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Abstract

Deep learning has greatly improved visual recognition

in recent years. However, recent research has shown that

there exist many adversarial examples that can negatively

impact the performance of such an architecture. This paper

focuses on detecting those adversarial examples by analyz-

ing whether they come from the same distribution as the

normal examples. Instead of directly training a deep neural

network to detect adversarials, a much simpler approach

was proposed based on statistics on outputs from convo-

lutional layers. A cascade classifier was designed to effi-

ciently detect adversarials. Furthermore, trained from one

particular adversarial generating mechanism, the resulting

classifier can successfully detect adversarials from a com-

pletely different mechanism as well. The resulting classifier

is non-subdifferentiable, hence creates a difficulty for ad-

versaries to attack by using the gradient of the classifier.

After detecting adversarial examples, we show that many of

them can be recovered by simply performing a small aver-

age filter on the image. Those findings should lead to more

insights about the classification mechanisms in deep convo-

lutional neural networks.

1. Introduction

Recent advances in deep learning have greatly improved

the capability to recognize visual objects [13, 26, 7]. State-

of-the-art neural networks perform better than human on

difficult, large-scale image classification tasks. However, an

interesting discovery has been that those networks, albeit re-

sistant to overfitting, would have completely failed if some

of the pixels in the image were perturbed via an adversarial

optimization algorithm [28, 4] . An image indistinguish-

able from the original for a human observer could lead to

significantly different results from a deep network(Fig. 1).

Those adversarial examples are dangerous if a deep net-

work is utilized in any crucial real application, be it au-
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Figure 1. An optimization algorithm finds adversarial examples

which, with almost negligible perturbations to human eyes, com-

pletely distort the prediction result of a deep neural network [28].

Such algorithms have been found to be universal to different deep

networks. This paper studies their properties and seeks a defense.

tonomous driving, robotics, or any automatic identification

(face, iris, speech, etc.). If the result of the network can

be hacked at the will of a hacker, wrong authentications

and other devastating effects would be unavoidable. There-

fore, there are ample reasons to believe that it is important

to identify whether an example comes from a normal or an

adversarial distribution. A reliable procedure can prevent

robots from behaving in undesirable manners because of the

false perceptions it made about the environment.

The understanding of whether an example belongs to the

training distribution has deep roots in statistical machine

learning. The i.i.d. assumption was commonly used in

learning theory, so that the testing examples were assumed

to be drawn independently from the same distribution of the

training examples. This is because machine learning is only

good at performing interpolation, where some training ex-

amples surround a testing example. Extrapolation is known

to be difficult, since it is extremely difficult to estimate data

labels or statistics if the data is extremely different from any

known or learned observations. Many current approaches

deal with adversarial examples by adding them back to the

training set and re-train. However in their experiments, new

adversarials can almost always be found from the re-trained

classifier. This is because that the space of extrapolation is

significantly larger than the area a machine learning algo-
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rithm can interpolate, and the ways to find vulnerabilities of

a deep learning system are almost endless.

A more conservative approach is to refrain from making

a prediction if the system does not feel comfortable about

it. Such an approach seeks to build a wall to fence all test-

ing examples in the extrapolation area out of the predictor,

and only predict in the small interpolation area. Work such

as [16] provides basic theoretical frameworks of classifica-

tion with an abstain option.

Although these concepts are well-known, the difficulties

lie in the high-dimensional spaces that are routinely used

in machine learning and especially deep learning. Is it even

possible to define interpolation vs. extrapolation in a 4, 000-

dimensional or 40, 000-dimensional space? It looks like

almost everything is extrapolation since the data is inher-

ently sparse in such a high-dimensional space [9, 6], a phe-

nomenon well-known as the curse of dimensionality. The

enforcement of the i.i.d. assumption seems impossible in

such a high-dimensional space, because the inverse problem

of estimating the joint distribution requires an exponential

number of examples to be solved efficiently. Some recent

work on generative adversarial networks proposes using a

deep network to train this discriminative classifier [3, 22],

where a generative approach is required to generate those

samples, but it is largely confined to unsupervised settings

and may not be applicable for every domain convolutional

networks (CNNs) have been applied to.

In this work we propose a discriminative approach to

identify adversarial examples, which trains on simple fea-

tures and can approach good accuracy with limited training

examples. The main difference between our approach and

previous outlier detection/adversarial detection algorithms

(e.g. [2]) is that their approaches usually treat deep learning

as a black box and only works at the final output layer, while

we believe that the learned filters in the intermediate layers

efficiently reduce the dimensionality and are useful for de-

tecting adversarial examples. We make a number of empir-

ical visualizations that show how the adversarial examples

change the prediction of a deep network. From those intu-

itions, we extract simple statistics from convolutional filter

outputs of various layers in the CNN. A cascade classifier is

proposed that utilizes features from many layers to discrim-

inate between normal and adversarial examples.

Experiments show that our features from convolutional

filter output statistics can separate between normal and ad-

versarial examples very well. Trained with one particu-

lar adversarial generation method, it is robust enough to

generalize to adversarials produced from another genera-

tion approach [20] without any special adaptation or addi-

tional training. Those confidence estimates may improve

the safety of applying these deep networks, and hopefully

provide insights for further research on self-aware learning.

As a simple extension, the results from visualizations of the

features prompted us to perform an average filter on cor-

rupted images, and found out that many correct predictions

can be recovered from this simple filtering.

2. Deep Convolutional Neural Networks

A deep convolutional neural network consists of

many convolutional layers which are connected to spa-

tially/temporally adjacent nodes in the next layer:

Zm+1 = [T (W1 ∗ Zm), T (W2 ∗ Zm), . . . , T (Wk ∗ Zm)]
(1)

where Zm is the input features at layer m, W1, . . .WK

are filters that could be much smaller than the size of Zm

(e.g. 3× 3, 5× 5, 7× 7), ∗ is the convolution operator, and

T is a nonlinear transformation function such as the rec-

tified linear unit (ReLU) T (x) = max(0, x). Other com-

monly used layers in a CNN include max-pooling layers,

or other normalization layers [13] such as batch normaliza-

tion layers [10]. Most deep networks adopt similar princi-

ples while adding more structural complexity in the system

such as more layers and smaller filters in each layer [26],

multi-layered network within each layer [27], residual net-

work [7], etc. A convolutional neural network makes sense

in structured data because it naturally exploits the locality

structure in data. In an image, pixels that are located close

to each other are naturally more correlated than pixels that

are far away [17]. The same holds for temporal data (video,

speech) where objects (frames, utterances) that are tempo-

rally close can be assumed to be more correlated.

3. Understanding the Trained Deep Classifier

Under Adversarial Optimization

3.1. Adversarial Optimization

The famous result that deep networks can be broken eas-

ily [28] is an important motivation of this work. The idea

is to start from an existing example (image) and optimize

to obtain an example that will be classified to another cate-

gory while being close to the original example. Namely, the

following optimization problem is solved:

min
r

c‖r‖1 + L(fθ(x0 + r, y))

s.t. x0 + r ∈ [0, 1]d (2)

where x0 is a known example and y is an arbitrary cate-

gory label, d is the input dimensionality. c is a parame-

ter that can be tuned for trading off between proximity to

the original example x0 and the classification loss on the

other category y. It has been shown, to the astound of many,

that one can choose an r with very small norm while com-

pletely change the output of the algorithm (e.g. Fig. 1),

this can even be done universally for almost all networks,

datasets and categories [28, 4]. Besides, adversarials trained
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from one network may even fool a related one trained from

the same dataset [18]. This has led many people to ques-

tion whether deep networks are really learning the “proper”

rules for classifying those images.

3.2. Adversarial Behavior

In order to gain a deeper understanding of the behavior of

a deep network and illustrate the difference between adver-

sarial and normal example distributions, we utilize spectral

analysis. As a starting point, we perform principal com-

ponent analysis (PCA) [11] at the 14-th layer of a VGG

network trained on the ImageNet dataset (the first fully-

connected layer). The rationale behind using PCA is that

each deep learning layer is a nonlinear activation function

on a linear transformation, hence a large part of the learn-

ing process lies within the linear transformation, for which

PCA is a standard tool to analyze.

A linear PCA is performed on the entire collection of

50, 000 images from the ImageNet validation set, as well as

4, 000 adversarials collected using the approach in (2), start-

ing from random images in the collection. The result shows

very interesting findings (Fig. 2) and sheds more light on

the internal mechanics of those adversarial examples. In

Fig. 2(a), we show the PCA projection onto the first two

eigenvectors. This cannot separate normal and adversarial

examples, as one could possibly imagine. The adversarial

examples seem to exactly belong to the same distribution

as normal ones. However, it does seem that the adversar-

ial examples reside mostly in the center while the normal

examples occupy a bigger chunk of space.

Interestingly, as we move to the tail of the PCA pro-

jection space, the picture starts to change significantly. In

Fig. 2(b), we can see that there are a significant amount of

adversarial examples that has extremely large values w.r.t.

to the normal examples in the tail of the distribution. We

chose to print the projection on the 3, 547-th and 3, 844-th

eigenvector, but similar distributions can be found all over

the tail. As one can see, at such a far end on the tail, the

projections of normal examples are very similar to random

samples under a Gaussian distribution. An explanation for

that could be that under these “uninformative” directions,

most of the weighted features are nearly independent w.r.t.

each other, hence the distribution of their sum is similar to

Gaussian, according to the central limit theorem1. How-

ever, although normal examples behave similarly to a Gaus-

sian, some adversarial examples are having projections with

a deviation as large as 5 or 10 times the standard deviation,

which are extremely unlikely to occur under a Gaussian dis-

tribution.

1Note this is without a ReLU transformation. ReLU would destroy the

negative part of the data distribution so that it no longer looks like a Gaus-

sian. However, some tail effects can be observed even in the distribution

after ReLU.

Fig. 2(c) and Fig. 2(d) show that there are two distinct

phenomena:

• The extremal values and standard deviations on the

projections onto the first 500 − 700 eigenvectors are

decidedly lower in adversarial examples than in nor-

mal ones.

• The extremal values and standard deviations on the

projections onto the last 1, 000 − 1, 500 eigenvectors

are decidedly higher in the adversarial examples than

the normal ones.

It is interesting to reflect about the causes and conse-

quences of those properties. One deciding property is that

there is a strong regularization effect in adversarial exam-

ples on almost all the informative directions. Hence, the

predictions in adversarial examples are lower than those

in normal examples, rather than the confidence values may

have indicated (Fig. 1). In Fig. 3, we show the number of

categories with a prediction higher than a threshold, before

the final softmax transformation

pi(x) =
exp(fi(x))

∑

i exp(fi(x))
(3)

that converts raw predictions fi(x) into probabilities. The

result shows that normal examples have on average one cat-

egory with a raw prediction value more than 20, however

adversarial examples have only 0.01 category with raw pre-

dictions more than 20. The reason that those adversarial ex-

amples appear more confident after softmax is because that

the predictions on all the other categories are regularized

even more. Hence the normalization component of softmax

has decided that the single prediction, although much less

strong, should be assigned a probability of more than 90%.

We note that this issue was also pointed out by [2] in a dif-

ferent manner and they proposed a solution in the OpenMax

classifier, which we compare against in the experiments.

But besides that, it seems that such extremal and stan-

dard deviation statistics are evident features that could help

discriminating normal and adversarial examples. Unfortu-

nately, they only occur as a statistic from a large sample, as

any single point in Fig. 2(a) looks similar to a single point

in the normal distribution. We have tried to utilize the tail

distributions (Fig. 2(b)) to create a classifier which easily

achieved 99% accuracy separating adversarials from nor-

mals, however we subsequently found out that since the tail

almost do not contribute to the classification, knowing this

defense, the adversarial example can easily optimize to re-

move their footprints on the tail distributions.

This leads us to think about an approach that would turn

a single image into a distribution, so that we can use statis-

tics as detectors for adversarial examples. An image is a

distribution of pixels. Especially, the output of each filter

from each convolutional layer is an image which could be
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Figure 2. Blue indicates normal examples and red/orange indicate adversarial examples. Projections are normalized by dividing the standard

deviation of all normal examples projected on the corresponding dimension. (a) The projection of the data at layer 14 onto the 2 most

prominent directions; Adversarial example cannot be identified from normal ones. (b) Projection of the same data to the 3, 547-th and

3, 844-th PCA projections, some adversarial examples are having significantly higher deviation to the mean; (c) The absolute normalized

extremal value in the projection to each eigenvector; (d) The average normalized standard deviation of normal and adversarial examples on

each projection. Standard deviations of normal examples stand at 1 because of the normalization.

treated as a distribution where the samples are the pixels.

Therefore, in the following section we aim to build a classi-

fier based on collecting statistics from such distributions.

4. Identifying Adversarial Examples

4.1. Feature Collection

Suppose the output at a convolutional layer m is an

W × H × K tensor, where W and H represent the width

and height of the image at that stage (smaller than orig-

inal after max-pooling), and K represents the number of

convolutional filters. Such a tensor can be considered as a

K-channel image where each pixel has a K-dimensional

feature. We consider the feature on every pixel to be a

random vector drawn from the distribution Dm of convo-

lutional pixel outputs, a K-dimensional distribution.
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Figure 3. Average number of categories per example with predic-

tions higher than a threshold. (a) Before softmax; (b) After soft-

max. As one can see, in normal examples, there are on average

about 1 category with a prediction score of more than 20 (before

softmax), while with adversarial ones, only 1% examples have a

category with a prediction score more than 20. However, since

prediction values on all categories have dropped, after softmax ad-

versarial examples obtain much higher likelihood on one category.

The list of statistics we collect is:

• Normalized PCA coefficients

• Minimal and Maximal values

• 25-th, 50-th and 75-th percentile values

on each of the K-dimensional features. Normalized PCA

coefficients are collected via Algorithm 1. Extremal and

percentile statistics are straightforward to understand.

The features we collect are non-subdifferentiable, hence

essentially preventing adversaries to use gradient-based at-

tacks to counter the classifier. Although we are inter-

ested in a generative adversarial network-type adversary

which would learn to avoid our detector, such adversaries

would have to resort to derivative-free optimization meth-

ods, which currently do not scale to the size of a realistic im-

age. The best derivative-free approach we have tried scales

up to several hundreds of variables. The genetic algorithm

in [20] scales better, but as we will soon show, their low-

level feature statistics are so different from natural images,

making them very easy to be detected, even without training

on any data from their adversarial generation algorithm.

Algorithm 1 PCA Statistics Extraction

1: INPUT: Image I , layer m.

2: For all normal images in a training set, compute their

CNN filter output of layer m to form an example matrix

Zm.

3: Compute the mean e and PCA projection matrix W of

Zm.

4: Compute the standard deviation s on each dimension in

the PCA projection W
⊤(Zm − e1

⊤).
5: For each image I , project its CNN filter output of layer

m ZmI using PCA: zmI = W
⊤(ZmI − e1

⊤), and

normalize them by dividing the standard deviation s on

each respective dimension.

6: Collect the statistic for each image as xI = 1

n
‖zmI‖1,

where L1 norm is the vector L1 norm. The resulting

statistic is K-dimensional.

4.2. Classifier Cascade

[29] proposed a famous strategy for face detection by us-

ing a cascaded boosting classifier composed by a sequence

5767



of base classifiers. A cascade classifier is ideal when it is

easy to identify many of the examples from a category but

some important cases can be difficult. In Fig. 4, SC N

represents the classifier at each stage. X is the input of the

cascade classifier. The negatives in a cascade classifier from

each stage will be outputted directly, while the positives will

go to the next stage.

In our case, the normal category is much easier to detect

than the adversarial category (see e.g. Fig. 6). In our initial

experiments with VGGNet, we found that more than 80%
of normal examples can be determined from the first con-

volutional layer with 100% precision. Therefore, we con-

structed a cascade classifier based on convolutional layers:

the first stage works with features collected from the outputs

of the first convolutional layer, the second with the second

layer, etc. (Fig. 4). The base classifiers will not solely con-

sider statistics from their own stage, instead, after one stage

of training, the remaining positive examples will be con-

catenated to the corresponding features on the next stage.

Figure 4. A cascade classifier is defined on each of the convolu-

tional layers in a convolutional network (SC i represents the i-th

convolutional layer)

The operations that are represented by Fig. 4 can also be

summarized as Algorithm 2.

Algorithm 2 Training Process of a cascade of Classifier

1: Npool ← Normal example pool, Ptrain ← Training set

of Np perturbed examples, L ← Number Of convolu-

tional layers

2: while current layer ≤ L Or Npool 6= ∅ do

3: Draw Np sized subset Pnormal from Npool

4: T ← Pnormal ∪ Ptrain

5: Train SVM on T

6: Predict SVM on Npool, eliminate those predicted as

normal above a threshold (described in text)

7: end while

The overall false positive rate of a K stage cascade clas-

sifier can be represented as: F =
∏K

i=1
fi, where fi is the

false positive rate at each layer. And similarly the true posi-

tive rate can be represented in the same form: T =
∏K

i=1
ti

where ti is the true positive rate at each stage. In order to

maximize recall, we maintain a high true positive rate and

select a classification threshold which corresponds to a high

true positive rate (97% in AlexNet and 98% in VGG).

5. Related Work

Szegedy et al. [28] proposes the adversarial optimiza-

tion formulation in eq. (2). [4] proposes an explanation

of the adversarial mechanism, and proposed a simpler ad-

versarial optimization mechanism that only corrupts based

on the signs of gradient of the network. The fact that such

examples can be generated so easily with the gradient sign

method shows that adversarial examples come from attack-

ing the magnifying effect coming from the linearities in the

network. [20] proposes another mechanism to generate ad-

versarials using evolutionary optimization. The result of

these do not resemble natural images but still can be clas-

sified by deep networks with high confidence(Fig. 5). [19]

proposes another efficient approach. [23] proposes an ap-

proach to generate adversarials that match the convolutional

filter outputs as well as perturbing the data. [25, 8] propose

approaches to sample adversaries or minimax optimization

for making learning more robust. While most of the work

are done on standard benchmarks such as MNIST, CIFAR

and ImageNet, [14] is an interesting work on projecting the

adversaries in physical world.

Recently, there have been a lot of focus on training ad-

versarial generation networks to create Generative Adver-

sarial Networks (GANs) [3, 22, 32, 24]. These networks

play a two-player game where a generator network aims to

generate adversarials that will not be correctly classified by

another discriminator network, and the goal is to generate

images more and more similar to natural images. It has been

shown that these networks generate images that resemble

natural images. However, this generative approach is dif-

ferent from our goal, where we aim to create discriminative

networks that discriminates from images that are already in-

distinguishable from natural images (e.g. Fig.1).

Mechanisms for detecting and countering adversarial ex-

amples have also been proposed [5, 21]. [18] proposes to

use the foveation mechanism to alleviate adversarial exam-

ples when it is already known to be adversarial, but did not

attempt to detect adversarials. The open-set deep networks

proposed by [2] seek to alleviate concerns from a soft-max

classification by creating an abstain option. The univer-

sum classifier [31] is similar but with more theoretical ar-

guments.

Self-aware learning (classification with an abstain op-

tion) had been proposed in e.g. [12, 16]. It is relevant to

robust learning (e.g. [15]), however robust learning usually

seek to directly optimize the minimax loss under adversarial

conditions, instead of outputting an abstain option. [1, 30]

also focuses on classification with an abstain option.

6. Experiments

Our algorithm is tested on 2 approaches to generate ad-

versaries. The main one is data generated using the L-BFGS
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Figure 5. Evolved Adversarial Images Unrecognizable to Humans

algorithm by [28]. We generated 4, 000 adversarials from

a random subset of the ILSVRC-2012 validation set (total

of 50, 000 images). In order to test the out-of-sample gen-

eralization capability, we included another dataset, which

includes 5, 000 EA-adversarial images generated using the

algorithm in [20]. These datasets are tested with 2 dif-

ferent network structures, VGG-16 [26] and AlexNet [13].

All input images had been normalized and re-shaped into

224× 224 for VGG-16 model and 227× 227 for AlexNet.

The MatConvNet toolbox is used for the deep networks.

Features are extracted from the statistics of interest, men-

tioned in section 4.1, in the lower 9 convolutional layers

from the VGG-16 network, and in all 5 convolutional layers

from AlexNet.

All the classifiers were trained with a subset of 2, 000
L-BFGS adversarials and a randomly selected subset of

45, 000 normal images in the ILSVRC-2012 dataset. Test-

ing was done on a random held-out dataset with the other

5, 000 normal images and 2, 000 L-BFGS adversarials for

the L-BFGS experiments, and on a randomly selected 5, 000
normal images and 5, 000 EA-adversarials for the EA ex-

periments. The training and testing sets do not overlap in

any means: for all the testing LBFGS adversarials, the cor-

responding normal images were not seen in the training set.

EA experiments are only conducted with AlexNet since we

found out that EA-adversarials did not succeed fooling the

VGG-16 network. We have also tried some other fast ad-

versarial generation approaches such as [4], but they gener-

ally do not generate adversarials that fool classifiers as com-

pletely (with more than 90% confidence) or as universally

(on 100% of the images) as the L-BFGS algorithm.

Additional experiment results using DeepFool and on

ResNet can be found in the supplementary material.

6.1. Single­Layer Results

The first experiments we did were by extracting statistics

on each single convolutional layer output, instead of using

the cascade classifier. From Tables 1 and 2, one can see that

the statistics from a single layer have some discriminative

power to distinguish normal examples from adversarials,

but are not extremely effective. However, EA-adversarials

were much easier to distinguish, even though our classi-

fier was trained only on L-BFGS adversarials instead of EA

ones (Table 3). We only need the first three convolutional

layers to reach an overall 97.34% classification accuracy.

We believe the reason is that our features capture natural

image statistics, and because EA-adversarials look so un-

natural, their statistics are vastly different than natural im-

ages (see Sec. 6.3 for more discussions).

Table 1. Classification Result with AlexNet for Normal vs.

LBFGS-adversarials

Network Layer 2nd 3rd 4th

Accuracy 57.5± 0.7 67.3± 0.7 70.9± 0.6
Network Layer 5th 6th

Accuracy 74.9± 0.9 78.95± 0.6

Table 2. Classification Result with VGG-16 for Normal vs.

LBFGS-Adersarials
Network Layer 2nd 3rd 4th

Accuracy 72.1± 0.7 84.1± 0.7 80.3± 0.6
Network Layer 5th 6th 7th

Accuracy 81.4± 0.9 74.3± 0.6 73.9± 0.6
Network Layer 8th 9th 10th

Accuracy 74.2± 0.7 71.2± 0.7 74.3± 0.8

Table 3. Classification Result for Normal vs. EA-Adversarials
Layer 2nd 3rd 4th

Accuracy 93.45± 0.69 98.3± 0.73 97.9± 0.57

6.2. Experiment for LBFGS­Adversarials Detection

Next we test the cascade classifier on both AlexNet and

VGG-16. The parameter C is set to 0.005. On AlexNet,

the average accuracy of the cascade classifier reaches 83.4%
over 20 random trials, and the AUC (area-under-curve) met-

ric is 90.7%. We compared against the recently published

OpenMax method [2]. To learn the Weibull distribution

required for OpenMax, the EVT was applied on the same

training set as the algorithm. Figure 6(a) shows the results,

where we were able to outperform OpenMax by over 9% in

area-under-curve (AUC) and 11% in terms of accuracy.

In VGG-16, the results were even better. The accuracy

of the classifier was on average 90.665% over 20 random

trials. Fig.6(b) shows the ROC curve. We believe the fact

that VGG has a lot more layers than AlexNet helps setting

more constraints on the layer statistics, and is subsequently

helpful for detecting adversarial examples.

Finally, the cascade classifier was tested on EA-

adversarials. We obtained more than 96% accuracy with 0
false positive rate, with a final accuracy of 97.3% and AUC

of 98.2% (Fig.6(c)). In other words, our algorithm is rarely

fooled by EA-adversarials, even without training on them.
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(a) (b) (c)
Figure 6. (a) Comparison Between OpenMax detection Methods and Cascade Classifier: The blue curve represents the performace of

OpenMax Method, and green curve represents the perfornace for Cascade Classifier.(b) Overall ROC Performance Curve of Cascade

Classifier Trained on VGG-16 Network. (c) Overall ROC of data generated from EA-adversarials dataset on AlexNet.

6.3. Visualization of Statistics

Our experiment results show that EA-adversarials are

easy to detect with our detector. To gain more insight

into this result, we made a few comparisons between the

statistics of interest extracted from normal images, LBFGS-

adversarials and EA-adversarials.

We visualized the average of the statistics that are used

for the detection task from the first layer of the AlexNet

on all its dimensions. As can be seen in Fig.7(a), the differ-

ence on the PCA projection statistics on extracted from EA-

adversarials and that of the normal images is very dramatic.

Meanwhile, compared to the EA-adversarials, the statistics

from LBFGS-adversarial have much less difference from

the normal data and the difference does not change very

much across different dimensions.

From Fig. 7(b), one can see that LBFGS-adversarials

have smaller extremal values than normal images. This

might imply that the LBFGS optimization worked to di-

minish strong signals from the original image by introduc-

ing small pixel perturbations, and that helped our classifiers

separating them from normal images. From Fig. 7(c), we

see the EA-adversarials evidently differ from normal im-

ages. Those results illustrate why EA-adversarials are easier

to detect. We suspect it would be easy to reach 100% accu-

racy, had we actually trained on some EA-adversarials. The

capability to generalize to EA-adversarials without training

on them showed the general capability of our cascade classi-

fiers to capture natural image statistics and distinguish nat-

ural images from unnatural ones.

7. Discussions

7.1. Self­Aware Learning with an Abstain Option

The framework of self-aware learning [16, 2, 31] con-

siders the case where the learning algorithm has an abstain

option of saying “I don’t know”, instead of always making

an actual prediction. We define a framework that is slightly

different than [16], avoiding the requirement in some frame-

works of never making a mistake.

We assume that the training input is drawn i.i.d. from a

distribution P (x, y), where x is the input and y is the out-

put. Assume that the testing input is drawn from a mixture

distribution between P (x, y) and Q(x, y):

Pm = ΩP (x, y) + (1− Ω)Q(x, y) (4)

, where Ω ∈ {0, 1} is an unknown mixture weight, and

Q(x, y) is an adversarial distribution. Assume that we have

a classifier that includes a function f(x), and a boolean

strategy ai between predict and abstain that can be

chosen for each individual xi. Assume that the expected er-

ror from our classifier on the adversarial distribution is eq
(which could be assumed, if no other prior is present, as

the random guessing error of C−1

C
for a C-class classifica-

tion problem). Further assume that abstaining always incur

a fixed cost ea. As long as ea < eq , abstaining would be

better than predicting on the example drawn from the ad-

versarial distribution, however, ea should be set sufficiently

large so that the classifier would still make predictions when

confident, instead of abstaining everything.

For each testing input, the testing of the self-aware clas-

sifier is then trying to optimize mina EPm
La(x, y) where

La(xi, yi) =























P (yi 6= f(xi)), if ai = predict,

(xi, yi) ∼ P (x, y)
eq if ai = predict

, (xi, yi) ∼ Q(x, y)
ea if ai = abstain

(5)

hence the classifier needs to select between making a pre-

diction using its function f(x) and risk paying eq versus

abstaining. It is easy to derive the optimal strategy:

ai = predict, if P (Ω = 1|xi)P (yi 6= f(xi)) (6)

+P (Ω = 0|xi)eq < ea

ai = abstain, otherwise (7)
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(a) (b) (c)
Figure 7. (a) PCA Projection Comparison; (b) Maximum Feature Map Extremal Value Comparison; (c) Median Value Comparison

Our approach can be seen as estimating P (Ω = 1|xi) in

this framework. Experiments about the effect of such self-

aware learning is shown in the supplementary material. We

eagerly hope to apply it in realistic applications in future

work.

7.2. Image Recovery

Insights from [4] indicate that the adversarial mechanism

is very specifically attacking vulnerable gradients starting

from the first convolutional layer. Insights from the pre-

vious experiments also suggest that LBFGS-adversarials

work to diminish filter responses from the first convolu-

tional layer. Therefore a natural idea would be to destroy

the adversarial effects in the first convolutional layer to try

to recover the original image. We tried a very simple ap-

proach: applying a small (e.g. 3 × 3) average filter on the

adversarial image before using the CNN to classify it. The

positive and negative adverse gradients will average out in

this approach, and make the masked activations from the

normal images more prominent. In Table 4 we illustrate

such recovery results: after using a 3 × 3 average filter on

identified adversarial examples, the classification accuracy

improved from almost 0% to 73.0%, showcasing the effec-

tiveness of this simple average filter.

Table 4. Recovery Results. Simply using a 3 × 3 average filter

we can recover a large proportion of adversarial examples after

detecting them using the algorithm described previously. More

complex cancellation approaches such as foveation in [18] that

utilizes cropping can achieve better results.

Approach Top-5 Accuracy

(Recovered Images)

Original Image (Non-corrupted) 86.5%
3× 3 Average Filter 73.0%
5× 5 Average Filter 68.0%

Foveation (Object Crop MP) [18] 82.6%

Those results show that we can both detect and recover

from adversarial examples with high accuracy. But the main

reason we performed this (overly simplistic) experiment is

to show how simple it might be to cancel out some adversar-

ial perturbations. Importantly, this result indicates that cur-

rent deep convolutional networks are too locally focused:

these are corruptions that can be cancelled out by a simple

3× 3 average filter, however they can adversely impact the

entire result of the deep network. For human with a large

receptive field, they will not even care about what happens

within a 3 × 3 area. Therefore, we believe that future deep

learning approaches should focus on enlarging the receptive

field in order to reduce the chance of being fooled by adver-

sarial examples. Another potential direction is to research

classification approaches that do not require a softmax-type

normalization, in order to avoid regularizing attacks such as

the ones used in the adversarial optimization in (2).

8. Conclusion

This paper proposes an approach that detects adversar-

ial examples using simple statistics on convolutional layer

outputs. A cascade classifier was designed based on simple

statistics on filter outputs from each layer. And it was capa-

ble of detecting more than 85% of the adversarial examples.

Experiments showed that our cascade classifier significantly

outperforms state-of-the-art on detecting adversarial exam-

ples. Experiment also showed transfer learning capabili-

ties of our classifier, since the classifier we trained with L-

BFGS adversarials are capable of detecting EA-adversarials

as well. Insights drawn from these experiments lead us to

perform simple 3 × 3 average filter to corrupted images,

which successfully recovered most of them. In the future,

we would like to explore GAN-type generative adversarial

networks from the current results, with multiple rounds of

adversarial detection and counter-detection.
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