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Abstract

Estimating depth from a single RGB image is an ill-

posed and inherently ambiguous problem. State-of-the-art

deep learning methods can now estimate accurate 2D depth

maps, but when the maps are projected into 3D, they lack lo-

cal detail and are often highly distorted. We propose a fast-

to-train two-streamed CNN that predicts depth and depth

gradients, which are then fused together into an accurate

and detailed depth map. We also define a novel set loss over

multiple images; by regularizing the estimation between a

common set of images, the network is less prone to over-

fitting and achieves better accuracy than competing meth-

ods. Experiments on the NYU Depth v2 dataset shows that

our depth predictions are competitive with state-of-the-art

and lead to faithful 3D projections.

1. Introduction

Estimating depth for common indoor scenes from

monocular RGB images has widespread applications in

scene understanding, depth-aware image editing or re-

rendering, 3D modelling, robotics, etc. Given a single RGB

image as input, the goal is to predict a dense depth map for

each pixel. Inferring the underlying depth is an ill-posed

and inherently ambiguous problem. In particular, indoor

scenes have large texture and structural variations, heavy

object occlusions and rich geometric detailing, all of which

contributes to the difficulty of accurate depth estimation.

The use of convolutional neural networks (CNNs) has

greatly improved the accuracy of depth estimation tech-

niques [7, 8, 14, 16, 17, 19, 23, 29]. Rather than coarsely

approximating the depth of large structures such as walls

and ceilings, state-of-the-art networks [7, 16] benefit from

using pre-trained CNNs and can capture fine-scaled items

such as furniture and home accessories. The pinnacle of

success for depth estimation is the ability to generate real-

istic and accurate 3D scene reconstructions from the esti-

mated depths. Faithful reconstructions should be rich with

local structure; detailing becomes especially important in

applications derived from the reconstructions such as ob-

ject recognition and depth-aware image re-rendering and or

editing. Despite the impressive evaluation scores of recent

works [7, 16] however, the estimated depth maps still suffer

from artifacts at finer scales and have unsatisfactory align-

ments between surfaces. These distortions are especially

prominent when projected into 3D (see Figure 1).

Other CNN-based end-to-end applications such as se-

mantic segmentation [4, 21] and normal estimation [1, 7]

face similar challenges of preserving local details. The re-

peated convolution and pooling operations are critical for

capturing the entire image extent, but simultaneously shrink

resolution and degrade the detailing. While up-convolution

and feature map concatenation strategies [6, 16, 21, 22]

have been proposed to improve resolution, output map

boundaries often still fail to align with image boundaries.

As such, optimization measures like bilateral filtering [2] or

CRFs [4] yield further improvements.

It is with the goal of preserving detailing that we mo-

tivate our work on depth estimation. We want to benefit

from the accuracy of CNNs, but avoid the degradation of

resolution and detailing. First, we ensure network accuracy

and generalization capability by introducing a novel set im-

age loss. This loss is defined jointly over multiple images,

where each image is a transformed version of an original

image via standard data augmentation techniques. The set

loss considers not only the accuracy of each transformed

image’s output depth, but also has a regularization term to

minimize prediction differences within the set. Adding this

regularizer greatly improves the depth accuracy and reduces

RMS error by approximately 5%. As similar data augmen-

tation approaches are also used in other end-to-end frame-

works, e.g. for semantic segmentation and normal estima-

tion, we believe that the benefits of the set loss will carry

over to these applications as well.

We capture scene detailing by considering information

contained in depth gradients. We postulate that local struc-

ture can be better encoded with first-order derivative terms

than the absolute depth values. Perceptually, it is sharp
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(c) Eigen et al. [7](a) Ground truth (e) Ours(b) Liu et al. [19] (d) Laina et al. [16]

Figure 1. 3D projects from estimated depth maps of state-of-the-art methods (b-d), along with ground truth (a). Our estimated depth maps(e)

are more accurate than state-of-the-art methods with fine-scaled details. Note that colours values of each depth map are individually scaled.

edges and corners which define an object and make it recog-

nizable, rather than (correct) depth values (compare in Fig-

ure 4). As such, we think it’s better to represent a scene with

both depth and depth gradients, and propose a fast-to-train

two-streamed CNN to regress the depth and depth gradients

(see Figure 2). In addition, we propose two possibilities for

fusing the depth and depth gradients, one via a CNN, to al-

low for end-to-end training, and one via direct optimization.

We summarize our contributions as follows:

• A novel set image loss with a regularizer that min-

imizes differences in estimated depth of related im-

ages; this loss makes better use of augmented data and

promotes stronger network generalization, resulting in

higher estimation accuracy.

• A joint representation of the 2.5D scene with depth

and depth gradients; this representation captures local

structures and fine detailing and is learned with a two-

streamed network.

• Two methods for fusing depth and depth gradients into

a final depth output, one via CNNs for end-to-end

training and one via direct optimization; both methods

yield depth maps which, when projected into 3D, have

less distortion and are richer with structure and object

detailing than competing state-of-the-art.

Representing the scene with with both depth and depth

gradients is redundant, as one can be derived from the other.

We show, however, that this redundancy offers explicit con-

sideration for local detailing that is otherwise lost in the

standard Euclidean loss on depth alone and/or with a simple

consistency constraint in the loss. Our final depth output is

accurate and clean with local detailing, with fewer artifacts

than competing methods when projected into 3D.

2. Related Work

Depth estimation is a rich field of study and we dis-

cuss only the monocular methods. A key strategy in early

works for handling depth ambiguity was to use strong as-

sumptions and prior knowledge. For example, Saxena et

al. [24, 25] devised a multi-scale MRF, but assumed that

all scenes were horizontally aligned with the ground plane.

Hoiem et al. [11], instead of predicting depth explicitly, es-

timated geometric structures for major image regions and

composed simple 3D models to represent the scene.

Once RGB-D data could be collected from laser or

depth cameras on a large scale, it became feasible to apply

data-driven learning-based approaches [13, 20, 24, 25, 30].

Karsch et al. [13] proposed a non-parametric method to

transfer depth from aligned exemplars and formulated depth

estimation as an optimization problem with smoothness

constraints. Liu et al. [20] modelled image regions as super-

pixels and used discrete-continuous optimization for depth

estimation and later integrated mid-level region features and

global scene layout [30]. Others tried to improve depth es-

timations by exploiting semantic labels [9, 15, 18]. With

hand-crafted features, however, the inferred depth maps are

coarse and only approximate the global layout of a scene.

Furthermore, they lack the finer details necessary for many

applications in computer vision and graphics.

Deep learning has proven to be highly effective for depth

estimation [7, 8, 14, 17, 19, 29, 23]. Liu et al. [19] combined

CNNs and CRFs in a unified framework to learn unary and

pairwise potentials with CNNs. They predicted depth at a

superpixel level which works well for preserving edges, but

when projected to 3D, suffers from distortions and artifacts,

as each superpixel region retains the same or very similar

depth after an in-painting post-processing.

More recent methods [3, 7, 16] have the harnessed the

power of pre-trained CNNs in the form of fully convolu-

tional networks [21]. The convolutional layers from net-
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Figure 2. Our two-streamed depth estimation network architecture; the top stream (blue) estimates depth while the bottom (pink) estimates

depth gradients. The dotted lines represent features fused from the VGG convolutional layers (see Section 3.1). The depth and depth

gradients are then combined either via further convolution layers or directly with an optimization enforcing consistency between the depth

and depth gradients. Figure is best viewed in colour.

works such as VGG [28] and ResNet [10] are fine-tuned,

while the fully connected layers are re-learned from scratch

to encode a spatial feature mapping of the scene. The

learned map, however, is at a much lower resolution than

the original input. To recover a high-resolution depth im-

age, the feature mapping is then up-sampled [3, 7] or passed

through up-convolution blocks [16]. Our network architec-

ture follows a similar fully convolutional approach, and in-

creases resolution via up-sampling. In addition, we add skip

connections between the up-sampling blocks to better lever-

age intermediate outputs.

3. Learning

3.1. Network Architecture

Our network architecture, shown in Figure 2, follows a

two-stream model; one stream regresses depth and the other

depth gradients, both from an RGB input image. The two

streams follow the same format: an image parsing block,

flowed by a feature fusion block and finally a refinement

block. The image parsing block consists of the convolu-

tional layers of VGG-16 (up to pool5) and two fully con-

nected layers. The output from the second fully connected

layer is then reshaped into a 55×75×D feature map to be

passed onto the feature fusion block, where D = 1 for the

depth stream and D=2 for the gradient stream. In place of

VGG-16, other pre-trained networks can be used as well for

the image parsing block, e.g. VGG-19 or ResNet.

The feature fusion block consists of one 9×9 convolution

and pooling, followed by eight successive 5×5 convolutions

without pooling. It takes as input a down-sampled RGB in-

put and then fuses together features from the VGG convo-

lutional layers and the image parsing block output. Specif-

ically, the features maps from VGG pool3 and pool4 are

fused at the input to the second and fourth convolutional

layers respectively, while the output of the image parsing

block is fused at the input to the sixth convolutional layer,

all with skip layer connections. The skip connections for

the VGG features have a 5×5 convolution and a 2x or 4x

up-sampling to match the working 55×75 feature map size;

the skip connection from the image parsing block is a sim-

ple concatenation. As noted by other image-to-image map-

ping works [12, 21, 22], the skip connections provide a con-

venient way to share hierarchical information and we find

that this also results in much faster network training con-

vergence. The output of the feature fusion block is a coarse

55×75×D depth or depth gradient map.

The refinement block, similar to the feature fusion block,

consists of one 9×9 convolution and pooling and five 5×5
convolutions without pooling. It takes as input a down-

sampled RGB input and then fuses together a bilinearly up-

sampled output of the feature fusion block via a skip con-

nection (concatenation) to the third convolutional layer. The

working map size in this block is 111×150, with the output

being depth or gradient maps at this higher resolution.

The depth and gradient fusion block brings together the

depth and depth gradient estimates from the two separate
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streams into a single coherent depth estimate. We propose

two possibilities, one with convolutional processing in an

end-to-end network, and one via a numerical optimization.

The two methods are explained in detail in Section 3.3. We

refer the reader to the supplementary material for specifics

on the layers, filter sizes, and learning rates.

3.2. Set Image Loss

For many machine learning problems, it has become

standard practice to augment the training set with trans-

formed versions of the original training samples. By learn-

ing with the augmented set, the resulting classifier or regres-

sor should be more robust to these variations. The loss is

applied over some batch of the augmented set, where trans-

formed samples are treated as standard training samples.

However, there are strong relations between original and

transformed samples that can be further leveraged during

training. For example, a sample image that is re-coloured to

approximate different lighting conditions should have ex-

actly the same depth estimate as the original. A flipped

sample will also have the same depth estimate as the origi-

nal after un-flipping the output and so on.

Based on this observation, we formulate the set loss as

follows. We start by defining the pixel-wise l2 difference

between two depth maps D1 and D2:

l2(D1, D2) =
1

n

∑

p

(Dp
1
−Dp

2
)2, (1)

where p is a pixel index, to be summed over n valid depth

pixels1. A simple error measure comparing an estimated

depth map Di and its corresponding ground truth Dgti
can

then be defined as l2(Di, Dgti
).

Now consider an image set {I, f1(I), f2(I)...fN−1(I)},

of size N , where I is the original image and f are the data

augmentation transformations such as colour adjustment,

flipping, rotation, skew, etc. For a set of images, the set

loss Lset is given by

Lset = Lsingle + λ · Ωset, (2)

which considers the estimation error of each image in the set

as independent samples in Lsingle, along with a regulariza-

tion term Ωset based on the entire set of transformed images,

with λ as a weighting parameter between the two.

More specifically, Lsingle is simply the the estimation er-

ror of each (augmented) image considered individually, i.e.

Lsingle =
1

N

N
∑

i=1

l2(Di, Dgti
). (3)

The regularization term Ωset is defined as the l2 difference

between estimates within an image set:

1Invalid pixels are parts of the image with missing ground truth depth;

such holes are typical of Kinect images and not considered in the loss.

Ωset =
2

N(N − 1)

N
∑

i=1

N
∑

j>i

l2(Di, gij(Dj)). (4)

Here, Di and Dj are the depth estimates of any two images

Ii and Ij in the image set. g is a mapping between their

transformations, i.e. gij(·) = fi(f
−1

j (·)). For all f which

are spatial transformations, g should realign the two esti-

mated depth maps into a common reference frame for com-

parison. For colour transformations, f and f−1 are simply

identity functions. Ωset acts as a consistency measure which

encourages all the depth maps of an image set to be the same

after accounting for the transformations. This regulariza-

tion term has loose connections to tangent propagation [27],

which also has the aim of encouraging invariance to input

transformations. Instead of explicit computing the tangent

vectors, we transform augmented samples back into a com-

mon reference before doing standard back-propagation.

3.3. Depth and Depth Gradient Estimation

To learn the network in the depth stream, we use our pro-

posed set loss as defined in Equations 2 to 4. For learning

the network in the depth gradient stream, we use the same

formulation, but modify the pixel-wise difference for two

gradient maps G1 and G2, substituting l2g for l2:

l2g(G1, G2) =
1

n

∑

p

(G1
p
x−G2

p
x)

2+(G1
p
y −G2

p
y)

2, (5)

where n is the number of valid depth pixels and Gp
x and Gp

y

the X and Y gradients at pixel p respectively.

Fusion in an End-to-end Network We propose two pos-

sibilities for fusing the outputs of the depth and gradient

streams into a final depth output. The first is via a combi-

nation block, with the same architecture as the refinement

block. It takes as input the RGB image and fuses together

the depth estimates and gradient estimates via skip connec-

tions (concatenations) as inputs to the third convolutional

layer. We use the following combined loss Lcomb that main-

tains depth accuracy and gradient consistency:

Lcomb = Lset +
1

N

∑

i=1

l2g(∇Di, Gesti), (6)

where ∇Di indicates application of the gradient operator

on depth map Di. In this combined loss, the first term

Lset is based only on depth, while the second term enforces

consistency between the gradient of the final depth and es-

timated gradients with the same l2g pixel-wise difference

from Equation 5.
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Fusion via Optimization Alternatively, as optimization

measures have also shown to be highly effective in improv-

ing output map detailing [2, 4], we directly estimate an op-

timal depth D∗ based on the following minimization:

D∗ =argmin
D

n
∑

p=1

φ(Dp −Dp
est)+

ω

n
∑

p

[

φ(∇xD
p −Gp

x) + φ(∇yD
p −Gp

y)
]

,
(7)

where Dest is the estimated depth and Gx and Gy are the

estimated gradients in x and y. φ(x) acts as a robust L1

measure, i.e. φ(x) =
√
x2 + ǫ, ǫ=10−4; ∇x, ∇y are x,

y gradient operators on depth D (we use filters [−1, 0, 1],
[−1, 0, 1]⊺) and p is the pixel index summed over the n valid

pixels. We solve for D with iteratively re-weighted least

squares using the implementation provided by Karsch [13].

3.4. Training Strategy

We apply the same implementation for the networks in

both the depth and the gradient streams. With the excep-

tion of the VGG convolutional layers, the fully connected

layers and all layers in the feature fusion, refinement and

combination block are initialized randomly.

The two streams are initially trained individually, each

with a two-step procedure. First, the image parsing and fea-

ture fusion blocks are trained with a loss on the depth and

depth gradients. These blocks are then fixed, while in the re-

finement blocks are trained in a second step. For each step,

the same set loss with the appropriate pixel differences (see

Equations 2, 1, 5) is used, albeit with different map reso-

lutions (55×75 after feature fusion, 111×75 after refine-

ment). Training ends here if the optimization-based fusion

is applied. Otherwise, for the end-to-end network fusion,

the image parsing, feature fusion and refinement blocks are

fixed while the fusion block is trained using the combined

loss (Equation 6). A final fine-tuning is applied to all the

blocks of both streams jointly based on this combined loss.

The network is fast to train; only 2 to 3 epochs are re-

quired for convergence (see Figure 3). During the first 20K

iterations, we stabilize training with gradient clipping. For

fast convergence, we use a batch size of 1; note that because

our loss is defined over an image set, a batch size of 1 is ef-

fectively a mini-batch of size N , depending on the number

of image transformations used.

The regularization constants λ and ω are set to 1 and 10

respectively. Preliminary experiments showed that different

values of λ which controls the extent of the set image reg-

ularizer does not affect the resulting accuracy, although a

larger λ does slow down network convergence. ω, control-

ling the extent of the gradients in the gradient optimization,

was set by a validation set; a larger ω over-emphasizes ar-

tifacts in the gradient estimates and leads to less accurate

depth maps.

4. Experimentation

4.1. Dataset & Evaluation

We use the NYU Depth v2 dataset [26] with the standard

scene splits; from the 249 training scenes, we extract ∼220k

training images. RGB images are down-sampled by half

and then cropped to 232×310 to remove blank boundaries

after alignment with depth images. Depths are converted to

log-scale while gradients are kept in a linear scale.

We evaluate our proposed network and the two fusion

methods on the 654 NYU Depth v2 [26] test images. Since

our depth output is 111 × 150 and a lower resolution than

the original NYUDepth images, we bilinearly up-sample

our depth map (4x) and fill in missing borders with a cross-

bilateral filter, similar to previous methods [7, 17, 19, 20].

We evaluate our predictions in the valid Kinect depth pro-

jection area, using the same measures as previous work:

• mean relative error (rel): 1

T

∑T

i

|dgt

i
−di|

d
gt

i

,

• mean log
10

error (log
10

): 1

T

∑T

i | log
10

dgti − log
10

di|,

• root mean squared error (rms):

√

1

T

∑T

i

(

dgti − di
)2

,

• thresholded accuracy: percentage of di such that

max
(

dgti /di, di/d
gt
i

)

= δ < threshold.

In each measure, dgti is the ground-truth depth, di the esti-

mated depth, and T the total pixels in all evaluated images.

Smaller values on rel, log
10

and rms error are better and

higher values on percentage(%) δ < threshold are better.

We make a qualitative comparison by projecting the esti-

mated 2D depth maps into a 3D point cloud. The 3D projec-

tions are computed using the Kinect camera projection ma-

trix and the resulting point cloud is rendered with lighting.

Representative samples are shown in Figure 4; the reader

is referred to the Supplementary Material for more results

over the test set.

4.2. Depth Estimation Baselines

The accuracy of our depth estimates is compared with

other methods in Table 1. We consider as our baseline the

accuracy of only the depth stream with a VGG-16 base net-

work, without adding gradients (Lsingle, depth only). This

baseline already outperforms [16] (VGG-16) and is com-

parable to [7] (VGG-16). With the set loss, however (Lset,

depth only), we surpass [7] with more accurate depth esti-

mates, especially in terms of rms-error and thresholded ac-

curacy with δ < 1.25.

3376



Method Base Network rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Karsch et al. [13] - 0.35 0.131 1.2 - - -

Liu et al. [20] - 0.335 0.127 1.06 - - -

Ladicky et al. [15] - - - - 0.542 0.829 0.941

Li et al. [17] - 0.232 0.094 0.821 0.621 0.886 0.968

Liu et al. [19] - 0.213 0.087 0.759 0.650 0.906 0.976

Eigen et al. [7] VGG-16 0.158 - 0.641 0.769 0.950 0.988

Laina et al. [16] VGG-16 0.194 0.083 0.790 0.629 0.889 0.971

Chakrabarti et al. [3] VGG-19 0.149 - 0.620 0.806 0.958 0.987

Laina et al. [16] ResNet-50 0.127 0.055 0.573 0.811 0.953 0.988

Lsingle, depth only VGG-16 0.161 0.068 0.640 0.765 0.950 0.988

Lset, depth only VGG-16 0.153 0.065 0.617 0.786 0.954 0.988

Lset, depth + bilateral filtering VGG-16 0.152 0.065 0.621 0.785 0.954 0.988

Lset, depth + gradients, end-to-end VGG-16 0.153 0.064 0.615 0.788 0.954 0.988

Lset, depth + gradients, optimization VGG-16 0.152 0.064 0.611 0.789 0.955 0.988

Lset, depth + gradients, optimization VGG-19 0.146 0.063 0.617 0.795 0.958 0.991

Lset, depth + gradients, optimization ResNet-50 0.143 0.063 0.635 0.788 0.958 0.991

Table 1. Accuracy of depth estimates on the NYU Depth v2 dataset, as compared with state of the art. Smaller values on rel, log
10

and rms

error are better; higher values on δ < threshold are better.

Current state-of-the-art results are achieved with fully

convolutional approaches [3, 7, 16]. The general trend is

that deeper base networks (VGG-19, ResNet-50 vs. VGG-

16) leads to higher depth accuracy. We observe a simi-

lar trend in our results, though improvements are not al-

ways consistent. We achieve some gains with VGG-19 over

VGG-16. However, unlike [16], we found little gains with

ResNet-50.

4.3. Fused Depth and Depth Gradients

Fusing depth estimates together with depth gradients

achieves similar results as the optimization, both quantita-

tively and qualitatively. When the depth maps are projected

into 3D (see Figure 4), there is little difference between the

two fusion methods. When comparing with [16]’s ResNet-

50 results, which are significantly more accurate, one sees

that [16]’s 3D projections are more distorted. In fact, many

structures, such as the shelves in Figure 4(a), the sofa in (b)

or the pillows in (b,d) are unidentifiable. Furthermore, the

entire projected 3D surface seems to suffer from grid-like

artifacts, possibly due to their up-projection methodology.

On the other hand, the projections of [3] are much cleaner

and detailed, even though their method also reports lower

accuracy than [16]. As such, it is our conclusion that the

current numerical evaluation measures are poor indicators

of detail preservation. This is expected, since the gains from

detailing have little impact on the numerical accuracy mea-

sures. Instead, differences are more salient qualitatively, es-

pecially in the 3D projection.

Compared to [7], our 3D projections are cleaner and

smoother in the appropriate regions, i.e. walls and flat sur-

faces. Corners and edges are better preserved and the re-

sulting scene is richer in detailing with finer local structures.

For example, in the cluttered scenes of Figure 4(b,c), [7] has

heavy artifacts in highly textured areas, e.g. the picture on

the wall of (b), the windows in (c) and in regions with strong

reflections such as the cabinet in (c). Our results are robust

to these difficulties and give a more faithful 3D projections

of the underlying objects in the scene.

At a first glance, one may think that jointly representing

the scene with both depth and depth gradients simply has

a smoothing effect. While the fused results are definitely

smoother, no smoothing operations, 2D or 3D, can recover

non-existent detail. When applying a 2D bilateral filter with

0.1m range and 10×10 spatial Gaussian kernel (Lset depth +

bilateral filtering), we find little difference in the numerical

measures and still some losses in detailing (see Fig.4)

4.4. Set Loss & Data Augmentation

Our proposed set image loss has a large impact in im-

proving the estimated depth accuracy. For the reported re-

sults in Table 1, we used three images in the image set: I ,

flip(I) and colour(I). The flip is around the vertical axis,

while the colour operation includes randomly increasing

or decreasing brightness, contrast and multiplication with

a random RGB value γ ∈ [0.8, 1.2]
3
. Preliminary experi-

ments showed that adding more operations like rotation and

translation did not further improve the performance so we

omit them from our training. We speculate that the flip and

colouring operations bring the most global variations but

leave pinpointing the exact cause for future work.

4.5. Training Convergence and Timing

We show the convergence behaviour of our network for

the joint training of the image parsing and feature fusion

blocks Figure 3. Errors decrease faster with a batch size of
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Ours batchsize 1

Ours set image loss

Ours batchsize 16

Eigen et al [7] batchsize 16

Eigen et al [7] batchsize 1

Training epoch

Log error

Figure 3. A comparison of the log10 training and test errors be-

tween our proposed network and [7]. For clarity, we plot the log

error at every 0.1 epochs, and show only the first 7 epochs, even

though the method of [7] has not yet converged. The dashed lines

denote training error, and solid lines denote testing error. For our

batch 1 and 16 results, we compare the errors for Lsingle and Lsingle.

1 in comparison to a batch size of 16, and requires only

0.6M gradient steps or 2-3 epochs to converge. For the

convergence experiment, we compare the single image loss

(batch size 1, 16) with the set image loss as described in

Section 4.4 and observe that errors are lower with the set

loss but convergence still occurs quickly. Note that the fast

convergence of our network is not due to the small batch

size, but rather the improved architecture with the skip con-

nection. In comparison, the network architecture of [7] re-

quires a total of 2.5M gradient steps to converge (more than

100 epochs) with batchsize 16, but even when trained with

a batch size of 1, does not converge so quickly. Training for

depth gradient estimates is even faster and converges within

one epoch. Overall, our training time is about 70 hours (50

hours for depth learning and 20 hours for gradient learning)

on a single GPU TITAN X.

5. Discussion and Conclusion

We have proposed a fast-to-train multi-streamed CNN

architecture for accurate depth estimation. To predict ac-

curate and detailed depth maps, we introduced three novel

contributions. First, we define a set loss jointly over multi-

ple images. By regularizing the estimation between images

in a common set, we achieve better accuracy than previ-

ous work. Second, we represent a scene with a joint depth

and depth gradient representation, for which we learn with

a two-streamed network, to preserve the fine detailing in a

scene. Finally, we propose two methods, one CNN-based

and one optimization-based, for fusing the depth and gradi-

ent estimates into a final depth output. Experiments on the

NYU Depth v2 dataset shows that our depth predictions are

not only competitive with state-of-the-art but also lead to 3D

projections that are more accurate and richer with details.

Looking at our experimental results as well as the results

of state-of-the-art methods [3, 7, 16], it becomes clear that

the current numerical metrics used for evaluating estimated

depth are not always consistent. Such inconsistencies be-

come even more prominent when the depth maps are pro-

jected into 3D. Unfortunately, the richness of a scene is of-

ten qualified by clean structural detailing which are difficult

to capture numerically and which makes it in turn difficult

to design appropriate loss or objective functions. Alterna-

tively, one may look to applications using image-estimated

depths as input, such as 3D model retrieval or scene-based

relighting, though such an indirect evaluation may also in-

troduce other confounding factors.

Our method generates accurate and rich 3D projections,

but the outputs are still only 111×150, whereas the origi-

nal input is 427×561. Like many end-to-end applications,

we work at lower-than-original resolutions to trade off the

number of network parameters versus the amount of train-

ing data. While depth estimation requires no labels, the

main bottleneck is the variation in scenes. The training im-

ages of NYU Depth v2 are derived from videos of only 249

scenes. The small training dataset size may explain why

our set loss with its regularization term has such a strong

impact. As larger datasets are introduced [5], it may be

become feasible to work at higher resolutions. Finally, in

the current work, we have addressed only the estimation of

depth and depth gradients from an RGB source. It is likely

that by combining the task with other estimates such as sur-

face normals and semantic labels, one can further improve

the depth estimates.
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