiling to produce layout hypotheses, followed by an

iterative optimization step to rank these hypotheses.

In contrast, we adopt a more direct formulation of this

problem as one of estimating an ordered set of room layout

keypoints. The room layout and the corresponding segmen-

tation is completely specified given the locations of these or-

dered keypoints. We predict the locations of the room layout

keypoints using RoomNet, an end-to-end trainable encoder-

decoder network. On the challenging benchmark datasets

Hedau and LSUN, we achieve state-of-the-art performance

along with 200× to 600× speedup compared to the most re-

cent work. Additionally, we present optional extensions to

the RoomNet architecture such as including recurrent com-

putations and memory units to refine the keypoint locations

under the same parametric capacity.

1. Introduction

Room layout estimation from a monocular image, which

aims to delineate a 2D boxy representation of an indoor

scene, is an essential step for a wide variety of computer

vision tasks, and has recently received great attention from

several applications. These include indoor navigation [29],

scene reconstruction/rendering [19], and augmented real-

ity [46, 25, 10].

The field of room layout estimation has been primarily

focused on using bottom-up image features such as local

color, texture, and edge cues followed by vanishing point

detection. A separate post-processing stage is used to clean

up feature outliers and generate/rank a large set of room

layout hypotheses with structured SVMs or conditional ran-

dom fields (CRFs) [15, 11, 16, 36, 49]. In principle, the 3D

reconstruction of the room layout can be obtained (up to

scale) with knowledge of the 2D layout and the vanishing

points. However, in practice, the accuracy of the final lay-

out prediction often largely depends on the quality of the
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Figure 1. (a) Typical multi-step pipeline for room layout estima-

tion. (b) Room layout estimation with RoomNet is direct and sim-

ple: run RoomNet, extract a set of room layout keypoints, and

connect the keypoints in a specific order to obtain the layout.

extracted low-level image features, which in itself is sus-

ceptible to local noise, scene clutter and occlusion.

Recently, with the rapid advances in deep convolu-

tional neural networks (CNNs) for semantic segmentation

[5, 27, 32, 2], researchers have been exploring the possibil-

ity of using such CNNs for room layout estimation. More

specifically, Mallya et al. [28] first train a fully convolu-

tional network (FCN) [27] model to produce “informative

edge maps” that replace hand engineered low-level image

feature extraction. The predicted edge maps are then used

to sample vanishing lines for layout hypotheses generation

and ranking. Dasgupta et al. [7] use the FCN to learn se-

mantic surface labels such as left wall, front wall, right wall,

ceiling, and ground. Then connected components and hole

filling techniques are used to refine the raw per pixel predic-

tion of the FCN, followed by the classic vanishing point/line

sampling methods to produce room layouts. However, de-

spite the improved results, these methods use CNNs to gen-

erate a new set of “low-level” features and fall short of ex-

ploiting the end-to-end learning ability of CNNs. In other

words, the raw CNN predictions need to be post-processed

by an expensive hypotheses testing stage to produce the fi-

nal layout. This, for example, takes the pipeline of Das-

gupta et al. [7] 30 seconds to process each frame.

In this work, we address the problem top-down by di-
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Figure 2. Definition of room layout types. The type is indexed from 0 to 10 as in [50]. The number on each keypoint defines the specific

order of points saved in the ground truth. For a given room type, the ordering of keypoints specifies their connectivities.

rectly training CNNs to infer both the room layout corners

(keypoints) and room type. Once the room type is inferred

and the corresponding set of ordered keypoints are local-

ized, we can connect them in a specific order to obtain the

2D spatial room layout. The proposed method, RoomNet,

is direct and simple as illustrated in Figure 1: The network

takes an input image of size 320 × 320, processes it through

a convolutional encoder-decoder architecture, extracts a set

of room layout keypoints, and then simply connects the ob-

tained keypoints in a specific order to draw a room layout.

The semantic segmentation of the layout surfaces is simply

obtainable as a consequence of this connectivity.

Overall, we make several contributions in this paper: (1)

reformulate the task of room layout estimation as a key-

point localization problem that can be directly addressed

using CNNs, (2) a custom designed convolutional encoder-

decoder network, RoomNet, for parametrically efficient and

effective joint keypoint regression and room layout type

classification, and (3) state-of-the-art performance on chal-

lenging benchmarks Hedau [15] and LSUN [50] along with

200× to 600× speedup compared to the most recent work.

2. RoomNet

2.1. Keypoint­based room layout representaiton

To design an effective room layout estimation system, it

is important to choose a proper target output representation

that is end-to-end trainable and can be inferred efficiently.

Intuitively, one can assign geometric context classes (floor,

walls, and ceiling) to each pixel, and then try to obtain room

layout keypoints and boundaries based on the pixel-wised

labels. However, it is non-trivial to derive layout keypoints

and boundaries from the raw pixel output. In contrast, if

we can design a model that directly outputs a set of ordered

room layout keypoint locations, it is then trivial to obtain

both keypoint-based and pixel-based room layout represen-

tations.

Another important property of using a keypoint-based

representation is that it eliminates the ambiguity in the

pixel-based representation. Researchers have shown that

CNNs often have difficulty distinguishing between differ-

ent surface identities. For instance, CNNs can be confused

between the front wall class and the right wall class, and

thereby output irregular or mixed pixel-wise labels within

the same surface – this is well illustrated by Figure 5 and

6 from [7]. This phenomenon also largely undermines the

overall room layout estimation performance.

Hence, we propose to use a keypoint-based room layout

representation to train our model. Figure 2 shows a list of

room types with their respective keypoint definition as de-

fined by [50]. These 11 room layouts cover most of the

possible situations under typical camera poses and common

cuboid representations under “Manhattan world assump-

tion” [6]. Once the trained model predicts correct keypoint

locations with an associated room type, we can then sim-

ply connect these points in a specific order to produce boxy

room layout representation.

2.2. Architecture of RoomNet

We design a CNN to delineate room layout structure us-

ing 2D keypoints. The input to the network is a single RGB

image and the output of the network is a set of 2D keypoints

in a specific order with an associated room type.

Keypoint estimation The base network architecture for

keypoint estimation is inspired by the recent successes in

the field of semantic segmentation [27, 32, 2]. Here we

adopt the SegNet architecture proposed by Badrinarayanan

et al. [1, 2] with modifications. Initially designed for seg-

mentation, the SegNet framework consists of encoder and

decoder sub-networks – the encoder of the SegNet maps an

input image to lower resolution feature maps, and then the

role of the decoder is to upsample the low resolution en-

coded feature maps to full input resolution for pixel-wise

classification. In particular, the decoder uses pooling in-

dices computed in the max-pooling step of the correspond-

ing encoder to perform non-linear upsampling. This elim-

inates the need for learning to upsample. The upsampled

maps are sparse and are convolved with trainable filters to

produce dense feature map. This architecture has proven to

provide good performance with competitive inference time

and efficient memory usage as compared to other recent se-

mantic segmentation architectures.

The base architecture of RoomNet adopts essentially the

same convolutional encoder-decoder network as in SegNet.

It takes an image of an indoor scene and directly outputs a

set of 2D room layout keypoints to recover the room layout

structure. Each keypoint ground truth is represented by a

2D Gaussian heatmap centered at the true keypoint location

as one of the channels in the output layer.1 The encoder-

decoder architecture processes the information flow through

bottleneck layers, enforcing it to implicitly model the rela-

1We color-code and visualize multiple keypoint heatmaps in a single

2D image in Figure 3, Figure 5 and the rest of the paper.
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Figure 3. An illustration of the RoomNet base architecture. A decoder upsamples its input using the transferred pooling indices from

its encoder to produce sparse feature maps followed by a several convolutional layers with trainable filter banks to densify the feature

responses. The final decoder output keypoint heatmaps are fed to a regressor with Euclidean losses. A side head with 3 fully-connected

layers is attached to the bottleneck layer and used to train/predict the room type class label, which is then used to select the associated set

of keypoint heatmaps. The full model of RoomNet with recurrent encoder-decoder (center dashed line block) further performs keypoint

refinement as shown in Figure 4 (b) and 5.

tionship among the keypoints that encode the 2D structure

of the room layout.

The decoder of the RoomNet upsamples the feature

maps from the bottleneck layer with spatial dimension 10

× 10 to 40 × 40 instead of the full resolution 320 × 320

as shown in Figure 3. This is because we empirically

found that using the proposed 2D keypoint-based represen-

tation can already model the room layout effectively at 40

× 40 scale (results are similar as compared to training de-

coder sub-network at full resolution). Using this “trimmed”

decoder sub-network also significantly reduces the mem-

ory/time cost during both training and testing due to the

high computation cost of convolution at higher resolutions.

Extending to multiple room types The aforementioned

keypoint estimation framework serves as a basic room lay-

out estimation system for one particular room type. To gen-

eralize this approach for multiple room types, one possible

solution is to train one network per class as in the Single

Image 3D Interpreter Network of Wu et al. [45]. However,

in order to maximize efficiency, we design the RoomNet

to be fast from the ground up. Encouraged by the recent

object detection works YOLO [37] and SSD [26] that uti-

lize a single neural network to predict bounding boxes and

class probabilities directly from full images in one evalua-

tion, our proposed RoomNet similarly predicts room layout

keypoints and the associated room type with respect to the

input image in one forward pass. To achieve this goal, we

increase the number of channels in the output layer to match

the total number of keypoints for all 11 room types (total 48

keypoints for 11 room types derived from Figure 2), and we

also add a side head with fully connected layers to the bot-

tleneck layer (the layer where usually used for image clas-

sification) for room type prediction as shown in Figure 3.

We denote a training example as (I,y, t), where y

stands for the ground truth coordinates of the k keypoints

with room type t for the input image I . At training stage,

we use the Euclidean loss as the cost function for layout

keypoint heatmap regression and use the cross-entropy loss

for the room type prediction. Given the keypoint heatmap

regressor ϕ (output from the decoder sub-network), and the

room type classifier ψ (output from the fully-connected side

head layer), we can then optimize the following loss func-

tion:
∑

k

✶
keypoint

k,t ‖Gk(y)− ϕk(I)‖2 − λ
∑

c

✶
room
c,t log(ψc(I)) (1)

where ✶
keypoint

k,t denotes if keypoint k appears in ground truth

room type t, ✶room
c,t denotes if room type index c equals to

the ground truth room type t, G is a Gaussian centered at

y and the weight term λ is set to 5 by cross validation.

The first term in the loss function compares the predicted

heatmaps to ground-truth heatmaps synthesized for each

keypoint separately. The ground truth for each keypoint

heatmap is a 2D Gaussian centered on the true keypoint lo-

cation with standard deviation of 5 pixels as in the common

practice in recent keypoint regression works [43, 35, 4, 45].

The second term in the loss function encourages the side

head fully-connected layers to produce a high confidence

value with respect to the correct room type class label.

Note that one forward pass of the proposed architecture

will produce keypoint heatmaps for all room types. How-

ever, the loss function only penalizes Euclidean regression

error if the keypoint k is present for the ground truth room
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type t in the current input image I , effectively using the

predicted room type indices to select the corresponding set

of keypoint heatmaps to update the regressor. The same

strategy applies at the test stage i.e. the predicted room type

is used to select the corresponding set of keypoint heatmaps

in the final output.

RoomNet extension for keypoint refinement Recurrent

neural networks (RNNs) and its variant Long Short-Term

Memory (LSTM) [17] have proven to be extremely effec-

tive models when dealing with sequential data. Since then,

researchers have been exploring the use of recurrent struc-

tures for static input format as well, such as recurrent con-

volutional layers [24] and convLSTM layers [48].

Recently, more sophisticated iterative/recurrent architec-

tures have been proposed for 2D static input, such as FCN

with CRF-RNN [52], iterative error feedback networks [4],

recurrent CNNs [3], stacked encoder-decoder [31], and re-

current encoder-decoder networks [34, 22]. These evidence

show that adopting the “time series” concept when model-

ing a static input can also significantly improve the ability

of the network to integrate contextual information and to

reduce prediction error.

Motivated by the aforementioned successes, we ex-

tend our base RoomNet architecture by making the central

encoder-decoder component (see center dashed line block

in Figure 3) recurrent. Specifically, we propose a mem-

ory augmented recurrent encoder-decoder (MRED) struc-

ture (see Figure 4 (b)) whose goal is to mimic the behavior

of a typical recurrent neural network (Figure 4 (a)) in order

to refine the predicted keypoint heatmaps over “time” – the

artificial time steps created by the recurrent structure.

Each layer in this MRED structure shares the same

weight matrices through different time steps that convolve

(denoted as ∗ symbol) with the incoming feature maps from

the previous prediction hl(t − 1) at time step t − 1 in the

same layer l and the current input hl−1(t) at time step t in

the previous layer l− 1, generating output at time step t as:

hl(t) =

{

σ(wcurrent
l

∗ hl−1(t) + bl) , t = 0

σ(wcurrent
l

∗ hl−1(t) +w
previous

l
∗ hl(t− 1) + bl) , t > 0

(2)

where w
current
l and w

previous

l are the input and feed-forward

weights for layer l. bl is the bias for layer l. σ is the ReLU

activation function [30].

Figure 4 (b) demonstrates the overall process of the in-

formation flow during forward- and backward- propaga-

tions through depth and time within the recurrent encoder-

decoder structure. The advantages of using the proposed

MRED architecture are: (1) exploiting the contextual and

structural knowledge among keypoints iteratively through

hidden/memory units (that have not been explored in re-

current convolutional encoder-decoder structure) and (2)

weight sharing of the convolutional layers in the recurrent

encoder-decoder, resulting in a much deeper network with a
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Figure 4. Illustration of unrolled (3 iterations) version of (a) a

RNN and (b) the proposed memory augmented recurrent encoder-

decoder architecture that mimics the behavior of a RNN but which

is designed for a static input. Both structures have hidden units

to store previous activations that help the inference at the current

time step.
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Figure 5. Room layout keypoint estimation from a single image (a)

without refinement and (b) with refinement. Keypoint heatmaps

from multiple channels are color-coded and shown in a single 2D

image for visualization purposes. The keypoint refinement step

produces more concentrated and cleaner heatmaps and removes

some false positives.

fixed number of parameters. After refinement, the heatmaps

of keypoints are much cleaner as shown in Figure 5. It is

also interesting to observe the mistakes made early on and

corrected later by the network (see third and fourth columns

in Figure 5). We analyze the performance with and without

the keypoint refinement step in Section 3.4, and we also

evaluate different encoder-decoder variants in Section 4.

Deep supervision through time When applying stacked,

iterative, or recurrent convolutional structures, each layer

in the network receives gradients across more layers or/and

time steps, resulting in models that are much harder to train.

For instance, the iterative error feedback network [4] re-
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quires multi-stage training and the stacked encoder-decoder

structure in [31] uses intermediate supervision at the end of

each encoder-decoder even when batch normalization [18]

is used. Following the practices in [23, 42], we extend the

idea by injecting supervision at the end of each time step.

The same loss function L is applied to all the time steps as

demonstrated in Figure 6. Section 3.4 and Table 5 provide

details of the analysis and effect of the deep supervision

through time.

3. Experiments

3.1. Datasets

We evaluate the proposed RoomNet framework on two

challenging benchmark datasets: Hedau [15] dataset and

Large-scale Scene Understanding Challenge (LSUN) room

layout dataset [50]. The Hedau dataset contains 209 train-

ing, 53 validation, and 105 test images that are collected

from the web and from LabelMe [39]. The LSUN dataset

consists of 4000 training, 394 validation, and 1000 test im-

ages that are sampled from SUN database [47]. We fol-

low the same experimental setup as Dasgupta et al. [7]. We

rescale all input images to 320 × 320 pixels and train our

network from scratch on the LSUN training set only. All

experimental results are computed using the LSUN room

layout challenge toolkit [50] on the original image scales.

3.2. Implementation details

The input to the network is an RGB image of resolu-

tion 320 × 320 and the output is the room layout keypoint

heatmaps of resolution 40 × 40 with an associated room

type class label. We apply the backpropagation through

time (BPTT) algorithm to train the models with batch size

20 SGD, 0.5 dropout rate, 0.9 momentum, and 0.0005

weight decay. Initial learning rate is 0.00001 and decreased

by a factor of 5 twice at epoch 150 and 200, respectively.

All variants use the same scheme with 225 total epochs.

The encoder and decoder weights are all initialized using

the technique described in He et al. [13]. Batch normaliza-

tion [18] and ReLU [30] activation function are also used af-

ter each convolutional layer to improve the training process.

We apply horizontal flipping of input images during training

as the only data augmentation. The system is implemented

in the open source deep learning framework Caffe [20].

In addition, a ground truth keypoint heatmap has zero

value (background) for most of its area and only a small

portion of it corresponds to the Gaussian distribution (fore-

ground associated with actual keypoint location). The out-

put of the network therefore tends to converges to zero due

to the imbalance between foreground and background dis-

tributions. For this reason, it is crucial to weight the gradi-

ents based on the ratio between foreground and background

area for each keypoint heatmap. In our experiment, we

degrade the gradients of background pixels by multiplying

L
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Figure 6. Illustration of the proposed memory augmented recurrent

encoder-decoder architecture (a) without deep supervision through

time and (b) with deep supervision through time.

them with a factor of 0.2 and found this makes training sig-

nificantly more stable.

Training from scratch takes about 40 hours on 4 NVIDIA

Titan X GPUs. One forward inference of the full model

(RoomNet recurrent 3-iter) takes 83 ms on a single GPU.

For generating final test predictions we run both the origi-

nal input and a flipped version of the image through the net-

work and average the heatmaps together (accounting for a

0.12% average improvement on keypoint error and a 0.15%

average improvement on pixel error) as in [31]. The key-

point location is chosen to be the max activating location of

the corresponding heatmap.

3.3. Results

Two standard room layout estimation evaluation metri-

ces are: (1) pixel error: pixelwise error between the pre-

dicted surface labels and ground truth labels, and (2) key-

point error: average Euclidean distance between the pre-

dicted keypoint and annotated keypoint locations, normal-

ized by the image diagonal length.

Accuracy We summarize the performance on both datasets

in Table 1 and 2. The previous best method is the two-step

framework (per pixel CNN-based segmentation with a sep-

arate hypotheses ranking approach) Dasgupta et al. [7]. The

proposed RoomNet significantly improves upon the previ-

ous results on both keypoint error and pixel error, achieving

state-of-the-art performance 2.

To decouple the performance gains due to external data,

we also prepare results of fine-tuning the RoomNet from

a SUN [41] pre-trained model (on semantic segmentation

task) and this achieves 6.09% keypoint error and 9.04%

pixel error as compared of method in [38]3 with 7.95% key-

point error and 9.31% pixel error on LSUN dataset.

Runtime and complexity Efficiency evaluation on the in-

put image size of 320 × 320 is shown in Table 3. Our

full model (RoomNet recurrent 3 iteration) achieves 200×

speedup compares to the previous best method in [7], and

2The side head room type classifier obtained 81.5% accuracy on LSUN

dataset.
3The multi-step method in [38] utilizes additional Hedau+ [28] training

set and fine-tunes from NYUDv2 RGBD [12] pre-trained models.
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Method Pixel Error (%)

Hedau et al. (2009) [15] 21.20

Del Pero et al. (2012) [8] 16.30

Gupta et al. (2010) [11] 16.20

Zhao et al. (2013) [51] 14.50

Ramalingam et al. (2013) [36] 13.34

Mallya et al. (2015) [28] 12.83

Schwing et al. (2012) [40] 12.8

Del Pero et al. (2013) [9] 12.7

Dasgupta et al. (2016) [7] 9.73

RoomNet recurrent 3-iter (ours) 8.36

Table 1. Performance on Hedau dataset [15]. We outperform the

previous best result in [7] using the proposed end-to-end trainable

RoomNet.

Method Keypoint Error (%) Pixel Error (%)

Hedau et al. (2009) [15] 15.48 24.23

Mallya et al. (2015) [28] 11.02 16.71

Dasgupta et al. (2016) [7] 8.20 10.63

RoomNet recurrent 3-iter (ours) 6.30 9.86

Table 2. Performance on LSUN dataset [50]. We outperform the

previous best result in [7] on both keypoint and pixel errors using

the proposed end-to-end trainable RoomNet.

Method FPS

Del Pero et al. (2013) [9] 0.001

Dasgupta et al. (2016) [7] 0.03

RoomNet recurrent 3-iter 5.96

RoomNet recurrent 2-iter 8.89

RoomNet basic 19.26

Table 3. Runtime evaluation on an input size of 320×320. The

proposed RoomNet full model (3-iter) achieves 200× speedup and

the basic RoomNet model achieves 600× speedup than the previ-

ous best method in [7].

the base RoomNet without recurrent structure (RoomNet

basic) achieves 600× speedup. Note that the timing is for

two forward passes as described earlier. Using either one

of the proposed architecture can provide significant infer-

ence time reduction and an improved accuracy as shown in

Table 4.

3.4. Analyzing RoomNet

In this section, we empirically investigate the effect

of each component in the proposed architecture with the

LSUN dataset as our running example.

Recurrent vs direct prediction Table 4 shows the effec-

tiveness of extending the RoomNet-basic architecture to a

memory augmented recurrent encoder-decoder networks.

We observed that more iterations led to lower error rates

Model Keypoint Error (%) Pixel Error (%)

RoomNet basic 6.95 10.46

RoomNet recurrent 2-iter 6.65 9.97

RoomNet recurrent 3-iter 6.30 9.86

Table 4. The impact of keypoint refinement step (see Section 2.2)

using the proposed memory augmented recurrent encoder-decoder

architecture on LSUN dataset [50].

Model Keypoint Error (%) Pixel Error (%)

RoomNet recurrent 2-iter

- w/o deep supervision through time 6.93 10.44

- w/ deep supervision through time 6.65 9.97

RoomNet recurrent 3-iter

- w/o deep supervision through time 6.95 10.47

- w/ deep supervision through time 6.30 9.86

Table 5. The impact of deep supervision through time on LSUN

dataset [50] for RoomNets with 2 and 3 recurrent iterations.

on both keypoint error and pixel error: the RoomNet with

recurrent structure that iteratively regresses to correct key-

point locations achieves 6.3% keypoint error and 9.86 pixel

error as compared to the RoomNet without recurrent struc-

ture which achieves 6.95% keypoint error and 10.46 pixel

error. No further significant performance improvement is

observed after 3 iterations. Notice that the improvement

essentially came from the same parametric capacity within

the networks since the weights of convolutional layers are

shared across iterations.

Importance of deep supervision through time When ap-

plying a recurrent structure with encoder-decoder architec-

tures, each layer in the network receives gradients not only

across depth but also through time steps between the in-

put and the final objective function during training. It is

therefore of interest to investigate the effect of adding aux-

iliary loss functions at different time steps. Table 5 demon-

strates the impact of deep supervision through time using

RoomNet with 2 and 3 recurrent iterations. We observed

immediate reduction in both keypoint error and pixel error

by adding auxiliary losses for both cases. This can be under-

stood by the fact that the learning problem with deep super-

vision is much easier [23, 42] through different time steps.

It is also interesting to point out that RoomNet 3-iter per-

forms worse than RoomNet 2-iter when deep supervision

through time is not applied. This is rectified when deep

supervision through time is applied. Overall, we validate

that with more iterations in the recurrent structure, there is

a stronger need to apply deep supervision through time to

successfully train the proposed architecture.

Qualitative results We show qualitative results of the pro-

posed RoomNet in Figure 7. When the image is clean and
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Input RoomNet Output Ground Truth 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 7. The RoomNet predictions and the corresponding ground truth on LSUN dataset. The proposed architecture takes a RGB input

(first column) and produces room layout keypoint heatmaps (second column). The final keypoints are obtained by extracting the location

with maximum response from the heatmaps. The third and fourth columns show a boxy room layout representation by simply connecting

obtained keypoints in a specific order as in Figure 2. The fifth and sixth columns show the ground truth. Our algorithm is robust to keypoint

occlusion by objects (ex: tables, chairs, beds).

the room layout boundaries/corners are not occluded, our

algorithm can recover the boxy room layout representation

with high accuracy. Our framework is also robust to key-

point occlusion by objects (ex: tables, chairs, beds), demon-

strated in Figure 7 (b)(c)(d)(f). The major failure cases are

when room layout boundaries are barely visible (Figure 8

(a)(c)) or when there are more than one plausible room lay-

out explanations for a given image of a scene (Figure 8

(b)(d)).

4. Discussion

Alternative encoder-decoders We provide an evaluation

of alternative encoder-decoder architectures for the room

layout estimation task including: (a) a vanilla encoder-

decoder (RoomNet basic), (b) stacked encoder-decoder,

(c) stacked encoder-decoder with skip-connections; (d)

encoder-decoder with feedback; (e) memory augmented re-

current encoder-decoder (RoomNet full); (f) memory aug-

mented recurrent encoder-decoder with feedback. Figure 9

illustrates the 6 different network configurations that are

evaluated here. We emphasize that our intention is not to put

each encoder-decoder variant in competition, but to provide

an illustrative comparison of the relative benefits of differ-

ent configurations for the task being addressed here. Ta-

ble 6 shows the performance of different variants on LSUN

dataset.

The comparison of (a) and (b) variants indicates that

stacking encoder-decoder networks can further improve the

performance, as the network is enforced to learn the spatial

structure of the room layout keypoints implicitly by placing

constraints on multiple bottleneck layers.

However, adding skip connections [14, 31] as in (c) does
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Input RoomNet Output Ground Truth 

(a) 

(b) 

(c) 

(d) 

Figure 8. The ambigous cases where the RoomNet predictions do not match the human-annotated ground truth. The first column is the

input image, the second column is predicted keypoint heatmaps, the third and fourth columns are obtained boxy representation, and the

fifth and sixth columns show the ground truth.

(a) (b) (c) (d) (e) (f) 

Direct forward connection 
Forward connection through hidden units 

Figure 9. Illustration of different encoder-decoder architecture

configurations: (a) vanilla encoder-decoder; (b) stacked encoder-

decoder; (c) stacked encoder-decoder with skip-connections; (d)

encoder-decoder with feedback; (e) memory augmented recur-

rent encoder-decoder; (f) memory augmented recurrent encoder-

decoder with feedback.

not improve the performance for this task. This could be

because the size of the training set (thousands) is not as

large as other datasets (millions) that have been evaluated

on, therefore skipping layers is not necessary for the spe-

cific dataset.

Adding a feedback loop, implemented as a concatenation

of input and previous prediction as a new input [44, 33] for

the same encoder-decoder network as in (d) improves the

performance. At each iteration, the network has access to

the thus-far sub-optimal prediction along with the original

input to help inference at the current time step.

Making an encoder-decoder recurrent with memory units

(e) to behave as a RNN obtains the lowest keypoint error

and pixel error (our full RoomNet model). The lateral con-

nections in the recurrent encoder-decoder allow the network

to carry information forward and help prediction at future

time steps. Finally, adding a feedback loop to the memory

Model Keypoint Error (%) Pixel Error (%)

Vanilla enc-dec (RoomNet basic) 6.95 10.46

Stacked enc-dec 6.82 10.31

Stacked enc-dec with skip connect. 7.05 10.48

Enc-dec w/ feedback 6.84 10.10

Recurrent enc-dec (RoomNet full) 6.30 9.86

Recurrent enc-dec w/ feedback 6.37 9.88

Table 6. Evaluation of encoder-decoder (enc-dec) variants on

LSUN dataset [50]. Note that recurrent encoder-decoders use 3

iteration time steps.

augmented recurrent encoder-decoder (f) does not improve

the results. It is possible that using the memory augmented

structure (e) can already store previous hidden state infor-

mation well without feedback. Note that weight matrices of

the encoder-decoder are not shared in configurations (b) and

(c) but shared in configurations (d), (e), and (f), resulting in

more parametrically efficient architectures.

5. Conclusion

We presented a simple and direct formulation of room

layout estimation as a keypoint localization problem. We

showed that our RoomNet architecture and its extensions

can be trained end-to-end to perform accurate and efficient

room layout estimation. The proposed approach stands out

from a large body of work using geometry inspired multi-

step processing pipelines. In the future, we would like to

adopt gating mechanism [21] to allow incoming signal to

alter the state of recurrent units and extend RoomNet to se-

quential data for building room layout maps

4872



References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv:1511.00561, 2015.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for scene

segmentation. TPAMI, 2017.

[3] V. Belagiannis and A. Zisserman. Recurrent human pose

estimation. arXiv:1605.02914, 2016.

[4] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Hu-

man pose estimation with iterative error feedback. In CVPR,

2016.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In ICLR, 2015.

[6] J. M. Coughlan and A. L. Yuille. The manhattan world

assumption: Regularities in scene statistics which enable

bayesian inference. In NIPS, 2000.

[7] S. Dasgupta, K. Fang, K. Chen, and S. Savarese. Delay:

Robust spatial layout estimation for cluttered indoor scenes.

In CVPR, 2016.

[8] L. Del Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hart-

ley, and K. Barnard. Bayesian geometric modeling of indoor

scenes. In CVPR, 2012.

[9] L. Del Pero, J. Bowdish, B. Kermgard, E. Hartley, and

K. Barnard. Understanding bayesian rooms using composite

3d object models. In CVPR, 2013.

[10] D. DeTone, T. Malisiewicz, and A. Rabinovich. Deep image

homography estimation. arXiv:1606.03798, 2016.

[11] A. Gupta, M. Hebert, T. Kanade, and D. M. Blei. Estimat-

ing spatial layout of rooms using volumetric reasoning about

objects and surfaces. In NIPS, 2010.

[12] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organiza-

tion and recognition of indoor scenes from rgb-d images. In

CVPR, 2013.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[15] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009.

[16] V. Hedau, D. Hoiem, and D. Forsyth. Recovering free space

of indoor scenes from a single image. In CVPR, 2012.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 1997.

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015.

[19] H. Izadinia, Q. Shan, and S. M. Seitz. Im2cad. arXiv preprint

arXiv:1608.05137, 2016.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, 2014.

[21] C.-Y. Lee, P. W. Gallagher, and Z. Tu. Generalizing pooling

functions in convolutional neural networks: Mixed, gated,

and tree. In AISTATS, 2016.

[22] C.-Y. Lee and S. Osindero. Recursive recurrent nets with

attention modeling for ocr in the wild. In CVPR, 2016.

[23] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu.

Deeply-supervised nets. In AISTATS, 2015.

[24] M. Liang and X. Hu. Recurrent convolutional neural network

for object recognition. In CVPR, 2015.

[25] C. Liu, A. G. Schwing, K. Kundu, R. Urtasun, and S. Fidler.

Rent3d: Floor-plan priors for monocular layout estimation.

In CVPR, 2015.

[26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. Ssd: Single shot multibox detector. In

ECCV, 2016.

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[28] A. Mallya and S. Lazebnik. Learning informative edge maps

for indoor scene layout prediction. In ICCV, 2015.

[29] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard,

A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,

et al. Learning to navigate in complex environments. In

ICLR, 2017.

[30] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010.

[31] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In ECCV, 2016.

[32] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In ICCV, 2015.

[33] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a feed-

back loop for hand pose estimation. In ICCV, 2015.

[34] X. Peng, R. S. Feris, X. Wang, and D. N. Metaxas. A recur-

rent encoder-decoder network for sequential face alignment.

In ECCV, 2016.

[35] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets

for human pose estimation in videos. In ICCV, 2015.

[36] S. Ramalingam, J. K. Pillai, A. Jain, and Y. Taguchi. Manhat-

tan junction catalogue for spatial reasoning of indoor scenes.

In CVPR, 2013.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2016.

[38] Y. Ren, C. Chen, S. Li, and C.-C. J. Kuo. A coarse-to-fine

indoor layout estimation (cfile) method. In ACCV, 2016.

[39] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.

Labelme: a database and web-based tool for image annota-

tion. IJCV, 2008.

[40] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Ef-

ficient structured prediction for 3d indoor scene understand-

ing. In CVPR, 2012.

[41] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In CVPR, 2015.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

[43] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint train-

ing of a convolutional network and a graphical model for

human pose estimation. In NIPS, 2014.

[44] Z. Tu. Auto-context and its application to high-level vision

tasks. In CVPR, 2008.

4873



[45] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Tor-

ralba, and W. T. Freeman. Single image 3d interpreter net-

work. In ECCV, 2016.

[46] J. Xiao and Y. Furukawa. Reconstructing the worlds muse-

ums. IJCV, 2014.

[47] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.

Sun database: Large-scale scene recognition from abbey to

zoo. In CVPR, 2010.

[48] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,

and W.-c. Woo. Convolutional lstm network: A machine

learning approach for precipitation nowcasting. In NIPS,

2015.

[49] J. Zhang, C. Kan, A. G. Schwing, and R. Urtasun. Estimat-

ing the 3d layout of indoor scenes and its clutter from depth

sensors. In ICCV, 2013.

[50] Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, and J. Xiao. Large-

scale scene understanding challenge: Room layout estima-

tion, 2016.

[51] Y. Zhao and S.-C. Zhu. Scene parsing by integrating func-

tion, geometry and appearance models. In CVPR, 2013.

[52] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional ran-

dom fields as recurrent neural networks. In CVPR, 2015.

4874


