
Deeper, Broader and Artier Domain Generalization

Da Li Yongxin Yang Yi-Zhe Song Timothy M. Hospedales

Queen Mary University of London University of Edinburgh

{da.li, yongxin.yang, yizhe.song}@qmul.ac.uk, t.hospedales@ed.ac.uk

Abstract

The problem of domain generalization is to learn from

multiple training domains, and extract a domain-agnostic

model that can then be applied to an unseen domain. Do-

main generalization (DG) has a clear motivation in con-

texts where there are target domains with distinct charac-

teristics, yet sparse data for training. For example recogni-

tion in sketch images, which are distinctly more abstract and

rarer than photos. Nevertheless, DG methods have primar-

ily been evaluated on photo-only benchmarks focusing on

alleviating the dataset bias where both problems of domain

distinctiveness and data sparsity can be minimal. We ar-

gue that these benchmarks are overly straightforward, and

show that simple deep learning baselines perform surpris-

ingly well on them.

In this paper, we make two main contributions: Firstly,

we build upon the favorable domain shift-robust proper-

ties of deep learning methods, and develop a low-rank pa-

rameterized CNN model for end-to-end DG learning. Sec-

ondly, we develop a DG benchmark dataset covering photo,

sketch, cartoon and painting domains. This is both more

practically relevant, and harder (bigger domain shift) than

existing benchmarks. The results show that our method out-

performs existing DG alternatives, and our dataset provides

a more significant DG challenge to drive future research.

1. Introduction

Learning models that can bridge train-test domain-shift

is a topical issue in computer vision and beyond. In vi-

sion this has been motivated recently by the observation of

significant bias across popular datasets [27], and the poor

performance of state-of-the-art models when applied across

datasets. Existing approaches can broadly be categorized

into domain adaptation (DA) methods, that use (un)labeled

target data to adapt source model(s) to a specific target do-

main [23]; and domain generalization (DG) approaches,

that learn a domain agnostic model from multiple sources

that can be applied to any target domain [12, 10]. While DA

has been more commonly studied, DG is the more valuable
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Figure 1: Contrast between prior Caltech Office and VLCS

datasets versus our new PACS dataset. The domain gener-

alization task is to recognize categories in an unseen testing

domain. PACS provides more diverse domains with bigger

more challenging domain-shifts between them.

yet challenging setting, as it does not require acquisition of

a large target domain set for off-line analysis to drive adap-

tation. Such data may not even exist if the target domain

is sparse. Instead it aims to produce a more human-like

model, where there is a deeper semantic sharing across dif-

ferent domains – a dog is a dog no matter if it is depicted in

the form of a photo, cartoon, painting, or indeed, a sketch.

The most popular existing DA/DG benchmarks define

domains as photos of objects spanning different camera

types [23], or datasets collected with different composi-

tion biases [27]. While these benchmarks provide a good

start, we argue that they are neither well motivated nor

hard enough to drive the field. Motivation: The constituent

domains/datasets in existing benchmarks are based upon

conventional photos, albeit with different camera types or

composition bias. However there exist enough photos, that
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one could in principle collect enough target domain-specific

data to train a good model, or enough diverse data to cover

all domains and minimize bias (thus negating the need

for DA). A more compelling motivation is domains where

the total available images is fundamentally constrained,

such as for particular styles of art [5, 29], and sketches

[33, 6, 34, 26]. Compared to photos, there may simply

not be enough examples of a given art style to train a good

model, even if we are willing to spend the effort. Difficulty:

The camera type and bias differences between domains in

existing benchmarks are already partially bridged by con-

temporary Deep features [4, 32], thus questioning the need

for DA or DG methods. In this paper, we show that multi-

domain deep learning provides a very simple but highly ef-

fective approach to DG that outperforms existing purpose-

designed methods.

To address these limitations, we provide a harder and

better motivated benchmark dataset PACS, consisting of

images from photo (P), art painting (A), cartoon (C), and

sketch (S) domains. This benchmark carries two important

advancements over prior examples: (i) it extends the previ-

ously photo-only setting in DA/DG research, and uniquely

includes domains that are maximally distinct from each

other, spanning a wide spectrum of visual abstraction, from

photos that are the least abstract to human sketches which

are the most abstract; (ii) it is more reflective of a real-world

task where a target domain (such as sketch) is intrinsically

sparse, and so DG from a more abundant domain (such as

photos) is really necessary. As illustrated qualitatively in

Fig. 1, the benchmark is harder, as the domains are visu-

ally more distinct than in prior datasets. We explore these

differences quantitatively in Sec. 4.2.

There have been a variety of prior approaches to DG

based on SVM [12, 30], subspace learning [19], metric

learning [7], and autoencoders [10]. Despite their differ-

ences, most of these have looked at fixed shallow features.

In this paper, we address the question of how end-to-end

learning of deep features impacts the DG setting. Our deep

learning approach trains on multiple source domains, and

extracts both domain agnostic features (e.g., convolutional

kernels), and classifier (e.g., final FC layer) for transfer to

a new target domain. This approach can be seen as a deep

multi-class generalization of the shallow binary Undo Bias

method [12], which takes the form of a dynamically param-

eterized deep neural network [25]. However, the resulting

number of parameters grows linearly with the number of

source domains (of which ultimately, we expect many for

DG), increasing overfitting risk. To address this we develop

a low-rank parameterized neural network which reduces the

number of parameters. Furthermore the low-rank approach

provides an additional route to knowledge sharing besides

through explicit parameterization. In particular it has the

further benefit of automatically modeling how related the

different domains are (e.g., perhaps sketch is similar to car-

toon; and cartoon is similar to painting), and also how the

degree of sharing should vary at each layer of the CNN.

To summarize our contributions: Firstly, we highlight

the weaknesses of existing methods (they lose to a simple

deep learning baseline) and datasets (their domain shift is

small). Second, we introduce a new, better motivated, and

more challenging DG benchmark. Finally, we develop a

novel DG method based on low-rank parameterized CNNs

that shows favorable performance compared to prior work.

2. Related work

Domain Generalization Despite different methodologi-

cal tools (SVM, subspace learning, autoencoders, etc), ex-

isting methods approach DG based on a few different in-

tuitions. One is to project the data to a new domain in-

variant representation where the differences between train-

ing domains is minimized [19, 10], with the intuition that

such a space will also be good for an unseen testing do-

main. Another intuition is to predict which known domain

a testing sample seems most relevant to, and use that clas-

sifier [30]. Finally, there is the idea of generating a domain

agnostic classifier, for example by asserting that each train-

ing domain’s classifier is the sum of a domain-specific and

domain-agnostic weight vector [12]. The resulting domain-

agnostic weight vector can then be extracted and applied to

held out domains. Our approach lies in this latter category.

However, prior work in this area has dealt with shallow, lin-

ear models only. We show how to extend this intuition to

end-to-end learning in CNNs, while limiting the resulting

parameter growth, and making the sharing structure richer

than an unweighted sum.

There has been more extensive work on CNN models for

domain adaptation, with methods developed for encourag-

ing CNN layers to learn transferable features [9, 17]. How-

ever, these studies have typically not addressed our domain

generalization setting. Moreover, as analysis has shown that

the transferability of different layers in CNNs varies signif-

icantly [32], these studies have had carefully hand designed

the CNN sharing structure to address their particular DA

problems. In our benchmark, this is harder, as the gaps be-

tween our more diverse domains are unknown and likely

to be more variable. However, our low-rank modeling ap-

proach provides the benefit of automatically estimating both

the per-domain and per-layer sharing strength.

Domain Generalization is also related to learning to

learn. Learning to learn methods aim to learn not just spe-

cific concepts or skills, but learning algorithms or prob-

lem agnostic biases that improve generalization [20, 22, 8].

Similarly DG is to extract common knowledge from source

domains that applies to unseen target domains. Thus our

method can be seen as a simple learning to learn method for
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the DG setting. Different from few-shot learning [8, 22],

DG is a zero-shot problem as performance is immediately

evaluated on the target domain with no further learning.

Neural Network Methods Our DG method is related to

parameterized neural networks [1, 25], in that the parame-

ters are set based on external metadata. In our case, based

on a description of the current domain, rather than an in-

stance [1], or additional sensor [25]. It is also related to low-

rank neural network models, typically used to compress

[13] and speed up [16] CNNs, and have very recently been

explored for cross-category CNN knowledge transfer [31].

In our case we exploit this idea both for compression – but

across rather than within domains [13], as well as for cross-

domain (rather than cross-category [31]) knowledge shar-

ing. Different domains can share parameters via common

latent factors. [2] also addresses the DG setting, but learns

shared parameters based on image reconstruction, whereas

ours is learned via paramaterizing each domain’s CNN. As

a parameterized neural network, our approach also differs

from all those other low-rank methods [13, 16, 31], which

have a fixed parameterization.

2.1. Benchmarks and Datasets

DG Benchmarks The most popular DG benchmarks are:

‘Office’ [23] (containing Amazon/Webcam/DSLR images),

later extended to include a fourth Caltech 101 domain

[11] (OfficeCaltech) and Pascal 2007, LabelMe, Caltech,

SUN09 (VLCS) [27, 12]. The domains within Office relate

to different camera types, and the others are created by the

biases of different data collection procedures [27]. Despite

the famous analysis of dataset bias [27] that motivated the

creation of the VLCS benchmark, it was later shown that the

domain shift is much smaller with recent deep features [4].

Thus recent DG studies have used deep features [10], to ob-

tain better results. Nevertheless, we show that a very simple

baseline of fine-tuning deep features on multiple source do-

mains performs comparably or better than prior DG meth-

ods. This motivates our design of a CNN-based DG method,

as well as our new dataset (Fig 1) which has greater domain

shift than the prior benchmarks. Our dataset draws on non-

photorealistic and abstract visual domains which provide a

better motivated example of the sort of relatively sparse data

domain where DG would be of practical value.

Non-photorealistic Image Analysis Non-photorealistic

image analysis is a growing subfield of computer vision

that extends the conventional photo-only setting of vision

research to include other visual depictions (often more ab-

stract) such as paintings and sketches. Typical tasks include

instance-level matching between sketch-photo [33, 24], and

art-photo domains [3], and transferring of object recogniz-

ers trained on photos to detect objects in art [5, 29]. Most

prior work focuses on two domains (such as photo and

painting [5, 29], or photo and sketch [33, 24]). Studies have

investigated simple ‘blind’ transfer between domains [5],

learning cross-domain projections [33, 3], or engineering

structured models for matching [29]. Thus, in contrast to

our DG setting, prior non-photorealistic analyses fall into

either cross-domain instance matching, or domain adapta-

tion settings. To create our benchmark, we aggregate mul-

tiple domains including paintings, cartoons and sketches,

and define a comprehensive domain-generalization bench-

mark covering a wide spectrum of visual abstraction based

upon these. Thus in contrast to prior DG benchmarks, our

domain-shifts are bigger and more challenging.

3. Methodology

Assume we observe S domains, and the ith domain con-

tains Ni labeled instances {(x
(i)
j , y

(i)
j )}Ni

j=1 where x
(i)
j is the

input data (e.g., an image) for which we assume they are

of the same size among all domains (e.g., all images are

cropped into the same size), and y
(i)
j ∈ {1 . . . C} is the

class label. We assume the label space is consistent across

domains. The objective of DG is to learn a domain agnostic

model which can be applied to unseen domains in the fu-

ture. In contrast to domain adaptation, we can not access

the labeled or unlabeled examples from those domains to

which the model is eventually applied. So the model is sup-

posed to extract the domain agnostic knowledge within the

observed domains. In the training stage, we will minimize

the empirical error for all observed domains,

argmin
Θ1,Θ2,...,ΘS

1

S

S∑

i=1

1

Ni

Ni∑

j=1

ℓ(ŷ
(i)
j , y

(i)
j ) (1)

where ℓ is the loss function that measures the error between

the predicted label ŷ and the true label y, and prediction

is carried out by a function ŷ
(i)
j = f(x

(i)
j |Θi) parameter-

ized by Θi. A straightforward approach to finding a do-

main agnostic model is to assume Θ∗ = Θ1 = Θ2 =
· · · = ΘS , i.e., there exists a universal model Θ∗. Doing

so we literally ignore the domain difference. Alternatively,

Undo-Bias [12] considers linear models, and assumes that

the parameter (a D-dimensional vector when x ∈ R
D)

for the ith domain is in the form Θ(i) = Θ(0) + ∆(i),

where Θ(0) can be seen as a domain agnostic model that

benefits all domains, and ∆(i) is a domain specific bias

term. Conceptually, Θ(0) can also serve as the classifier

for any unseen domains. [12] showed that (for linear mod-

els) Θ(0) is better than the universal model Θ∗ trained by

argmin
Θ∗

1
S

∑S

i=1
1
Ni

∑Ni

j=1 ℓ(Θ
T
∗
x
(i)
j , y

(i)
j ) in terms of test-

ing performance on unseen domains. However we show

that for deep networks, a universal model f(x|Θ∗) is a

strong baseline that requires improved methodology to beat.
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3.1. Parameterized Neural Network for DG

To extend the idea of Undo-Bias [12] into the neural net-

work context, it is more convenient to think Θ(i) is gener-

ated from a function g(z(i)|Θ) parameterized by Θ. Here

z(i) is a binary vector encoding of the ith domain with two

properties: (i) it is of length S + 1 where S is the number

of observed domains; (ii) it always has only two units acti-

vated (being one): the ith unit active for the ith domain and

the last unit active for all domains. Formally, the objective

function becomes,

argmin
Θ

1

S

S∑

i=1

1

Ni

Ni∑

j=1

ℓ(ŷ
(i)
j , y

(i)
j ) (2)

where ŷ
(i)
j = f(x

(i)
j |Θi) = f(x

(i)
j |g(z(i)|Θ)).

To reproduce Undo-Bias [12], we can stack all param-

eters in a column-wise fashion to form Θ, i.e., Θ =
[∆(1),∆(2), . . . ,∆(S),Θ(0)], and choose the g(·) function

to be linear mapping: g(z(i)|Θ) = Θz(i).

From linear to multi-linear The method as described so

far generates the model parameter in the form of vector thus

it is only suitable for single-out setting (univariate regres-

sion or binary classification). To generate higher order pa-

rameters, we use a multi-linear model, where Θ is (3rd order

or higher) tensor. E.g., to generate a weighting matrix for a

fully-connected layer in neural network, we can use

W
(i)
FC = g(z(i)|W) = W ×3 z

(i) (3)

Here ×3 is the inner product between tensor and vector

along tensor’s 3rd axis. For example if W is the weight

matrix of size H × C (i.e., the number of input neurons

is H and the number of output neurons is C) then W is a

H × C × (S + 1) tensor.

If we need to generate the parameter for a convolutional

layer of size D1×D2×F1×F2 (Height×Width×Depth×
Filter Number), then we use:

W
(i)
CONV = g(z(i)|W) = W ×5 z

(i) (4)

where W is a 5th order tensor of size D1×D2×F1×F2×
(S + 1).

Domain generalization Using one such parameter gen-

erating function per layer, we can dynamically generate the

weights at every layer of a CNN based on the encoded vec-

tor of every domain. In this approach, knowledge sharing

is realized through the last (bias) bit in the encoding of z.

I.e., every weight tensor for a given domain is the sum of a

domain specific tensor and a (shared) domain agnostic ten-

sor. For generalization to an unseen domain, we apply the

one-hot, bias-only, vector z∗ = [0, 0, . . . , 0, 1] to synthesize

a domain agnostic CNN.

3.2. Low rank parameterized CNNs

The method as described so far has two limitations: (i)

the required parameters to learn now grow linearly in the

number of domains (which we eventually hope to be large

to achieve good DG), and (ii) the sharing structure is very

prescribed: every parameter is an equally weighted sum of

its domain agnostic and domain-specific bias partners.

To alleviate these two issues, we place a structural con-

straint on W . Motivated by the well-known Tucker decom-

position [28], we assume that the M -order tensor W is syn-

thesized as:

W = G ×1 U1 · · · ×M UM (5)

where G is a K1 × . . .KM sized low-rank core tensor,

and Um are Km × Dm matrices (note that DM = S +
1). By controlling the ranks K1 . . .KM we can effec-

tively reduce the number of parameters to learn. By learn-

ing {G, U1 . . . UM} instead of W , the number of param-

eters is reduced from (D1 × · · · × DM−1 × (S + 1)) to

(K1× . . .KM )+
∑M−1

m=1 Dm×Km+KM × (S+1). Be-

sides, UM produces a KM -dimensional dense vector that

guides how to linearly combine the shared factors, which

is much more informative than the original case of equally

weighted sum.

Given a tensor W the Tucker problem can be solved via

high-order singular value decomposition (HO-SVD) [15].

G = W ×1 U
T
1 · · · ×M UT

M (6)

where Un is the U matrix from the SVD of the the mode-n

flattening of W . However, note that aside from (optionally)

performing this once for initialization, we do not perform

this costly HO-SVD operation during learning.

Inference and Learning To make predictions for a par-

ticular domain, we synthesize a concrete CNN by multi-

plying out the parameters {G, U1, . . . , UM} after that do-

ing an inner product with the corresponding domain’s z.

This CNN can then be used to classify an input instance x.

Since our method does not introduce any non-differentiable

functions, we can use standard back-propagation to learn

{G, U1, . . . , UM} for every layer.

For our model there are hyperparameters – Tucker rank

[K1 . . .KM ] – that can potentially be set at each layer. We

sidestep the need to set all of these, by using the strategy

of decomposing the stack of (ImageNet pre-trained) single

domain models plus one agnostic domain model through

Tucker decomposition, and then applying a reconstruction

error threshold of ǫ = 10% for the HO-SVD in Eq 6.

This effectively determines all rank values via one ‘sharing

strength’ hyperparameter ǫ.
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4. Experiments

4.1. New Domain Generalization Dataset: PACS

Our PACS DG dataset is created by intersecting the

classes found in Caltech256 (Photo), Sketchy (Photo,

Sketch) [24], TU-Berlin (Sketch) [6] and Google Images

(Art painting, Cartoon, Photo). Our dataset and code, to-

gether with latest results using alternative state-of-the-art

base networks, can be found at: http://sketchx.

eecs.qmul.ac.uk/.

PACS: Our new benchmark includes 4 domains (Photo,

Sketch, Cartoon, Painting), and 7 common categories ‘dog’,

‘elephant’, ‘giraffe’. ‘guitar’, ‘horse’, ‘house’, ‘person’.

The total number of images is 9991.

4.2. Characterizing Benchmarks’ Domain Shifts

We first perform a preliminary analysis to contrast the

domain shift within our PACS dataset to that of prior popu-

lar datasets such as VLCS. We make this contrast from both

a feature space and a classifier performance perspective.

Feature Space Analysis Given the DG setting of train-

ing on source domains and applying to held out test do-

main(s), we measure the shift between source and tar-

get domains based on the Kullback-Leibler divergence as:

Dshift(D
s, Dt) = 1

m×n

n∑
i

m∑
j

λiKLD(Ds
i ||D

t
j), where n

and m are the number of source and target domains, and λi

weights the i th source domain, to account for data imbal-

ance. To encode each domain as a probability, we calculate

the mean DECAF7 representation over instances and then

apply softmax normalization.

Classifier Performance Analysis We also compare the

datasets by the margin between multiclass classification

accuracy of within-domain learning, and a simple cross-

domain baseline of training a CNN on all the source do-

mains before testing on the held out target domain (as we

shall see later, this baseline is very competitive). Assum-

ing within-domain learning performance is an upper bound,

then this difference indicates the space which a DG method

has to make a contribution, and hence roughly reflects size

of the domain-shift/difficulty of the DG task.

Results Fig. 2(a) shows the average domain-shift in terms

of KLD across all choices of held out domain in our new

PACS benchmark, compared with the VLCS benchmark

[27]. Clearly the domain shift is significantly higher in our

new benchmark, as is visually intuitive from the illustrative

examples in Fig. 1. To provide a qualitative summarization,

we also show the distribution of features in our PACS com-

pared to VLCS in Fig. 2(b,c) as visualized by a 2 dimen-

sional t-SNE [18] plot, where the features are categorized

and colored by their associated domain. From this result,

we can see that the VLCS data are generally hard to sepa-

rate by domain, while our PACS data are much more sepa-

rated by domain. This illustrates the greater degree of shift

between the domains in PACS over VLCS.

We next explore the domain shifts from a model-, rather

than feature-centric perspective. Fig. 3a summarizes the

within-domain and across-domain performance for each do-

main within PACS and VLCS benchmarks. The average

drop in performance due to cross-domain transfer is 20.2%
for PACS versus 10.0% for VLCS. This shows that the

scope for contribution of DG/DA in our PACS is double that

of VLCS, and illustrates the greater relevance and challenge

of the PACS benchmark.

4.3. Domain Generalization Experiments

4.3.1 Datasets and Settings

We evaluate our proposed method on two datasets: VLCS,

and our proposed PACS dataset. VLCS [27] aggregates

photos from Caltech, LabelMe, Pascal VOC 2007 and

SUN09. It provides a 5-way multiclass benchmark on

the five common classes: ’bird’,’car’,’chair’,’dog’ and ’per-

son’. Our PACS (described in Sec. 4.1) with 7 classes from

Photo, Sketch, Cartoon, Painting domains. All results are

evaluated by multi-class accuracy, following [10]. We ex-

plore features including Classic SIFT features (for direct

comparison with earlier work), DECAF pre-extracted deep

features following [10], and E2E end-to-end CNN learning.

Settings: For our method in E2E configuration, we use

the ImageNet pre-trained AlexNet CNN, fine-tuned with

multi-domain learning on the training domains. On VLCS,

we follow the train-test split strategy from [10]. Our ini-

tial learning rate is 5e-5 and batch size is 64 for each train-

ing domain. We use the best performed model on valida-

tion to do the test after tuning the model for 25k iterations.

On PACS, we split the images from training domains to 9

(train) : 1 (val) and test on the whole held-out domain. Re-

call that our model uses a 2-hot encoding of z to parameter-

ize the CNN. The domain-specific vs agnostic ‘prior’ can

be set by varying the ratio ρ of the elements in the 2-hot

coding. For training we use ρ = 0.3, so z = {[0, 0, 0.3, 1],
[0, 0.3, 0, 1], ...}. For DG testing we use z = [0, 0, 0, 1].

Baselines: We evaluate our contributions by comparison

with number of alternatives including variants designed to

reveal insights, and state of the art competitors:

Ours-MLP: Our DG method applied to a 1 hidden layer

multi-layer perception. For use with pre-extracted features.

Ours-Full: Our full low-rank parameterized CNN trained

end-to-end on images. SVM: Linear SVM, applied on the

aggregation of data from all source domains. Deep-All:

Pretrained Alexnet CNN [14], fine-tuned on the aggrega-

tion of all source domains. Undo-Bias: Modifies tradi-

tional SVM to include a domain-specific and global weight

vector which can be extracted for DG [12]. The original
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Undo-Bias is a binary classifier (BC). We also implement a

multi-class (MC) generalization. uDICA: A kernel based

method learning a subspace to minimize the dissimilarity

between domains [19]1. UML: Structural metric learning

algorithm learn a low-bias distance metric for classifica-

tion tasks [7]. LRE-SVM: Exploits latent domains, and

a nuclear-norm based regularizer on the likelihood matrix

of exemplar-SVM [30]. 1HNN: 1 hidden layer neural net-

work. MTAE-1HNN: 1HNN with multi-task auto encoder

[10]. D-MTAE-1HNN: 1HNN with de-noising multi-task

auto encoder [10]. DSN: The domain separation network

learns specific and shared models for the source and target

domains [2]. We re-purpose the original DSN from the do-

main adaptation to the DG task. Note that DSN is already

shown to outperform the related [9].

4.3.2 VLCS Benchmark

Classic Benchmark - Binary Classification with Shallow

Features Since our approach to extracting a domain in-

variant model is related to the intuition in Undo Bias [12],

we first evaluate our methodology by performing a direct

comparison against Undo Bias. We use the same 5376 di-

1Like [10], we found sDICA to be worse than uDICA, so excluded it.

mensional VLCS SIFT-BOW features2 from [12], and com-

pare Our-MLP using one RELU hidden layer with 4096

neurons. For direct comparison, we apply Our-MLP in

a 1-vs-All manner as per Undo-Bias. The results in Ta-

ble 1 show that without exploiting the benefit of end-to-end

learning, our approach still performs favorably compared

to Undo Bias. This is due to (i) our low-rank modeling of

domain-specific and domain-agnostic knowledge, and (ii)

the generalization of doing so in a multi-layer network.

Multi-class recognition with Deep Learning In this ex-

periment we continue to analyze the VLCS benchmark,

but from a multiclass classification perspective. We com-

pare existing DG methods (Undo-Bias [12], UML [7],

LRE-SVM [30], uDICA [19], MTAE+1HNN [10], D-

MTAE+1HNN [10]) against baselines (1HNN, SVM, Deep)

and our methods Ours-MLP/Ours-Full. For the other meth-

ods besides Deep-All and Ours-Full, we follow [10] and use

pre-extracted DECAF6 features3 [4]. For Deep and Ours-

Full, we fine-tune the CNN on the source domains.

From the results in Table 2, we make the following ob-

2http://undoingbias.csail.mit.edu/
3http://www.cs.dartmouth.edu/˜chenfang/proj_

page/FXR_iccv13/index.php
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Unseen domain
Bird Car Chair Dog Person

Undo bias Ours-MLP Undo bias Ours-MLP Undo bias Ours-MLP Undo bias Ours-MLP Undo bias Ours-MLP

Caltech 12.08 10.89 63.80 61.29 7.54 11.26 5.24 3.90 50.81 48.48

LabelMe 33.08 28.35 69.22 74.07 5.34 3.68 1.66 2.06 64.85 67.00

Pascal 15.42 13.63 37.49 42.81 30.05 32.71 14.97 15.93 58.47 63.61

Sun 0.59 2.01 70.62 71.32 37.44 37.50 1.12 1.89 42.20 42.71

Mean AP % 15.29 13.72 60.28 62.37 20.09 21.29 5.75 5.94 54.08 55.45

Table 1: Comparison against Undo-Bias [12] on the VLCS benchmark using classic SIFT-BOW features, and our shallow

model Ours-MLP. Average precision (%) and mean average precision (%) of binary 1-v-all classification in unseen domains.

Unseen domain
Image 7→ Deep Feature 7→ Classifier Image 7→ E2E

SVM 1HNN Undo-Bias[12] uDICA[19] UML[7] LRE-SVM[30] MTAE+1HNN[10] D-MTAE+1HNN[10] Ours-MLP Deep-All Ours-Full

Caltech 77.67 86.67 87.50 61.70 91.13 88.11 90.71 89.05 92.43 93.40 93.63

LabelMe 52.49 58.20 58.09 46.67 58.50 59.74 59.24 60.13 58.74 62.11 63.49

Pascal 58.86 59.10 54.29 44.41 56.26 60.58 61.09 63.90 65.58 68.41 69.99

Sun 49.09 57.86 54.21 38.56 58.49 54.88 60.20 61.33 61.85 64.16 61.32

Ave.% 59.93 65.46 63.52 47.83 65.85 65.83 67.81 68.60 69.65 72.02 72.11

Table 2: Comparison of features and state of the art on the VLCS benchmark. Multi-class accuracy (%).

servations: (i) Given the fixed DECAF6 feature, most prior

DG methods improve on vanilla SVM, and D-MTAE [10] is

the best of these. (ii) Ours-MLP outperforms 1HNN, which

uses the same type of architecture and the same feature.

This margin is due to our low-rank domain-generalization

approach. (iii) The very simple baseline of fine-tuning a

deep model on the aggregation of source domains (Deep-

All) performs surprisingly well and actually outperforms all

the prior DG methods. (iii) Ours-Full outperforms Deep-All

slightly. This small margin is understandable. Our model

does have more parameters to learn than Deep-All, despite

the low rank; and the cost of doing this is not justified by the

relatively small domain gap between the VLCS datasets.

4.3.3 Our PACS benchmark

We compare baselines (SVM, 1HNN) and prior methods

(LRE-SVM [30], D-MTAE+1HNN [10], uDICA [19]) us-

ing DECAF7 features against Deep-ALL, DSN [2] and

Ours-Full using end-to-end learning. From the results in Ta-

ble 3 we make the observations: (i) uDICA and D-MTAE-

1HNN are the best prior DG models, and DSN is also effec-

tive despite being designed for DA. While uDICA scores

well overall, this is mostly due to very high performance on

the photo domain. This is understandable as in that condi-

tion DICA uses unaltered DECAF7 features tuned for photo

recognition. It is also the least useful direction for DG, as

photos are already abundant. (ii) As for the VLCS bench-

mark, Deep-ALL again performs well. (iii) However Ours-

Full performs best overall by combining the robustness of a

CNN architecture with an explicit DG mechanism.

Ablation Study: To investigate the contributions of each

components in our framework, we compare the following

variants: Tuning-Last: Trains on all sources followed by di-

rect application to the target. But fine-tunes the final FC

layer only. 2HE-Last: Fine-tunes the final FC layer, and

uses our tensor weight generation (Eq. 3) based on 2-hot

encoding for multidomain learning, before transferring the

shared model component to the target. But without low

rank factorisation. 2HE+Decomp-Last: Uses 2-hot encod-

ing based weight synthesis, and low-rank decomposition of

the final layer (Eq. 3). Ours-Full: Uses 2-hot encoding and

low-rank modeling on every layer in the CNN.

From the results, we can see that each component

helps: (i) 2HE-Last outperforms Tuning-Last, demonstrat-

ing the ability of our tensor weight generator to synthe-

size domain agnostic models for a multiclass classifier.

(ii) 2HE+Decomp-Last outperforms 2HE-Last, demonstrat-

ing the value of our low-rank tensor modeling of the

weight generator parameters. (iii) Ours-Full outperforms

2HE+Decomp-Last, demonstrating the value of performing

these DG strategies at every layer of the network.

4.4. Further Analysis

Learned Layer-wise Sharing Strength An interesting

property of our approach is that, unlike some other deep

learning methods [9, 17] it does not require manual specifi-

cation of the cross-domain sharing structure at each layer of

the CNN; and unlike Undo Bias [12] it can choose how to

share more flexibly through the rank choice at each layer.

We can observe the estimated sharing structure at each

layer by performing Tucker decomposition to factorize the

tuned model under a specified reconstruction error thresh-

old (ǫ = 0.001). The resulting domain-rank at each layer

reveals the sharing strength. The rank per-layer for each

held-out domain in PACS is shown in Fig. 3b. Here there

are three training domains, so the maximum rank is 3 and

the minimum rank is 1. Intuitively, the results show heavily

shared Conv1-Conv3 layers, and low-sharing in FC6-FC8
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Figure 4: Visualization of the preferred images of output neurons ‘horse’, ‘giraffe’ and ‘house’ in the domains of the PACS

dataset. Left: real images. Middle: synthesized images for PACS domains. Right: synthesized images for agnostic domain.

Unseen domain
Image 7→ Deep Feature 7→ Classifier Image 7→ E2E

SVM 1HNN uDICA [19] LRE-SVM [30] D-MTAE+1HNN [10] Ours-MLP Deep-All DSN [2] Ours-Full

Art painting 55.39 59.10 64.57 59.74 60.27 61.40 63.30 61.13 62.86

Cartoon 52.86 57.89 64.54 52.81 58.65 57.16 63.13 66.54 66.97

Photo 82.83 89.86 91.78 85.53 91.12 89.68 87.70 83.25 89.50

Sketch 43.89 50.31 51.12 37.89 47.86 50.38 54.07 58.58 57.51

Ave.% 58.74 64.29 68.00 58.99 64.48 64.65 67.05 67.37 69.21

Table 3: Evaluation % of classification on PACS. Multi-class accuracy (%).

Unseen domain
Ablation Study

Tuning-Last 2HE-Last 2HE+Decom-Last Ours-Full

Art painting 59.79 59.20 62.71 62.86

Cartoon 56.22 55.50 52.69 66.97

Photo 86.79 87.33 88.84 89.50

Sketch 46.41 48.45 52.16 57.51

Ave.% 62.30 62.62 64.10 69.21

Table 4: Ablation study. Multi-class accuracy (%).

layers. The middle layers Conv4 and Conv5 have different

sharing strength according to which domains provide the

source set. For example, in Conv 5, when Sketch is unseen,

the other domains are relatively similar so can have greater

sharing, compared to when Sketch is included as a seen do-

main. This is intuitive as Sketch is the most different from

the other three domains. This flexible ability to determine

sharing strength is a key property of our model.

Visualization To visualize the preferences of our multi-

domain network, we apply the DGN-AM [21] method to

synthesize the preferred input images for our model when

parameterized (via the domain descriptor z) to one spe-

cific domain versus the abstract domain-agnostic factor.

This visualization is imperfect because [21] is trained us-

ing a photo-domain, and most of our domains are non-

photographic art. Nevertheless, from Fig. 4 the synthesis

for Photo domain seem to be the most concrete, while the

Sketch/Cartoon/Painting domains are more abstract.

5. Conclusion

We presented a new dataset and deep learning-based

method for domain generalization. Our PACS (Photo-Art-

Cartoon-Sketch) dataset is aligned with a practical applica-

tion of domain generalization, and we showed it has more

challenging domain shift than prior datasets, making it suit-

able to drive the field in future. Our new domain gener-

alization method integrates the idea of learning a domain-

agnostic classifier with a robust deep learning approach for

end-to-end learning of domain generalization. The result

performs comparably or better than prior approaches.
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