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Abstract

Textual-visual matching aims at measuring similarities

between sentence descriptions and images. Most exist-

ing methods tackle this problem without effectively utiliz-

ing identity-level annotations. In this paper, we propose an

identity-aware two-stage framework for the textual-visual

matching problem. Our stage-1 CNN-LSTM network learns

to embed cross-modal features with a novel Cross-Modal

Cross-Entropy (CMCE) loss. The stage-1 network is able to

efficiently screen easy incorrect matchings and also provide

initial training point for the stage-2 training. The stage-2

CNN-LSTM network refines the matching results with a la-

tent co-attention mechanism. The spatial attention relates

each word with corresponding image regions while the la-

tent semantic attention aligns different sentence structures

to make the matching results more robust to sentence struc-

ture variations. Extensive experiments on three datasets

with identity-level annotations show that our framework

outperforms state-of-the-art approaches by large margins.

1. Introduction

Identifying correspondences and measuring similarities

between natural language descriptions and images is an im-

portant task in computer vision and has many applications,

including text-image embedding [21, 35, 32, 26, 16], zero-

shot learning [25, 27, 7], and visual QA [3, 8, 41, 24, 19].

We call such a general problem textual-visual matching,

which has drawn increasing attention in recent years. The

task is challenging because the complex relations between

language descriptions and image appearance are highly

non-linear and there exist large variations or subtle varia-

tions in image appearance for similar language descriptions.

There have been large scale image-language datasets and

deep learning techniques [18, 13, 3, 36, 10] proposed for

textual-visual matching, which considerably advanced re-

search progress along this direction. However, identity-

level annotations provided in benchmark datasets are ig-

nored by most existing methods when performing matching

across textual and visual domains.
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Figure 1. Learning deep features for textual-visual matching with

identity-level annotations. Utilizing identity-level annotations

could jointly minimize intra-identity discrepancy and maximize

inter-identity discrepancy, and thus results in more discriminative

feature representations.

In this paper, we propose a two-stage framework for

identity-aware textual-visual matching, which consists of

two deep neural networks. The stage-1 network learns

identity-aware feature representations of images and lan-

guage descriptions by introducing a Cross-Modal Cross-

Entropy (CMCE) loss to effectively utilize identity-level an-

notations for feature learning (see Figure 1). After train-

ing, it provides initial matching results and also serves as

the initial point for training stage-2 network. The stage-2

deep neural network employs a latent co-attention mecha-

nism that jointly learns the spatial attention and latent se-

mantic attention to match salient image regions and latent

semantic concepts for textual-visual affinity estimation.

Our stage-1 network consists of a CNN and a LSTM

for learning textual and visual feature representations. The

objective is to minimize the feature distances between de-

scriptions and images belonging to the same identities. The

stage-1 network utilizes a specialized CMCE loss with dy-

namic buffers, which implicitly minimizes intra-identity

feature distances and maximize inter-identity feature dis-

tances over the entire dataset instead of just small mini-

batches. In contrast, for the pairwise or triplet loss func-

tions, the probability of sampling hard negative samples

during training decreases quadratically or cubically as the

number of training sample increases.
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The trained stage-1 network is able to efficiently screen

easy incorrect matchings for both training and testing.

However, one limitation of the CMCE loss in stage-1 is that

the generated textual and visual features are not tightly cou-

pled. A further refinement on stage-1 results is essential for

obtaining accurate matching results. Our stage-2 network

is a tightly coupled CNN-LSTM network with latent co-

attention. It takes a pair of language description and image

as input and outputs the textual-visual matching confidence,

which is trained with the binary cross-entropy loss.

Conventional RNNs for language encoding have diffi-

culty in remembering the complete sequential information

when the input descriptions are too long. It tends to miss

important words appearing in the beginning of the sentence.

The RNN is also variant to different sentence structures.

Sentences describing the same image but with different sen-

tence structures could be represented by features with large

differences. For instance, “the girl who has blond hair is

wearing a white dress and heels” and “The girl wears heels

and a white dress. She has blond hair.” Both sentences de-

scribe the same person but the first one might focus more

on “white dress and heels”, and the second one might as-

sign “blond hair” with higher weights. Inspired by the word

alignment (attention) technique in neural machine transla-

tion [4], a latent co-attention mechanism is proposed for the

stage-2 CNN-LSTM network. The visual spatial attention

module associates word to its related image regions. The

latent semantic attention module aligns different sentence

structures with an alignment decoder LSTM. At each step

of the LSTM, it learns how to weight different words’ fea-

tures to be more invariant to sentence structure variations.

The contribution of this paper is three-fold. 1) We pro-

pose a novel identity-aware two-stage deep learning frame-

work for solving the problem of textual-visual matching.

The stage-1 network can efficiently screen easy incorrect

matchings and also acts as the initial point for training

stage-2 network. The stage-2 network refines matching re-

sults with binary classification. Identity-level annotations

ignored by most existing methods are utilized to learn better

feature representations. 2) To take advantage of the identity-

level annotations, our stage-1 network employs a special-

ized CMCE loss with feature buffers. Such a loss enables

effective feature embedding and fast evaluation. 3) A novel

latent co-attention mechanism is proposed for our stage-2

network. It has a spatial attention module that focuses on

relevant image regions for each input word, and a latent se-

mantic attention module that automatically aligns different

words’ feature representations to minimize the impact of

sentence structure variations.

2. Related Work

2.1. Visual matching with identity­level annotations

Visual matching tasks with identity-level annotations,

such as person re-identification [37, 34, 1, 17, 39, 34, 38]

and face recognition [22, 28], are well-developed research

areas. Visual matching algorithms either classify all the

identities simultaneously [17, 14, 33] or learn pair-wise

or triplet distance loss function [1, 22, 28, 6] for feature

embedding. However, both of them have major limita-

tions. The first type of loss function faces challenges when

the number of classes is too large. The limited number

of classes (identities) in each mini-batch leads to unstable

training behavior. For the second type of loss function, the

hard negative training samples might be difficult to sam-

ple as the number of training sample increases, and the

computation time of constructing pairs or triplets increases

quadratically or cubically with the number of test samples.

2.2. Textual­visual matching

Measuring similarities between images and languages

aims at understanding the relations between images and

language descriptions. It gains a lot of attention in recent

years because of its wide applications in image caption-

ing [20, 31, 11, 5], visual QA [3, 41, 24, 19], and text-

image embedding [7, 26, 12, 35, 32]. Karpathy et al. [11]

combined the convolutional neural network for image re-

gions and bidirectional recurrent neural networks for de-

scriptions to generate image captions. The word-image

pairwise affinities are calculated for sentence-image rank-

ing. Nam et al. [24] jointly learned image and language at-

tention models to capture the shared concepts between the

two domains and evaluated the affinity by computing the

inner product of two fixed embedding vectors. [35] tack-

led the matching problem with deep canonical correlation

analysis by constructing the trace norm objective between

image and language features. In [12], Klein et al. presented

two mixture models, Laplacian mixture model and Hybird

Gaussian-Laplacian mixture model to learn Fisher vector

representations of sentences. The text-to-image matching

is conducted by associating the generated Fisher vector and

VGG image features.

2.3. Identity­aware textual­visual matching

Although identity-level annotations are widely used in

visual matching tasks, they are seldom exploited for textual-

visual matching. Using such annotations can assist cross-

domain feature embedding by minimizing the intra-identity

distances and capturing the relations between textual con-

cepts and visual regions, which makes textual-visual match-

ing methods more robust to variations within each domain.

Reed et al. [26] collected fine-grained language descrip-

tions for two visual datasets, Caltech-UCSD birds (CUB)

and Oxford-102 Flowers, and first used the identity-level

annotations for text-image feature learning. In [15], Li et al.

proposed a large scale person re-identification dataset with

language descriptions and performed description-person

image matching using an CNN-LSTM network with neu-

ral attention mechanism. However, these approaches face

the same problems with existing visual matching methods.
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To solve these problems and efficiently learn textual and vi-

sual feature representations, we propose a novel two-stage

framework for identity-aware textual-visual matching. Our

approach outperforms both above state-of-the-art methods

by large margins on the three datasets.

3. Identity-Aware Textual-Visual Matching

with Latent Co-attention

Textual-visual matching aims at conducting accurate

verification for images and language descriptions. How-

ever, identity-level annotations provided by many exist-

ing textual-visual matching datasets are not effectively ex-

ploited for cross-domain feature learning. In this section,

we introduce a novel identity-aware two-stage deep learning

framework for textual-visual matching. The stage-1 CNN-

LSTM network adopts a specialized Cross-Modal Cross-

Entropy (CMCE) loss, which utilizes identity-level annota-

tions to minimize intra-identity and maximize inter-identity

feature distances. It is also efficient for evaluation because

of its linear evaluation time. After training convergence, the

stage-1 network is able to screen easy incorrect matchings

and also provides initial point for training the stage-2 CNN-

LSTM network. The stage-2 network further verifies hard

matchings with a novel latent co-attention mechanism. It

jointly learns the visual spatial attention and latent seman-

tic attention in an end-to-end manner to recover the relations

between visual regions and achieves robustness against sen-

tence structure variations.

3.1. Stage­1 CNN­LSTM with CMCE loss

The structure of stage-1 network is illustrated in Figure

2, which is a loosely coupled CNN-LSTM . Given an in-

put textual description or image, both the visual CNN and

language LSTM are trained to map the input image and de-

scription into a joint feature embedding space, such that

the features representations belonging to the same identity

should have small feature distances, while those of different

identities should have large distances. To achieve the goal,

the CNN-LSTM network is trained with a CMCE loss.

3.1.1 Cross-Modal Cross-Entropy Loss

For the conventional pairwise classification loss [3, 19] or

triplet max-margin loss [32, 26], if there are N identities

in the training set, the number of possible training samples

would be O(N2). It is generally difficult to sample hard

negative samples for learning effective feature representa-

tions. On the other hand, during evaluation phase, the time

complexity of feature calculation of pairwise or triplet loss

would increase quadratically with N , which would take lots

of computation time. To solve this problem, we propose a

novel CMCE loss that efficiently compares a mini-batch of

n identity features from one modality to those of all N iden-

tities in another modality in each iteration. Intuitively, the

sampled n identity features are required to have high affini-

ties with their corresponding identities in the other modality
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Figure 2. Illustration of the stage-1 network. In each iteration, the

images and text descriptions in a mini-batch are first fed into the

CNN and LSTM respectively to generate their feature representa-

tions. The CMCE loss is then computed by comparing sampled

features in one modality to all other features in the feature buffer

of the other modality (Step-1). The CNN and LSTM parameters

are updated by backpropagation. Finally, the visual and textual

feature buffers are updated with the sampled features (Step-2).

and low affinities with all other N − n ones in the entire

identity set. The cross-modal affinity is calculated as the

inner products of features from the two modalities. By us-

ing the proposed loss function, hard negative samples are

all covered in each training epoch and the evaluation time

complexity of sampling all test samples is only O(N).
In each training iteration, a mini-batch of images belong-

ing to n different identities are transformed to visual fea-

tures, each of which is denoted by v ∈ R
D. D is the feature

embedding dimension for both modalities. Textual features

of all N identities are pre-stored in a textual feature buffer

S ∈ R
D×N , where Si denotes the textual feature of the ith

identity. The affinities between a visual feature representa-

tion v and all textual features S could then be calculated as

ST v. The probability of the input image v matching the ith
identity in the textual feature buffer can be calculated with

the following cross-modal softmax function,

pSi (v) =
exp (ST

i v/σv)
∑N

j=1
exp (ST

j v/σv)
, (1)

where σv is a temperature hyper-parameter to control how

peaky the probability distribution is. Similarly, in each it-

eration, a mini-batch of sentence descriptions belonging to

n identities are also sampled. Let s ∈ R
D denote one text

sample’s feature in the mini-batch. All visual features are

pre-stored in a visual feature buffer V ∈ R
D×N . The prob-

ability of s matching the kth identity in the visual feature

buffer is defined as

pVk (s) =
exp (V T

k s/σs)
∑N

j=1
exp (V T

j s/σs)
, (2)
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where σs is another temperature hyper-parameter. In each

iteration, our goal is to maximize the above textual and vi-

sual matching probabilities for corresponding identity pairs.

The learning objective can then be define as minimizing the

following CMCE loss,

L = −
∑

v

log pStv (v)−
∑

s

log pVts(s), (3)

where tv and ts are the target identities of visual feature v
and textual feature s respectively. Its gradients are calcu-

lated as

∂L

∂v
=

1

σv









(pStv − 1)Stv +

N
∑

j=1

j 6=tv

Sjp
S
j









, (4)

∂L

∂s
=

1

σs









(pVts − 1)Vts +
N
∑

j=1

j 6=ts

Vjp
V
j









. (5)

The textual and visual feature buffers enable efficient

calculation of textual-visual affinities between sampled

identity features in one modality and all features in the other

modality. This is the key to our cross-modal entropy loss.

Before the first iteration, image and textual features are ob-

tained by the CNN and LSTM. Each identity’s textual and

visual features are stored in its corresponding row in the

textual and visual feature buffers. If an identity has multi-

ple descriptions or images, its stored features in the buffers

are the average of the multiple samples. In each iteration,

after the forward propagation, the loss function is first cal-

culated. The parameters of both visual CNN and language

LSTM are updated via backpropgation. For the sampled

identity images and descriptions, their corresponding rows

in the textual and visual feature buffers are updated by the

newly generated features. If a corresponding identity t has

multiple entity images or descriptions, the buffer rows are

updated as the running weighted average with the following

formulations, Stv = 0.5Stv+0.5s and Vts = 0.5Vts+0.5v,

where s and v are the newly generated textual and visual

features, ts and tv denote their corresponding identities.

Although our CMCE loss has similar formation with

softmax loss function, they have major differences. First,

the CMCE propagates gradients across textual and visual

domains. It can efficiently embed features of the same iden-

tity from different domains to be similar and enlarge the dis-

tances between non-corresponding identities. Second, the

feature buffers store all identities’ feature representations of

different modalities, making the comparison between mini-

batch samples with all identities much efficient.

3.2. Stage­2 CNN­LSTM with latent co­attention

After training, the stage-1 network is able to obtain

initial matching results efficiently because the textual and

word-fc 

Visual 

CNN 

“The” … 

word-fc 

Encoder 

LSTM 

“model” 

Spatial Attention Module 

“wears” 

word-fc 

“dress” 

word-fc 

Latent Semantic Attention Module 

Decoder 

LSTM 

Encoder 

LSTM 

Encoder 

LSTM 

Encoder 

LSTM 
… 

x1 x2 xt xT 

Decoder 

LSTM 

Decoder 

LSTM 
fc 

Binary  

classifier 

Figure 3. Illustration of the stage-2 network with latent co-

attention mechanism. The spatial attention associates the relevant

visual regions to each input word while the latent semantic atten-

tion automatically aligns image-word features by the spatial at-

tention modules to enhance the robustness to sentence structure

variations.

visual features can be calculated independently for each

modality. However, the visual and text feature embeddings

might not be optimal because stage-1 compresses the whole

sentence into a single vector. The correspondences between

individual words and image regions are not established to

capture word-level similarities. Stage-1 is also sensitive to

sentence structure variations. A further refinement on the

stage-1 matching results is desirable for obtaining accurate

matching results. For stage 2, we propose a tightly coupled

CNN-LSTM network with latent co-attention mechanism,

which takes a pair of text description and image as inputs

and outputs their matching confidence. Stage-2 framework

associates individual words and image regions with spatial

attention to better capture world-level similarities, and au-

tomatically realigns sentence structures via latent semantic

attention. The trained stage-1 network serves as the initial

point for the stage-2 network. In addition, it screens easy

negatives, so only the hard negative matching samples from

stage-1 results are utilized for training stage-2. With stage-

1, stage-2 can focus on handling more challenging samples

that have most impact on the final results.

The network structure for stage-2 network is shown in

Figure 3. The visual feature for the input image is obtained

by a visual CNN. Word features are generated by the en-

coder LSTM. At each word, a joint word-image feature is

obtained via the spatial attention module, which relates the

word feature to its corresponding image regions. A decoder

LSTM then automatically aligns encoded features for the

words to enhance robustness against sentence structure vari-

ations. The output features of the decoder LSTM is utilized

to obtain the final matching confidence. The idea of spa-

tial and latent semantic co-attention was for the first time

proposed and the network is accordingly designed. Unlike

LSTM decoders for NLP [4, 31], whose each step corre-

sponds to a specific output word, each step of our semantic
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decoder captures a latent semantic concept and the number

of steps is predefined as the number of concepts.

3.2.1 Encoder word-LSTM with spatial attention

For the visual CNN and encoder LSTM, our goal is to gen-

erate a joint word-visual feature representation at each input

word. The naive solution would be simply concatenating

the visual feature with word feature at each word. However,

different words or phrases may relate more to specific vi-

sual regions instead of the overall image. Inspired by [31],

we adopt a spatial attention mechanism to weight more on

relevant visual regions for each word.

Given an input sentence description, we first encode each

word to an one-hot vector and then transform them to a

feature vector through a fully-connected layer and an en-

coder word-LSTM. We denote the word features by H =
{h1, · · · , hT }, H ∈ R

DH×T , where ht denotes the hidden

state of the encoder LSTM at time step t and DH is the hid-

den state dimension. Let I = {i1, · · · , iL}, I ∈ R
DI×L

represent the visual features from all L regions in the in-

put image, where DI is the image feature dimension, and

il is the feature vector at the spatial region l. At time step

t, the spatial attention at over each image region k can be

calculated as

et,k = WP {tanh [WI ik + (WHht + bH)]}+ bP , (6)

at,k =
exp(et,k)

exp
(

∑L

j=1
et,j

) , for k = 1, · · · , L, (7)

where WI ∈ R
K×DI and WH ∈ R

K×DH are the parameter

matrices that transform visual and semantic features to the

same K-dimensional space, and WP ∈ R
1×K converts the

coupled textual and visual features to affinity scores. Given

a word at time t, the attentions at,k over all L image re-

gions are normalized by a softmax function and should sum

up to 1. Intuitively, at,k represents the probability that the

tth word relates to the kth image region. The obtained spa-

tial attentions are then used to gate the visual features by

weighted averaging,

ĩt =

L
∑

k=1

at,kik. (8)

In this way, the gated visual features focus more on relevant

regions to the tth word. To incorporate both textual and

visual information at each word, we then concatenate the

gated visual features ĩt and hidden states ht of LSTM as the

output of the spatial attention module, xt =
[

ĩt, ht

]

.

3.2.2 Decoder LSTM with latent semantic attention

Although the LSTM has a memory state and a forget gate

to capture long-term information, it still faces challenges on

processing very long sentences to compress all information

of the input sentence into a fixed-length vector. It might not

be robust enough against sentence structure variations. In-

spired by the word alignment (attention) technique in neu-

ral machine translation [4], we propose to use a decoder

LSTM with latent semantic attention to automatically align

sentence structures and estimate the final matching confi-

dence. Note that unlike the conventional decoder LSTM

in machine translation, where each step corresponds to an

actual word, each step of our decoder LSTM has no phys-

ical meaning but only latent semantic meaning. Given the

final features encoded by the encoder LSTM, the M -step

decoder LSTM processes the encoded feature step by step

while searches through the entire input sentence to align the

image-word features, xt, t = {1, · · · , T}. At the mth time

step of the decoding process, the latent semantic attention

a′m for the tth input word is calculated as

e′m,t = f(cm−1, xt), (9)

a′m,t =
exp(e′m,t)

∑T

j=1
exp(e′m,j)

, (10)

where f is an importance function that weights the impor-

tance of the jth word for the mth decoding step. It is mod-

eled a two-layer Convolutional Neural Network. cm−1 is

the hidden state by decoder LSTM for step m− 1. At each

decoding step m, the semantic attention “soft” aligns the

word-image features by a weighted summation,

x̃m =

T
∑

j=1

a′m,jxj . (11)

The aligned image-word features x̃m are then transformed

by two fully-connected layers and fed into the M -step

decoding LSTM to obtain the final matching confidence.

By automatically aligning image-word features with la-

tent semantic attention, at each decoding step, the decoder

LSTM is able to focus more on relevant information by re-

weighting the source image-word features to enhance the

network’s robustness to sentence structure variations. For

training the stage-2 network, we also utilize identity-level

annotations when constructing text-image training pairs. If

an image and a sentence have the same identity, they are

treated as a positive pair. Easier training samples are fil-

tered out by the stage-1 network. The decoder LSTM is

trained with the binary cross-entropy loss,

E = −
1

N ′

N ′

∑

i=1

[yi logCi + (1− yi) log(1− Ci)] (12)

where N ′ is the number of samples for training the stage-

2 network, Ci is the predicted matching confidence for the

ith text-image pair, and yi denotes its target label, with 1

representing the text and image pair belonging to the same

identity and 0 representing different identities.
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Text-Image Retrieval

Method Top-1 (%) Top-10 (%)

deeper LSTM Q+norm I [3] 17.19 57.82

iBOWIMG [40] 8.00 30.56

NeuralTalk [31] 13.66 41.72

Word CNN-RNN [26] 10.48 36.66

GNA-RNN [15] 19.05 53.64

GMM+HGLMM [12] 15.03 42.27

Stage-1 21.55 54.78

Stage-2 25.94 60.48

Table 1. Text-to-image retrieval results by different compared

methods on the CUHK-PEDES dataset [15].

4. Experiments

4.1. Datasets and evaluation metrics

Our proposed algorithm takes advantage of identity-

level annotations from the data for achieving robust match-

ing results. Three datasets with identity-level annotations,

CUHK-PEDES [15], Caltech-UCSD birds (CUB) [26], and

Oxford-102 Flowers [26], are chosen for evaluation.

CUHK-PEDES dataset. The CUHK-PEDES dataset

[15] contains 40,206 images of 13,003 person identities.

Each image is described by two sentences. There are 11,003

persons, 34,054 images and 68,108 sentence descriptions

in the training set. The validation set and test set consist

of 3,078 and 3,074 images, respectively, and both of them

contain 1,000 persons. The top-1 and top-10 accuracies are

chosen to evaluate the performance of person search with

natural language description following [15], which are the

percentages of successful matchings between the query text

and the top-1 and top-10 scored images.

CUB dataset and Flower dataset. The CUB and

Flower datasets contain 11,788 bird images and 8,189

flower images respectively, where each image is labeled by

ten textual descriptions. There are 200 different categories

in CUB and the dataset is splited into 100 training, 50 vali-

dation, and 50 test categories. Flower has 102 flower classes

and three subsets, including 62 classes for training, 20 for

validation, and 20 for test. We have the same experimental

setup as [26] for fair comparison. There is no overlap be-

tween training and testing classes. Similar to [26], identity

classes are used only during training, and testing is on new

identities. We report the AP@50 for text-to-image retrieval

and the top-1 accuracy for image-to-text retrieval. Given a

query textual class, the algorithm first computes the percent

of top-50 retrieved images whose identity matches that of

the textual query class. The average matching percentage

of all 50 test classes is denoted as AP@50.

4.2. Implementation details

For fair comparison with existing baseline methods on

different datasets, we choose VGG-16 [29] for the CUHK-

PEDES dataset and GoogleNet [30] for the CUB and

Text-Image Retrieval

Method Top-1 (%) Top-10 (%)

Triplet 14.76 51.29

Stage-1 21.55 54.78

Stage-2 w/o SMA+SPA+stage-1 17.19 57.82

Stage-2 w/o SMA+SPA 22.11 58.05

Stage-2 w/o SMA 23.58 58.68

Stage-2 w/o ID 23.47 54.77

Stage-2 25.94 60.48

Table 2. Ablation studies on different components of the proposed

two-stage framework. “w/o ID”: not using identity-level annota-

tions. “w/o SMA”: not using semantic attention. “w/o SPA”: not

using spatial attention. “w/o stage-1”: not using stage-1 network

for training initialization and easy result screening.

Flower datasets as the visual CNN. For stage-1 network,

the visual features are obtained by L2-normalizing the out-

put features at “drop7” and “avgpool” layers of VGG-16

and GoogleNet. We take the last hidden state of the LSTM

to encode the whole sentence and embed the textual vector

into the 512-dimensional feature space with the visual im-

age. The textual features is also L2-normalized. The tem-

perature parameters σv and σs in Eqs. (1) and (2) are em-

pirically set to 0.04. The LSTM is trained with the Adam

optimizer with a learning rate of 0.0001 while the CNN is

trained with the batched Stochastic Gradient Descent. For

the stage-2 CNN-LSTM network, instead of embedding the

visual images into 1-dimensional vectors, we take the out-

put of the “pool5” layer of VGG-16 or the “inception (5b)”

layer of GoogleNet as the image representations for learn-

ing spatial attention. During the training phase, we first train

the language model and fix the CNN model, and then fine-

tune the whole network jointly to effectively couple the im-

age and text features. The training and testing samples are

screened by the matching results of stage-1. For each vi-

sual or textual sample, we take its 20 most similar samples

from the other modality by stage-1 network and construct

textual-visual pair samples for stage-2 training and testing.

Each text-image pair is assigned with a label, where 1 rep-

resents the corresponding pair and 0 represents the non-

corresponding one. The step length M of the decoding

LSTM is set to 5.

4.3. Results on CUHK­PEDES dataset

We compare our proposed two-stage framework with six

methods on the CUHK-PEDES dataset. The top-1 and

top-10 accuracies of text-to-image retrieval are recorded

in Table 1. Note that only text-to-image retrieval results

are evaluated for the dataset because image-to-text retrieval

is not a practical problem setting for the dataset. Our

method outperforms state-of-the-art methods by large mar-

gins, which demonstrates the effectiveness of the proposed

two-stage framework in matching textual and visual entities

with identity-level annotations.

Our stage-1 model outperforms all the compared meth-
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The man is wearing a sweater with black gray and white stripes on it. 

He is wearing tan pants and gray shoes. He is carrying a bag on his back.

This is a white flower with wide petals and a pink and yellow pistil. This flower has thick and sharply tipped petals of bright yellow 

which angle directly upwards.

This bird is nearly all brown with a hooked bill. A brown bird with a white crown and a small yellow pointed beak.

This woman is wearing a white short sleeved shirt, a white skirt and 

gray flat shoes. She is also carrying a black purse on her shoulder.

Figure 4. Example text-to-image retrieval results by the proposed framework. Corresponding images are marked by green rectangles. (Left

to right) For each text description, the matching results are sorted according to the similarity scores in a descending order. (Row 1) results

from the CUHK-PEDES dataset [15]. (Row 2) results from the CUB dataset [26]. (Row 3) results from the Flower dataset [26].

ods. The gain on top-1 accuracy by our proposed method is

2.50% compared with the state-of-the-art GNA-RNN [15],

which has more complex network structure than ours. This

shows the advantages of the CMCE loss. Furthermore, the

introduction of feature buffers make the comparison com-

putation more efficient even with a large number of iden-

tities. GMM+HGLMM [12] uses the Fisher Vector as a

sentence representation by pooling the word2vec embed-

ding of each word in the sentence. The Word CNN-RNN

[26] aims to minimize the distances between correspond-

ing textual-visual pairs and maximize the distances between

non-corresponding ones within each mini-batch. However,

such a method is restricted by the mini-batch size and can-

not be applied to dataset with a large number of identi-

ties. Our CMCE loss results in a top-1 accuracy of 21.55%,

which outperforms the Word CNN-RNN’s 10.48%. The

stage-1 CNN-LSTM with CMCE loss performs well on

both accuracy and time complexity with its loosely coupled

network structure.

The stage-2 CNN-LSTM with latent co-attention further

improves the performances by 4.39% and 5.70% in terms of

top-1 and top-10 accuracies. The co-attention mechanism

aligns visual regions with latent semantic concepts effec-

tively to minimize the influence of sentences structure varia-

tions. Compared with methods that randomly sample pairs,

such as deeper LSTM Q+norm I [3], iBOWIMG [40], Neu-

ralTalk [31] and GNA-RNN [15], our network focuses more

on distinguishing the hard samples after filtering out most

easy non-correponding samples by the stage-1 network.

4.4. Ablation studies

In this section, we investigate the effect of each com-

ponent in the stage-1 and stage-2 networks by performing a

series of ablation studies on the CUHK-PEDES dataset. We

first investigate the importance of proposed CMCE loss. We

train our stage-1 model with the proposed loss replaced by

triplet loss [26], named “Triplet”. As shown in Table 2, its

top-1 drops by 6.79% on the CUHK-PEDES set compared

with our stage-1 with the new loss function. In addition,

triplet loss [26] needs 3 times more training time. Then we

investigate the importance of the identity-level annotations

to the textual-visual matching performance by ignoring the

annotations. In this case, each image or sentence is treated

as an independent identity. The top-1 and top-10 accuracies

of “Stage-2 w/o ID” have 2.47% and 5.71% drops com-

pared with the results of “Stage-2”, which demonstrates that

the identity-level annotations can help textual-visual match-

ing by minimizing the intra-identity feature variations.

To demonstrate the effectiveness of our latent semantic

attention, we remove it from the original stage-2 network,

denoted as “Stage-2 w/o SMA”. The top-1 accuracy drops

by 2.36%, which shows the latent semantic attention can

help align the visual and semantic concepts and mitigate

the LSTM’s sensitivity to different sentence structures. The

spatial attention tries to relate words or phrases to differ-

ent visual regions instead of the whole image. Based on

the framework of “Stage-2 w/o SMA”, we further remove

the spatial attention module from the stage-2 network, de-

noted as “Stage-2 w/o SMA+SPA”, which can be viewed

as a simple concatenation of the visual and textual features

from the CNN and LSTM, followed by two fully-connected

layers for binary classification. Both the top-1 and top-10

accuracies decrease compared with “Stage-2 w/o SMA”.

The stage-1 network is able to provide samples for the

training and evaluation of stage-2 network, and also serves

as the initial point for its training. To investigate the in-

fluence of stage-1 network, we design one additional base-

lines, denoted as “Stage-2 w/o SMA+SPA+Stage-1”. This

baseline is trained without using the stage-1 network. It

shows an apparent performance drop compared with the

“Stage-2 w/o SMA+SPA” baseline, which demonstrates the

necessity of the stage-1 network in our proposed frame-

work. Since stage-1 network chooses only 20 most closest

images of each query text for stage 2 during the evaluation
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Image-Text Text-Image

Top-1 Acc (%) AP@50 (%)

Methods DA-SJE DS-SJE DA-SJE DS-SJE

BoW [9] 43.4 44.1 24.6 39.6

Word2Vec [23] 38.7 38.6 7.5 33.5

Attributes [2] 50.9 50.4 20.4 50.0

Word CNN [26] 50.5 51.0 3.4 43.3

Word CNN-RNN [26] 54.3 56.8 4.8 48.7

GMM+HGLMM [12] 36.5 35.6

Triplet 52.5 52.4

Stage-1 61.5 55.5

Stage-2 − 57.6

Table 3. Image-to-text and text-to-image retrieval results by differ-

ent compared methods on the CUB dataset [26].

phase, the effect of some components might not be apparent

in terms of the top-10 accuracy.

4.5. Results on the CUB and Flower datasets

Tables 3 and 4 show the experimental results of image-

to-text and text-to-image retrieval on the CUB and Flower

datasets. We compare with state-of-the-art methods on the

two datasets. The CNN-RNN [26] learns a CNN-RNN tex-

tual encoder for sentence feature embedding and transforms

both visual and textual features into the same embedding

space. Different text features are also combined with the

CNN-RNN methods. The Word2Vec [23] averages the pre-

trained word vector of each word in the sentence description

to represent textual features. BoW [9] is the output of an

one-hot vector passing through a single layer linear projec-

tion. Attributes [2] maps attributes to the embedding space

by learning a encoder function. Different types of textual

representations are combined with the CNN-RNN frame-

work for testing. Our method outperforms the state-of-the-

art CNN-RNN by more than 3% in terms of top-1 image-

to-text retrieval accuracy and about 10% in terms of text-

to-image retrieval AP@50 on both datasets, which shows

the effectiveness of the proposed method. For the “Triplet”

baseline, the top-1 and AP@50 drop by 9.0% and 3.1% on

CUB dataset, and drop by 4.1% and 3.1% on Flower dataset

which demonstrate the proposed loss function performs bet-

ter than the traditional triplet loss. Since the top-1 accuracy

provided by [26] is computed by fusing sentences of the

same class into one vector and our stage-2 network is there-

fore not suitable for the image-to-text retrieval task, we only

report the stage-1 results on image-to-text retrieval which

has already outperformed other baselines.

4.6. Qualitative results

We also conduct qualitative evaluations of the proposed

methods. Figure 4 shows example text-to-image retrieval

results. Most sentences can correctly match images cor-

responding to their descriptions. In the first case, almost

all the persons wear a sweater with “black gray and white

stripes”. Different images of the same identity (the first,

Image-Text Text-Image

Top-1 Acc (%) AP@50 (%)

Methods DA-SJE DS-SJE DA-SJE DS-SJE

BoW [9] 56.7 57.7 28.2 57.3

Word2Vec [23] 54.6 54.2 16.3 52.1

Word CNN [26] 60.2 60.7 8.7 56.3

Word CNN-RNN [26] 60.9 65.6 7.6 59.6

GMM+HGLMM [12] 54.8 52.8

Triplet 64.3 64.9

Stage-1 68.4 68.0

Stage-2 − 70.1

Table 4. Image-to-text and text-to-image retrieval results by differ-

ent compared methods on the Flower dataset [26].

second, and fifth person images) appear in the top-ranked

results, which shows the proposed two-stage CNN-LSTM

can correctly match identities across different domains and

minimizes the intra-identity distances. Some mis-matching

results are even challenging for human to distinguish with

subtle differences in visual appearance. In the second case,

the first and second person both wear “white short sleeved

shirt”, but only the first one is the true matching result be-

cause of the “black purse” carried on her shoulder.

5. Conclusion

In this paper, we proposed a novel two-stage framework

for identity-aware visual-semantic matching. The frame-

work consists of two deep neural networks. The stage-

1 CNN-LSTM network learns to embed the input image

and description to the same feature space and minimizes

the intra-identity distance simultaneously with the CMCE

loss. It serves as initial point for stage-2 training and also

provides training and evaluation samples for stage-2 by

screening most incorrect matchings. The stage-2 network

is a CNN-LSTM with latent co-attention mechanism which

jointly learns the spatial attention and latent semantic atten-

tion by an alignment decoder LSTM. It automatically aligns

different words and image regions to minimize the impact

of sentence structure variations. We evaluate the proposed

method on three datasets and perform a series of ablation

studies to verify the effect of each component. Our method

outperforms state-of-the-art approaches by a large margin

and demonstrates the effectiveness of the proposed frame-

work for identity-aware visual-textual matching.
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