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Abstract

This paper addresses the problem of building a spatio-

temporal model of the world from a stream of time-stamped

data. Unlike traditional models for simultaneous localiza-

tion and mapping (SLAM) and structure-from-motion (SfM)

which focus on recovering a single rigid 3D model, we

tackle the problem of mapping scenes in which dynamic

components appear, move and disappear independently of

each other over time. We introduce a simple generative

probabilistic model of 4D structure which specifies location,

spatial and temporal extent of rigid surface patches by lo-

cal Gaussian mixtures. We fit this model to a time-stamped

stream of input data using expectation-maximization to es-

timate the model structure parameters (mapping) and the

alignment of the input data to the model (localization).

By explicitly representing the temporal extent and observ-

ability of surfaces in a scene, our method yields superior

localization and reconstruction relative to baselines that

assume a static 3D scene. We carry out experiments on

both synthetic RGB-D data streams as well as challenging

real-world datasets, tracking scene dynamics in a human

workspace over the course of several weeks.

1. Introduction

A strategic question for scene understanding is how to

leverage large repositories of images, video and other sen-

sor data acquired over an extended period of time in order

to analyze the content of a particular image. For static rigid

scenes, a classic approach is to use visual SLAM, structure-

from-motion, and multi-view stereo techniques to build up

an explicit model of the scene geometry and appearance.

These methods are well developed and have been scaled up

to increasingly large problems in modeling outdoor and in-

door scenes (see e.g., [1, 32, 10, 20, 9, 3]).

Such a geometric approach to scene understanding can

make strong predictions about a novel test image includ-

ing the camera pose (via feature matching and camera lo-

calization) and the appearance of points or surface patches

projected into the image. However, reconstruction-based

analysis typically neglects dynamic objects that change over

Figure 1. Raw measurements (pointclouds) captured at different

times are aligned and probabilistically merged into a single 4D

model that describes the spatio-temporal geometry of the scene.

Model fitting reasons about occlusion, inferring complete surfaces

even when they may not have been occluded at some times. The

resulting integrated space-time map supports further analysis such

as change detection and segmentation of dynamic objects.

time and are treated as outliers with respect to the esti-

mation of a single rigid scene model. This problem be-

comes more acute as data is integrated over longer periods

of time, during which an increasing proportion of objects in

the scene may move non-rigidly. For example, people move

on the time-scale of seconds while furnishings may shift on

the time-scale of days and architecture and landscapes over

years.

In this paper, we investigate how the scope of such tech-

niques can be extended by registering observations to a 4D

reconstruction that explicitly represents geometric changes

over time. We focus specifically on space-time mapping

of indoor scenes where RGB-D sensors provide streams of

high-quality geometric data and odometry over short time

intervals and limited fields of view, but data acquired, e.g.

on different days, is inconsistent due to changes in the

scene. The key inferential challenge is thus distinguish-

ing sensor noise and reconstruction errors from genuine

changes in the scene geometry.

We describe a simple generative probabilistic model for

4D structure in which surface patches, specified by a spa-

tial location, orientation and temporal extent, generate point

and normal observations over time. These observations are
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only recorded by the sensor if they fall within the spatio-

temporal field of view of a measurement and are not oc-

cluded by other surfaces patches which exist at that same

time. We assume the scene is static and rigid for the dura-

tion of each measurement and leave the problem of spatio-

temporal grouping of surface patches into object tracks

across time points as a post-process. Fitting the model to

a time-stamped stream of measurements yields an estimate

of the 4D scene structure as well as the location of the cam-

era at each measurement time point. We term this problem

Space-Time SLAM since it generalizes the standard offline

RGB-D SLAM problem with a 4th temporal dimension1.

The chief merits of this approach are in (1) providing ro-

bust pose estimation in the presence of changing scenes and

(2) producing scene reconstructions that more accurately re-

flect the scene geometry at any given time point. In par-

ticular, by reasoning about occlusion, the model is capable

of inferring amodal completion of surfaces which may be

hidden by an object during some times but later revealed

when the object moves. We quantify these benefits rela-

tive to baselines that lack an explicit temporal model using

a synthetic dataset where ground-truth geometry and pose

are known. We also perform comparisons using challeng-

ing data collected from several indoor workspaces over the

course of several weeks. Finally, we demonstrate the utility

of the recovered 4D model in segmenting dynamic objects

by simply clustering surface patches based on their tempo-

ral extent.

2. Related work

RGB-D SLAM Mapping from images has a long history

in the robotics and computer vision literature with many re-

cent developments motivated by emerging applications in

3D modeling, augmented reality and autonomous vehicles.

Large-scale structure from motion (e.g., [1, 32, 9]) when

combined with mult-view stereo (e.g., [10]) can yield rich

geometric models but dense correspondence is often diffi-

cult to establish from monocular imagery, particularly for

untextured surfaces common in indoor scenes.

The availability of cheap RGB-D sensors has enabled

rapid progress indoor mapping, where active stereo or ToF

provides very dense 3D structure and allows correspon-

dence and pose estimation to be carried out by rigidly align-

ing scene fragments, e.g., using iterative closest point (ICP),

rather than sparse matching and projective structure estima-

tion techniques used in monocular SLAM. Initial work by

Henry et al. [15] demonstrated the value of RGB-D data

in ICP-based pose estimation while the KinectFusion sys-

tem of Richard et al. [29] demonstrated impressive online

reconstruction.

1We assume the temporal coordinate of each measurement is given

while a full generalization of SLAM would also estimate the 6+1 DOF

camera space-time pose

More recent work, such as ElasticFusion [38], has fo-

cused on improving performance of online real-time recon-

struction and odometry by active updating and loop closure.

To improve accuracy and robustness of offline reconstruc-

tions, Choi et al. used stronger priors on reconstructed

geometry while carrying out global pose-graph optimiza-

tion [6]. Recognition of familiar objects has also been in-

tegrated with SLAM-based approaches using prior knowl-

edge of 3D structure [33] and fusing 2D semantic under-

standing with 3D reconstruction [16, 37]

3D Registration A core component of contemporary

SLAM approaches based on LiDAR or RGB-D sensors is

estimating alignments between pointclouds from successive

measurements. A traditional starting point is iterative closet

point (ICP) [4] which refines a rigid alignment minimizing

mean-square inter-point or point-to-surface distance. How-

ever, the RGB-D fragment alignment problem differs some-

what from the classic problem of aligning range scans (e.g.,

[2]) due to the narrow field of view which often lacks dis-

tinguishing geometric features.

Our approach is based on a family of methods that

model geometry in terms of probability densities (rather

than points, meshes or signed distance functions). Ho-

raud et al. introduced expectation conditional maximiza-

tion (ECM) method for rigid point registration [17]. This

formulation is appealing as it avoids explicit point corre-

spondences and naturally generalizes to multi-way registra-

tion [8] and non-rigid deformation models [27, 12]. Our

model builds on the work of Evangelidis et al., which uses

an ECM-based formulation to align multiple point sets to

a single underlying consensus model [8]. We augment this

density model with a temporal dimension, occlusion rea-

soning, and a richer parameterization of local mixture com-

ponents.

Dynamic Scenes and 4D maps Traditional SfM has pri-

marily focused on recovering structure of a single rigid

scene modeled by sparse keypoints. For dynamic scenes

where correspondence is available in the form of extended

keypoint tracks, multi-body SfM provides an approach to

grouping tracks into subsets, each of which moves rigidly

(e.g., [7, 40]) while non-rigid SfM (e.g., [5]) addresses re-

covery of non-rigid surfaces from such tracks. When corre-

spondence is not available but smooth surfaces are densely

sampled in space-time, surface tracking approaches can be

used to fuse observations (e.g., [26, 28]). Here we focus

on scenarios where the temporal sampling is too sparse to

allow for effective surface or feature tracking.

Related work on the problem of geometry change de-

tection from sparse imagery was investigated by [34] and

[36], who detect geometric changes relative to an existing

model using voxel-based appearance consistency to drive

model updates. Change detection with viewability and oc-
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Figure 2. Observations are explained by a collection of surface patches that exist for some temporal extent and emit point observations into

some unknown local coordinate system. We use a probabilistic mixture model (right) that represents parameters for K patches producing

Nt point observations at each of T time points. The prior probability of a patch emitting an observation at a given time πt depends on

whether the patch exists etk and is visible vtk, which in turn depends on the space-time geometry of the scene (ξ
k
,µ

k
,νk).

clusion was also explored by [11] for aligning observations

to a construction job site plan. The work of [24] focuses on

modeling dynamic appearance by grouping scene feature

points into rectangular planes with an estimated temporal

extent that captures, e.g., changing images on billboards.

Finally, [23] used SfM to estimate geometry and warp im-

ages into a common viewpoint, enabling synthesis of time-

lapse videos from unstructured photo collections. Closest

in spirit to our approach is the work of Schindler and Del-

laert [31] on “4D Cities”, which utilizes bottom-up heuris-

tics for grouping point observations from an SfM pipeline

into building hypotheses and a probabilistic temporal model

to infer the time interval during which buildings exist.

3. Space-time model fitting

We now describe our model for 4D geometry as a col-

lection of surface patches with specified location, spatial

and temporal extents. The model is fit to 3D point obser-

vations using a generative probabilistic approach inspired

by the joint registration methods of Horaud et al. [17] and

Georgios et al. [8].

3.1. Notation and Model Formulation

Surface patches We model the scene as a collection of

K surface patches. Each patch has a mean parameter

(µk,νk) ∈ R
3 × S

2 that describes the location and orienta-

tion. The spatial extent and roughness of the surface patch is

described by corresponding variance parameters (Σk, τk).
Additionally, each patch k has a specific temporal extent

during which it exists in the scene specified by a time inter-

val [ak, bk]. We denote the collection of shape parameters

by X = {(µ1,Σ1,ν1, τ1), . . .} and temporal parameters

by ξ = {(a1, b1), (a2, b2), . . .}. We use the binary vector

etk ∈ {0, 1} to indicate if patch k exists at time t so that

etk = 1 iff t ∈ [ak, bk].

Observations The input data stream consists of obser-

vations of scene structure Y = {y1 . . .yT } at T discrete

times. The observation at time t consists of Nt points with

surface normals yt = {(lit,nit) ∈ R
3 × S

2}1≤i≤Nt
where

lit and nit to denote the location and surface normal asso-

ciated with observation yit. In our experiments this data

comes from a scan acquired by an RGB-D sensor but could

come from other sources (e.g., ToF laser scanner or SfM

reconstruction).

Pose and Occlusion Individual observations are assumed

to be metric but are recorded in an arbitrary local coordi-

nate system specified by unknown pose parameters Θ =
{Rt, tt}1≤t≤T which vary across time. We estimate a rigid

transformation φt mapping each observation into a single

global coordinate system. φt(lit,nit) = (Rtlit+tt,Rtnit).
A patch k may not be visible at time t due to the sensor

placement relative to the scene structure. We use the vari-

able vtk ∈ {0, 1} indicate whether patch k is visible at time

t which depends on the 4D model X and sensor parameters.

Generating Observations from Patches To generate ob-

served data at time t from scene (X , ξ) with a specified

camera placement, we select a surface patch k at random

from those patches present at time t. If the patch is vis-

ible from the sensor position, then we sample a point lo-

cation and normal from the patch density with parameters

µk,Σk. To allow for noise in the observations, we also in-

clude a background noise component whose distribution is

uniform over the volume of a bounding box enclosing the

scene model.

For a given time t, the probability of generating an obser-

vation y in local coordinates is modeled as a probabilistic

mixture:

P (yt|X ,Θ, ξ) =
K
∑

k=0

P (φt(yt)|Xk)P (k|et,vt) (1)

The probability of generating an observation from patch k

is given by:

πt(k) = P (k|et,vt) =

{

1
Zt

p0 k = 0
1
Zt

pketkvtk k ∈ {1 . . .K}
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where pk is the time-independent intensity with which a

patch k generates observations, p0 is the background noise

intensity, and Zt is a normalizing constant.

Observations associated with a given patch are trans-

formed into the global coordinate frame with location mod-

eled by a Gaussian density and unit surface normal modeled

by a von Mises Fisher (vMF) density

P (φt(l,n)|Xk) = P (φt(l)|µk,Σk)P (φt(n)|νk, τk)

P (φt(l)|µk,Σk) =
1

Z(Σk)
exp(−

1

2
||(Rtl+ tt)− µk||

2
Σk

)

P (φt(n)|νk, τk) =
1

Z(τt)
exp(τkn

TRT
t νk)

Background noise points (k = 0) are drawn from a uniform

distribution over the observation volume y ∼ U(V × S
2).

3.2. Computing Visibility

To assign observations to surface patches, we need to

compute visibility variables vtk that indicate if patch k is

visible at time t. In order for a patch to be observed it must

fall within the field of view of the sensor and must not be

occluded by any other surface that existed at the observation

time. For each time, we have one or more sets of camera

parameters associated with gathering observations yt which

we write as {Ctu}1≤u≤Ft
where Ft is the number of RGB-

D frames used to build the observation.

Let φ−1
t be the transformation specified by parameters

Θt that transforms the global model X into the local coor-

dinate frame used by observations at time t. We define the

indicator function FOV (φ−1
t (µk,νk),Ctu) to be 1 if patch

k was in the field of view of camera Ctu.

To estimate occlusion, we use the hidden point re-

moval algorithm introduced in [30] applied to the union

of the observed points yt and the set of transformed patch

locations φ−1
t (X ) which are in the field of view. Let

OCL(φ−1
t (µk), yt,Ctu) be 1 if φ−1

t (µk) is occluded by

some part of yt from camera viewpoint Ctu and 0 other-

wise.

Combining these two components, we estimate that a

patch k should be visible at time t if it is within the field

of view and unoccluded in at least one camera view used to

construct observation yt.

vtk =











1
∃u : [FOV (φ−1

t (µk,νk),Ctu) = 1] ∧

[OCL(φ−1
t (µk), yt,Ctu) = 0]

0 otherwise

3.3. Model Parameter Estimation

To fit the model, we maximize the log-likelihood of ob-

serving Y given transformation parameters Θ and space-

time geometry {X , ξ} assuming independent point obser-

vations:

max
X ,Θ,ξ

log
∏

it

P (yit|X ,Θ, ξ)P (X ,Θ, ξ)

We assume an uninformative priors on X and Θ and a prior

on ξ that favors longer intervals (see below for details).

Let zit be a latent variable that denotes mixture assign-

ments with zit = k when yit is a point from patch k. We

use expectation conditional maximization (ECM), which al-

ternates between estimating expectations of Z and condi-

tionally optimizing subsets of model parameters [25]. For a

fixed setting of model parameters, (X ,Θ,ξ), the E-step es-

timates the probability that each observation yit came from

surface patch k.

αitk = P (zit = k | X ,Θ, ξ)

During the M-step we maximize the expected likelihood of

subsets of parameters sequentially conditioned on the other

parameters. Letting s denote the iteration, we first update

the alignment parameters, followed by the scene geometry

and finally the temporal extent.

Θs+1 = argmax
Θ

EZ

[

log
(

P (Y,Z;X s,Θ, ξs)
)]

X s+1 = argmax
X

EZ

[

log
(

P (Y,Z;X ,Θs+1, ξs)
)]

ξs+1 = argmax
V

EZ

[

log
(

P (Y,Z;X s+1,Θs+1, ξ)
)]

We provide details for each parameter update below.

Patch Assignment Given the aligning transformation

φt(·) for time t along with geometric, existence and visi-

bility terms for K patches, we compute the posterior prob-

ability that an observation is generated by a particular patch

as:

αitk =
P (φt(yti)|Xk)πt(k)

∑K
j=1 P (φt(yti)|Xj)πt(k) + β

where πt(k) is the mixing weight of a patch k at time t, β is

the weight of the background/outlier cluster which depends

on p0, and we set αit0 ∝ β (see [17] for details).

Alignment Parameters Given the cluster assignment ex-

pectations for each observation, we would like to update

the estimated transformation parameters Rt and tt for t-th

dataset. This amounts to a weighted least-squares problem

with orthogonality constraint on Rt. Following [17], we

simplify this expression by first constructing a single “vir-

tual point” utk per mixture component that integrates the

interaction of all observed points with the patch.

utk = wtk

Nt
∑

i=1

αitklti wtk =

(

Nt
∑

i=1

αitk

)−1
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The optimal transformation can then be expressed as a

weighted rigid alignment problem:

argmin
R,t

1

2

K
∑

k=1

wtk||Ruk + t− µk||
2
Σk

When Σk is isotropic this can be solved efficiently using

SVD (e.g., [18]). This provides a good initialization that

can be further refined by projected gradient for anisotropic

case and the additional linear term from the density over

surface normals.

Spatial Patch Parameters Given the transformation pa-

rameters, we update mean and covariance for each Gaussian

mixture component.

µk =

∑T
t=1

∑Nt

i=1 αitkφt(lit)
∑T

t=1

∑Nt

i=1 αitk

Σk =

∑T
t=1

∑Nt

i=1αitk

(

φt(lit)−µk

)(

φt(lit)−µk

)⊺

∑T
t=1

∑Nt

i=1 αitk

+ ǫvI

The variable ǫv is used to prevent the variance of a given

cluster from collapsing (ǫv = 0.16 in our experiments). The

updates for vMF mean and concentration parameters for

the surface normal follow a similar form [13]. In practice,

we found that constraining the covariance to be isotropic

works well for large K and yields more efficient optimiza-

tion. Patch intensity priors pk are estimated as the assign-

ment proportion
∑

it αitk scaled by the proportion of ob-

servations in which the patch was visible and existed.

Temporal Patch Parameters To reliably estimate when

each patch is present, we must make some stronger as-

sumptions about the prior distribution over ek. We thus as-

sume that a given patch exists for a single temporal interval

[ak, bk] during which the probability of the patch emitting

an observation is uniform.

P (etk = 1) =

{

γab t ∈ [ak, bk]

ǫ otherwise

where ǫ is a small constant and γ is chosen so the distribu-

tion integrates to 1 over the total observation interval T .

γab =
1− ǫ(T − (b− a))

(b− a)
,

To estimate ak, bk we maximize the expected posterior

probability over times where the cluster was visible:

[ak, bk] = argmax
a,b

∑

t∈[a,b]

vtk

[

Nt
∑

i=1

αitk log(γab)

]

+

∑

t/∈[a,b]

vtk

[

Nt
∑

i

αitk log(ǫ)

]

+ logP s(a, b)

where logP s(a, b) = avg(α··k) log(b − a + ǫp) is a prior

that encourages existence of patches for longer time spans.

The prior is scaled using average value of α··k. In our ex-

periments we use 0.05 for ǫ and 0.01 for ǫp.

Extension to Non-parametric Mixtures In addition to

standard mixture model fitting with fixed number of clus-

ters K, we also considered a variant of our model us-

ing a Dirichlet Process (DP) prior over the cluster alloca-

tions [35, 22, 21]. This is appealing since it allows the

model to naturally grow in complexity as more observa-

tions become available. We use collapsed Gibbs sampling

to explore the space of the number of mixture components

K and weights π. Rather than performing full Bayesian

inference, we interleaved rounds of sampling with condi-

tional maximization to optimize alignment parameters. We

observed empirically that starting from an initial state with

few mixture components and refining the alignment while

non-parametrically growing the number of components of-

ten resulted in better registration results (see experiments).

We presume this may be because the early energy landscape

with few mixture components has fewer local minima.

4. Space-Time Datasets

While there are a large number of published RGB-D and

3D scene datasets (e.g., [39]), previous work has focused on

static scenes described at a single point in time (or collected

at high-frame rate over a short interval). To validate our ap-

proach with more compelling temporally varying elements,

we developed datasets based on both synthetic scenes with

simulated sensors and real scans of human workspaces

Synthetic Data Synthetic data is easy to generate and

provides perfect ground-truth which is useful for evaluating

reconstruction accuracy. To emulate the noise characteris-

tics of real scanning, we start from a 3D model and simulate

acquisition of RGB-D data from a moving sensor and pass

it through a standard SLAM pipeline to produce a 3D point

cloud which constitutes observation at a single time point.

We use 3D room models provided by [14] and popu-

late them with IKEA furniture models. Each item of fur-

niture is present for randomly specified interval of time. We

generate a virtual sensor trajectory by selecting several key

points manually and synthesize a smooth path connecting

the key points. Given a trajectory we render a sequence

of RGB-D frames which are then fed into the ElasticFu-

sion [38] pipeline to produce a simulated observed point-

cloud. Back-projecting keypoints from the observation pro-

vides a ground-truth alignment with the world coordinate

system and mapping between the simulated observed points

and the object ids in the scene model. We generate 8 time

point per scene producing scans with a million points (sum-

marized in Table 1).
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(a) Observations (b) Aligned observations from the same time point (c) Observations from all time points

Figure 3. 3D model pieces with 4 different types (a) for “Laboratory” dataset. (b) and (c) shows merged model with one time or space.

Synthetic Data

Name # regions # times # frames # 3D points

Bedroom 1 8 3.2k 1.2M
Bathroom 1 8 4k 1.5M

Real Data

Name # regions # times # frames # 3D points

Laboratory 4 8 3k 1M
Copier room 1 7 1.5k 0.6M
Kitchen 1 5 1.5k 0.6M

Table 1. Summary statistics of test datasets.

Real Data We also collected scans of 3 different indoor

scenes (Laboratory, Kitchen, and Copier room) once a day

over several weeks using a Kinect sensor. We chose these

scenes since they contained a number of objects that nat-

urally move from one day to the next by people passing

through the room. To provide the best quality and con-

sistency in scanning, we used a custom motorized tripod

fixture to automated the scan path. For our “Laboratory”

dataset, we collected 4 scans per time point in order to

cover different overlapping parts of a larger room (see Fig-

ure 3). Each scan is processed individually using Elastic-

Fusion [38] to produce a point cloud. Dataset statistics are

summarized in Table 1.

To establish a high quality ground-truth alignment, we

exploit the presence of the floor which is visible in all our

recovered scans. We first segment the floor based on color

and surface normal from each scan. We then constrain the

search over alignments to only consider translations in the

plane of the floor and rotations around the z axis perpundic-

ular to the floor. This pre-process greatly reduces the num-

ber local minima and, guided by a few hand-clicked corre-

spondences, is sufficient for finding high quality alignments

which can be further refined to improve accuracy.

Once the scans are aligned into a common coordinate

frame, we segment and annotate the points in each scan

with object instance labels such as “floor”, “desk”, “chair”,

etc. These instance labels are shared across time points, al-

lowing us to identify observations at different times which

correspond to the same underlying surface and provide a

basis for benchmarking the ability of our model to correctly

identify spatio-temporal extents (see Figure 6).

5. Experimental Evaluation

Figure 3 shows qualitative results of running our joint

registration and reconstruction model on the Laboratory

dataset depicting (a) individual scans, (b) reconstruction of

a single time point consisting of multiple overlapping scans,

and (c) all time point reconstructions superimposed in a sin-

gle global coordinate system. Colors (b) and (c) indicate

points belonging to different scans.

We quantitatively evaluate the method in terms of the

accuracy of reconstruction and localization (alignment). In

particular, we show that the existence and visibility terms

are valuable even when aligning partially overlapping scans

for static scenes. We then evaluate the accuracy of estimated

existence time intervals. Lastly, we demonstrate the utility

of this 4D representation in segmenting out dynamic objects

in a scene.

Spatial reconstruction accuracy To evaluate metric re-

construction quality, we compare our method to two base-

lines which don’t model temporal change. First, we con-

sider running the ElasticFusion pipeline applied to data con-

catenated from all time points (EF3D). Second, we consider

running ElasticFusion independently at each time point and

subsequently align reconstructions from different times us-

ing the method of Evangelidis et al. [8] (EF4D). EF3D pro-

duces a single 3D reconstruction which is compared to all

time points while EF4D and our model produce 4D recon-

structions which change over time. We evaluate precision

and recall (of those model points that were visible from the

sensor) w.r.t. ground-truth surface across all time points for

the synthetic 4D benchmark using a distance threshold of

1cm.

As Table 2 shows, the precision of a single 3D recon-

struction (EF3D) is lower than the 4D models (EF4D,ours).

Our model further improves precision over simply aligning

individual time points by providing more robustness to dy-

namic objects. Our method also shows a substantial boost

in recall over both baselines due to the ability of the model

to fill in occluded regions with observations from a different

time.

Temporal reconstruction accuracy We use the synthetic

dataset for which the ground-truth duration of existence of

each object is known and evaluate the accuracy ( Table 3).

Since our model predicts existence of patches, we establish

a correspondence, assigning points of each ground-truth ob-

ject to a mixture component in our estimated model. This

assignment imposes an upper-bound on the accuracy (i.e.,

since a mixture component may span two different objects

whose temporal extent differs). We find that most incorrect
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Figure 4. Registration accuracy of our method (ST-SLAM) com-

pared to (ICP) [4] and joint registration (JRMPC) [8] measured

by average closest point distance. Error axis is on a logarithmic

scale. Explicitly inferring visibility improves robustness to par-

tial overlap, as does using non-parametricly growing the number

of mixture components during optimization (ST-SLAM+DP). Er-

ror in estimated rigid transformation parameters behaves similarly

(see supplement).

predictions come from near such edges.

Density visualization Since our reconstruction is genera-

tive, we can also visualize it as a spatio-temporal probability

density. In Figure 5, we display the estimated density of ob-

servations marginalized over all time as well as conditioned

on specific time points alongside the corresponding scene.

To aid visualization, we exclude the background scene com-

ponent and rescale the colormap. As the figure shows, the

estimated space-time density tracks the arrangement of fur-

niture within the room.

Robustness on partially overlapping observations Pre-

vious joint registration methods [4, 19, 8] that align multiple

pointclouds into a single consensus model often rely on a

high degree of overlap between scans in order to achieve

correct alignment. Since our approach explicitly models

which surface patches are visible in a given scan, it can han-

dle larger non-overlapping regions by allocating additional

mixture components and explaining away the lack of data

generated from those components in scans where they were

not visible.

To demonstrate the value of estimating visibility, we

carry out an experiment on the ground-truth Laboratory re-

construction by splitting a single time point into two pieces

with controlled degree of overlap, ranging from 50% to

90%, apply a random rigid transformation and add Gaus-

sian noise to point locations. We measure difference be-

tween the known transformation and the estimate, as well

as mean distance between corresponding points, averaged

over 10 trials.

As Figure 4 displays, all methods have higher registra-

tion error as the degree of overlap decreases. Since ICP [4]

and the joint registration method JRMPC [8] do not infer

which consensus points/mixtures are visible in a given ob-

servation, their performance degrades more rapidly as over-

lap decreases. Our model with a fixed number of mixtures

(ST-SLAM) is more robust and using the DP mixture allo-

EF3D EF4D Our method (STSLAM)

Precision 71.3% 92.7% 93.3%

Recall 90.4% 90.0% 98.5%

Table 2. Evaluation for reconstruction quality. Baselines EF3D

merges all observations in a single 3D model; EF4D builds a sepa-

rate model for each time point and then registers them. Our model

of temporal extent and visibility improves both precision and re-

call. See Section 5 for details.

Baseline STSLAM STSLAM-DP Upper-bound

Bedroom 83.2% 90.8% 90.9% 95.5%

Bedroom (NS) 41.2% 74.3% 74.8% 95.4%

Bathroom 69.7% 78.0% 77.7% 95.0%

Bathroom (NS) 31.8% 62.2% 62.7% 99.9%

Table 3. Temporal reconstruction accuracy. Baseline assumes ev-

ery object exists for all time points. Non-static (NS) evaluation

excludes the static background component. Upper-bound indi-

cates maximal achievable accuracy given the spatial quantization

imposed by cluster assignment.

cation (ST-SLAM+DP) yields more robust results, presum-

ably due to annealing effects of starting with a small number

of mixture components.

RGB Patch assignment

K=160 K=800 K=3000

Ground Truth Segmentation

K=160 K=800 K=3000

Aligned Observations

Space-Time Segmentation (K=3000)

t=1 t=2 t=3 t=4 t=5 t=6 t=7

Figure 6. Segmentation results on the “Copier room” dataset show-

ing grouping of surface patches with similar temporal extent. Seg-

mentation accuracy depends on the number of surface patches

(top). Segmentation across all space-time observations using the

optimal cluster size discovers static and dynamic scene compo-

nents (bottom).

Segmentation of dynamic objects The space-time ge-

ometry model provides a natural basis for performing ad-
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(a) Marginal density P (y) (b) P (y|t = 1) (c) P (y|t = 2) (d) P (y|t = 3) (d) P (y|t = 4)

Figure 5. Visualization of 3D probability density predicted by the fit model. (a) shows density marginalized over time (b) - (e) display

probability density conditioned on different observation times with the static component excluded for clarity.
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Figure 7. We measure the accuracy with which individual patches

constitute an under-segmentation of the objects in the scene (left)

and how well grouping patches by temporal extent recovers object

segments (right) on real datasets “Copier room” and “Kitchen”.

Since the scene is dominated by static structure, we also separately

plot the segmentation accuracy for the non-static components.

ditional inferences about a scene. In particular, the tempo-

ral coherence of a set of surface patches provides a strong

indicator that those patches belong to the same surface.

In Figure 6 we visualize segmentations into objects based

on grouping those patches with a similar estimated tempo-

ral extent. Raw measurements are assigned the segment la-

bel for that cluster with the highest assignment probability

(αitk). As shown in the upper figure panel, the segmenta-

tion accuracy is limited based on the size/number of sur-

face patches fit to the scene. To produce good quality as-

signments we choose a number of mixture components that

yields patches of an average small physical dimension (rel-

ative to the resolution of the raw point observations). The

lower panel of Figure 6 shows such a segmentation with

the static background component in green.

We consider two quantitative measures of segmentation

accuracy. Let U , V , S denote the surface patches, pre-

dicted segments, and ground-truth segments respectively.

We characterize the degree of under-segmentation (i.e., how

often a surface patch spans an object boundary) by the av-

erage percentage of a patch that is completely contained in

some ground-truth segment.

Scoreuseg =
1

Nc

Nc
∑

i=1

max
j

|Ui ∩ Sj |

|Sj |
.

To measure the effectiveness of grouping patches by tem-

poral extent, we compute the IoU of predicted and ground-

truth segments.

Scoreseg =
1

Ns

Ns
∑

i=1

max
j

|Vi ∩ Sj |

|Vi ∪ Sj |

In Figure 7 we plot these scores as a function of the number

of mixture components. As might be expected, the under-

segmentation error decreases rapidly as the number of clus-

ters grow, allowing smaller patches that are less likely to

span an object boundary. However, there is a tradeoff in

segmentation accuracy of dynamic objects as the number

of clusters goes beyond a certain point as the estimates of

temporal extent become increasingly noisy with few obser-

vations per cluster.

6. Conclusion

We present a novel probabilistic formulation of space-

time localization and mapping from RGB-D data streams

which jointly estimates sensor pose and builds an explicit

4D map. We validated this approach on real and syn-

thetic data, showing improved reconstruction and registra-

tion for dynamic scenes and demonstrate unique features of

the model which allow estimation of the temporal extent of

surface patches and segmentation into temporally coherent

objects. In the future we hope to extend this approach to

handle more dynamic and larger-scale scenes, replace our

wide-FoV observations with individual RGB-D frames, and

tackle the problem of inter-frame tracking of moving ob-

jects.
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