This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Is Second-order Information Helpful for Large-scale Visual Recognition?

Peihua Li', Jiangtao Xie!, Qilong Wang!, Wangmeng Zuo?
!Dalian University of Technology, 2Harbin Institute of Technology

peihualiedlut.edu.cn, {jiangtaoxie, glwang}@mail.dlut.edu.cn,wnzuo@hit.edu.cn

Abstract

By stacking layers of convolution and nonlinearity, con-
volutional networks (ConvNets) effectively learn from low-
level to high-level features and discriminative representa-
tions. Since the end goal of large-scale recognition is to
delineate complex boundaries of thousands of classes, ad-
equate exploration of feature distributions is important for
realizing full potentials of ConvNets. However, state-of-the-
art works concentrate only on deeper or wider architecture
design, while rarely exploring feature statistics higher than
first-order. We take a step towards addressing this prob-
lem. Our method consists in covariance pooling, instead
of the most commonly used first-order pooling, of high-
level convolutional features. The main challenges involved
are robust covariance estimation given a small sample of
large-dimensional features and usage of the manifold struc-
ture of covariance matrices. To address these challenges,
we present a Matrix Power Normalized Covariance (MPN-
COV) method. We develop forward and backward propa-
gation formulas regarding the nonlinear matrix functions
such that MPN-COV can be trained end-to-end. In addi-
tion, we analyze both qualitatively and quantitatively its ad-
vantage over the well-known Log-Euclidean metric. On the
ImageNet 2012 validation set, by combining MPN-COV we
achieve over 4%, 3% and 2.5% gains for AlexNet, VGG-M
and VGG-16, respectively, integration of MPN-COV into
50-layer ResNet outperforms ResNet-101 and is compara-
ble to ResNet-152. The source code will be available on the
project page: http://www.peihuali.org/MPN-COV.

1. Introduction

Since outperforming significantly the classical, shal-
low classification framework, deep convolutional networks
(ConvNets) [14] have triggered fast growing interests and
achieved great advance in large-scale visual recognition [27,

, 9]. The ConvNet architecture [7] renders learning of
features, representations and classification in an end-to-end

The work was supported by National Natural Science Foundation of China
(No. 61471082). Peihua Li is the corresponding author.

manner, superior to the classical Bag of Words (BoW) [16]
architecture where these components are separately opti-
mized, independent of each other. The large-scale, la-
beled ImageNet dataset [24] and high computing capability
of GPUs contribute to successful training of increasingly
wider and deeper ConvNets.

The ConvNet model, which starts from the raw color im-
ages as inputs, learns progressively the low-level, middle-
level and high-level features from bottom, intermediate to
top convolutional (conv.) layers [33], obtaining discrimina-
tive representations connected to fully-connected (FC) lay-
ers. The gradient backprogation algorithm enables the clas-
sifier to learn decision boundaries delineating thousands of
classes in the space of large-dimensional features generally
with complex distributions. Hence, for realizing full po-
tentials of ConvNets, it is important to adequately consider
feature distributions. However, most ConvNets concentrate
only on designing wider or deeper architectures, rarely ex-
ploring statistical information higher than first-order. In
the traditional classification paradigm where sufficient la-
beled data are not available, high-order methods combined
with ConvNet models pretrained on ImageNet dataset have
achieved impressive recognition accuracies [0, 31]. In the
small-scale classification scenarios, researchers have stud-
ied end-to-end methods, including DeepOzP [11] and B-
CNN [22], for exploiting second-order statistics in deep
ConvNets [11, 22]. As such, one interesting problem aris-
ing naturally is whether statistics higher than first-order is
helpful for large-scale visual recognition.

In this paper, we take a step towards addressing this
problem. Motivated by [11, 22], we perform covariance
pooling of the last convolutional features rather than the
commonly used first-order pooling, producing covariance
matrices as global image representations. The main chal-
lenges involved are robust covariance estimation provided
only with a small sample of large-dimensional features and
usage of the manifold structure of the covariance matri-
ces. Existing methods can not well address the two prob-
lems, producing unsatisfactory improvement in the large-
scale setting. DeepO?P adopts Log-Euclidean (Log-E) met-
ric [1] for exploiting geometry of covariance spaces, which

2070

http://www.peihuali.org/MPN-COV

however brings side effect on covariance representations.
B-CNN performs element-wise normalization, without con-
sidering the manifold of covariance matrices. For tackling
the challenges, we propose a Matrix Power Normalized Co-
variance (MPN-COV) method. We show that MPN-COV
amounts to robust covariance estimation; it also approxi-
mately exploits the geometry of covariance space while cir-
cumventing the downside of the well-known Log-E met-
ric [1]. As MPN-COV involves nonlinear matrix functions
whose backpropagation is not straightforward, we develop
the gradients associated with MPN-COV based on the ma-
trix propagation methodology [2] for end-to-end learning.

Our main contributions are summarized as follows.
Firstly, we are among the first who attempt to exploit statis-
tics higher than first-order for improving the large-scale
classification. We propose matrix power normalized co-
variance method for more discriminative representations,
and develop the forward and backward propagation formu-
las for the nonlinear matrix functions, achieving end-to-
end MPN-COV networks. Secondly, we provide interpre-
tations of MPN-COV from statistical, geometric and com-
putational points of view, explaining the underlying mecha-
nism that MPN-COV can address the aforementioned chal-
lenges. Thirdly, on the ImageNet 2012 dataset, we thor-
oughly evaluate MPN-COV for validating our mathemat-
ical derivation and understandings, obtaining competitive
improvements over its first-order counterparts under a va-
riety of ConvNet architectures.

2. Related Work

The statistics higher than first-order has been success-
fully used in both classical and deep learning based clas-
sification scenarios. In the area of low-level patch de-
scriptors, local Gaussian descriptors has demonstrated bet-
ter performance than descriptors exploiting zeroth- or first-
order statistics [20]. Fisher Vector (FV) makes use of the
first- and second-order statistics, reporting state-of-the-art
results based on hand-crafted features [25]. The locality-
constrained affine subspace coding [19] proposed to use
Fisher Information matrix for improving classification per-
formance. By adopting features computed from pretrained
ConvNets, FV considerably improves recognition accuracy
over using hand-crafted features on small-scale datasets [0].
Wang et al. [3 1] present global Gaussian distributions as im-
age representations for material recognition using the con-
volutional features from pretrained ConvNets. In [6, 31],
feature design, image representation and classifier training
are not jointly optimized. Different from them, we propose
end-to-end deep learning to exploit the second-order statis-
tics for improving large-scale visual recognition.

In image classification the second-order pooling known
as O?P is proposed in [2]. The O?P computes non-central,
second-order moments which is subject to matrix logarithm

X P (U,A) Q
= | ol ol ol ol o o =
0X oP oU’ OA oQ
MPN-COV layer

Figure 1. Illustration of forward and backward propagations of
ConvNets with MPN-COV. The proposed MPN-COV as a layer
is inserted between the last conv. layer and FC layer, trainable
end-to-end. See text for notations and in-depth description.

for representing free-form regions. In the context of classi-
cal image classification, Koniusz et al. [13] propose second-
and third-order pooling of hand-crafted features or their
coding vectors. For the goal of counteracting correlated
burstiness due to non-i.i.d. data, they apply power normal-
ization of eigenvalues (ePN) to autocorrelation matrices or
to the core tensors [1 5] of the autocorrelation tensors. In [5],
Higher-order Kernel (HoK) descriptor is proposed for ac-
tion recognition in videos. HoK concerns pooling of higher-
order tensors of probability scores from pretrained Con-
vNets in video frames, which are subject to ePN and then
fed to SVM classifiers. Our main differences from [13, 5]
are (1) we develop an end-to-end MPN-COV method in
deep ConvNet architecture, and verify that statistics higher
than first-order is helpful for large-scale recognition; (2) we
provide statistical, geometric and computational interpreta-
tions, explaining the mechanism underlying matrix power
normalization.

Ionescu et al. [11] present the theory of matrix back-
progation which makes possible inclusion of structured,
global layers into deep ConvNets. Furthermore, they pro-
pose DeepO?P for end-to-end, second-order pooling in deep
ConvNets by Singular Value Decomposition (SVD). B-
CNN [22] aggregates the outer products of convolutional
features from two networks. The resulting matrices un-
dergo element-wise power normalization. Note that B-
CNN produces second-order, non-central moments when
the two ConvNets involved share the same configuration.
Our MPN-COV is similar to DeepO?P and B-CNN but hav-
ing clear distinctions. We show that matrix power normal-
ization plays a key role for the second-order pooling to
achieve competitive performance, instead of matrix loga-
rithm [1] or element-wise power normalization [25]. More-
over, we provide the rationale why MPN-COV well ad-
dresses the two challenges of the covariance pooling. Fi-
nally, DeepO?P and B-CNN have not been evaluated on
challenging, large-scale ImageNet dataset.

3. The Proposed MPN-COV

For an input image, MPN-COV produces a normalized
covariance matrix as a representation, which characterizes
the correlations of feature channels and actually designates
the shape of feature distribution. Fig. 1 illustrates the for-

2071

ward and backward propagations of MPN-COV. Given the
responses X of the last conv. layer as features, we first
compute the sample covariance matrix P of X. Then we
perform eigenvalue decomposition (EIG) of P to obtain the
orthogonal matrix U and diagonal matrix A, through which
the matrix power Q £ P can be transformed to the power
of eigenvalues of P. Finally, Q will be inputted to the sub-
sequent, top FC layer. Accordingly, in backward pass, given
the partial derivative a of loss function [with respect to
Q propagated from the top FC layer, we need to compute in
reverse order the associated partial derivatives.

3.1. Forward Propagation

Let X € R4*Y be a matrix whose columns consist of a
sample of N features of dimension d. The sample covari-
ance matrix P of X is computed as

X~ P, P=XIX". (1)

Here I = (I — +117), where I is the N x N identity
matrix, 1 = [1,...,1]T is a N—dimensional vector, and T'
denotes the matrix transpose. The sample covariance matrix
P is symmetric positive semi-definite, which has eigenvalue
decomposition as follows:

— (U,A), P=UAUT, (2)

where A = diag(\1,...,\g) is a diagonal matrix and
Ai,t =1,...,d are eigenvalues arranged in non-increasing
order; U = [uy,...,uy] is an orthogonal matrix whose
column u; is the eigenvector corresponding to \;. Through
EIG we can convert matrix power to the power of eigenval-
ues. Hence, we have

(U,A) » Q, Q2P>=UFA)U". 3)

Here « is a positive real number and F(A) =
diag(f(A1),. .., f(Aq)), where f();) is the power of eigen-
values

fh) = A,

Inspired by the element-wise power normalization tech-
nique [25], we can further perform, right after MPN, nor-
malization by matrix {5 —norm (M-{5) or by matrix Frobe-
nius norm (M-Fro). The matrix 5 —norm (also known as
the spectral norm) of a matrix P, denoted by ||P||2, is de-
fined as the largest singular value of P, which equals the
largest eigenvalue if P is a covariance matrix. The matrix
Frobenius norm of P can be defined in various ways such as
|P||r = (tr(PTP))z = (32, A2), where \; are singular
values of P. As such, we have

X /ag

X (N

for MPN. 4)

for MPN+M-/5

F(N) =
for MPN+M-Fro

Note that, in (5), when a = 1 the first and second identities
reduce to separate M-f5 and M-Fro normalizations, respec-
tively.

3.2. Backward Propagation

We use the methodology of matrix backpropagation, for-
mulated in [1 1, 12], to compute the partial derivative of loss
function [with respect to the input matrix of some layer. It
is built on the theory of matrix calculus, enabling inclusion
of structured, nonlinear matrix functions in neural networks
while considering the invariants involved such as orthogo-
nality, diagonality and symmetry.

Let us consider derivation of al and 59}\, given a%
propagated from the top FC layer The expression of the
chain rule is

ol alNT ol
w((55) U+ (55) ar) = tf((@) 1Q). ©
where dQ denotes variation of matrix Q. From Eq. (3), we
have dQ = dUFU” + UdFU” 4+ UFdU”. We note that

dF = diag(ax\‘f_l, cee a)\g_l)dA. After some arrange-
ments, we obtain

w0~ (i (o))or
% = a(aiag(Xp ", . ~7A371)UT68<;U)(1%

where A gia¢ denotes the operation preserving the diagonal
entries of A while setting all non-diagonal entries to zero.
For MPN+M-/5 and MPN+M-Fro takes respectively
the following forms:

(%l\ :% (diag ()\‘f‘*l7 . %U) ding ¥

—dlag< (QaQ)o 0)

’OA

A;H)UT

and
S O
7ﬁtr(qm)dlag(x§a—l,...,Aj‘l—l))

Next, given 2% and 2L, let us compute 2L associ-
g aU oA pule 5p

ated With EIG (2). The chain rule is tr((5p ITdP) =
tr((25)7dU + (£)TdA). Note thatUshould satisfy the
orthogonal constraint. After some arrangements, we have

or T (yT ol ol T

o5~ V(K" (V' 55)) + (35)) U 00
where o denotes matrix Kronecker product. The matrix
K= {K”} where Kij = 1/()\1—>\]) if ¢ #] and Kij =0

2072

otherwise. We refer readers to [12, Proposition 2] for in-
depth derivation of Eq. (10).

Finally, given 8‘3—113, we derive the gradient of the loss
function with respect to the input matrix X, which takes
the following form:

o - (dl ar\"

4. The Mechanism Underlying MPN-COV

This section explains the mechanism underlying MPN-
COV. We provide interpretations from the statistical and ge-
ometric points of view, and make qualitative analysis from
computational perspective.

4.1. MPN-COV Amounts to Robust Covariance Es-
timation

The sample covariance amounts to the solution to the
Maximum Likelihood Estimation (MLE) of normally dis-
tributed random vectors. Though MLE is widely used to es-
timate covariances, it is well known that it performs poorly
when the sample of data is of large dimension with small
size [4, 32]. This is just what our covariance pooling faces:
in most state-of-the-art ConvNets [27, 10, 9], the last con-
volutional layer outputs less than 200 features of dimension
larger than 512, and so the sample covariances are always
rank-deficient, rendering robust estimation critical.

The robust estimation of large-dimensional covariances
with small sample size has been of great interest in statis-
tics [28], signal processing [4] and biology [32]. Stein [28]
for the first time proposes the shrinkage principle for eigen-
values of sample covariances. Ledioit and Wolf [18] has
shown that the largest eigenvalues are systematically biased
upwards while the smallest ones are biased downwards,
and thus introduced the optimal linear shrinkage estima-
tor, where the estimated covariance matrix Q is a linear
combination of the sample covariance P with the identity
matrix (i.e., Q = a1 P + asI). This method with «; de-
cided by cross-validation is widely used to counteract the
ill-conditioning of covariance matrices. Our MPN-COV
closely conforms to the shrinkage principle [28, 18], i.e.,
shrinking the largest sample eigenvalues and stretching the
smallest ones, as will be shown later in Sec. 4.3. It only
depends on the sample covariance, delivering an individu-
alized shrinkage intensity to each eigenvalue.

A number of researchers propose various regularized
MLE methods for robust covariance estimation (see [32]
and references therein). An important conclusion we can
draw is that MPN-COV can be deemed a robust covariance
estimator, explicitly derived from a regularized MLE called
vN-MLE, according to our previous work [31]. Specifically,
we have

Proposition 1 MPN-COV with o = % is the unique solu-
tion to the regularized MLE of covariance matrix, i.e.,

Pz = argminlog | 2] + tx(X7'P) + Din(L), (12)

where X is constrained to be positive semidefinite, and
Dynv(A,B) = tr(A(log(A) —log(B)) — A + B) is matrix
von Neumann divergence.

Proposition 1 follows immediately by setting to one the reg-
ularizing parameter in [3 |, Theorem 1]. Note that the classi-
cal MLE only includes the first two terms on the right-hand
side of Eq. (12), while the robust vN-MLE estimator intro-
duces the third term, constraining the covariance matrix be
similar to the identity matrix. It has been shown [3 1] that the
VN-MLE outperforms other shrinkage methods [28, 18, 4]
and regularized MLE method [32].

4.2. MPN-COV Approximately Exploits Rieman-
nian Geometry

As the space of d x d covariance matrices, denoted by
Symj, is a Riemannian manifold, it is appropriate to con-
sider the geometrical structure when operating on this man-
ifold. There are mainly two kinds of Riemannian metrics,
i.e., the affine Riemannian metric [23] and the Log-E met-
ric [1]. The former metric is affine-invariant, but is compu-
tationally inefficient and is coupled, not scalable to large-
scale setting. In contrast, the most often used Log-E metric
is similarity-invariant, efficient to compute and scalable to
large-scale problems as it is a decoupled metric.

The metric for MPN-COV corresponds to the Power Eu-
clidean (Pow-E) metric [7]. It has close connection with the
Log-E metric, as presented in the following proposition:

Proposition 2 For any two covariance matrices P and P,
the limit of the Pow-E metric do(P,P) = L||P> — PaHF
as « > 0 approaches 0 equals the Log-E metric, i.e.,
lim do(P, P) = || log(P) — log(P)]| -

This conclusion was first mentioned in [7] but without
proof. _Here we briefly prove this claim. Note that
d(P,P) = Hé(P“ -1 - é(Pa - I)||F. Based

on the eigenvalue decomposition of P we have é(Pa —

I) = Udiag(2i=,... 2= 1yUT. The identity about
the limit in Proposition 2 follows immediately by recalling
limg 0 22 = log(\).

Hence, the proposed MPN-COV can be viewed as ap-
proximately exploiting the Riemannian geometry of S ymj.
It might seem that the Log-E metric is a better option
than the Pow-E metric, since the former measures the true
geodesic distance but the latter one only measures it approx-
imately. We argue that this is not the case of our problem for
two reasons. First, the Log-E metric requires the eigenval-
ues involved to be strictly positive [1, 34] while the Pow-E

2073

0.06

0.05 —=AR
------ log(\)

0.04

B

20.03 =
0.02

0.01

0
10710 10° 10° 10 10°
A A

(a) Eigenvalue histogram and normalization functions

1 200

— 4
08 —_T i

7/ 150 fy

< / Z100} &

50

0 0
10 10° 10° 10°

(b) AZ and its derivative zoomed on [1075,1]

10° 100 10° 10°
A A

(c) log(X) and its derivative zoomed on [1073, 1]

Figure 2. Illustration of empirical distribution of eigenvalues and
normalization functions. The identity f(A) = A (no normaliza-
tion) and its derivative are also plotted for reference. A2 con-
forms to the general shrinkage principle as suggested in [28, 18],
which shrinks the largest eigenvalues and stretches the smallest
ones, while preserving the order of eigenvalue significances. In
contrast, log(A) over-stretches the smallest eigenvalues, reversing
the order of significance such that, after normalization, the small-
est eigenvalues play more crucial roles than the largest ones.

metric allows non-negative eigenvalues [/, 34]. For Log-
E the common method is to add a small positive number e
to eigenvalues for improving numerical stability. Although
€ can be decided by cross-validation, it is difficult to seek
a particular € well suitable for a huge number of images.
For example, [11] suggest ¢ = 1073, which will smooth
out eigenvalues less than 10~3. Above all, the distributions
of high-level, convolutional features are such that the log-
arithm brings side effect, which will be qualitatively ana-
lyzed in the next subsection. We will also quantitatively
compare the two metrics by experiments in Sec. 5.2.

4.3. Qualitative Analysis

This section qualitatively analyzes, from the computa-
tional perspective, the impact of matrix power and loga-
rithm on the eigenvalues of sample covariances. The ma-

trix logarithm can be regarded as a kind of normalization,

nonlinearly applied to the eigenvalues: Q = log(P) =
Udiag(log(A1), - - . ,log(A\g))U”. Below we will concen-
trate on power function f(\) = Az and logarithm f()\) =
log()).

We first examine the empirical distribution of eigenval-
ues of sample covariances. We randomly select 300,000
images from the training set of ImageNet 2012. For each
image, we extract the output of the 5th conv. (Conv5) layer
(with ReLU) using AlexNet model pretrained on ImageNet
2012, estimate the sample covariance P, and then compute
its eigenvalues using EIG in single-precision floating-point
format. For a training image of 227 x 227, Conv5 outputs
13 x 13 features with 256 channels, reshaped to a matrix
X € R?56%169 Ag the rank of P is less than 169, P has
less than 169 non-zeros eigenvalues. We mention that very
small eigenvalues obtained by EIG may be inaccurate due to
machine precision. The histogram of eigenvalues is shown
in Fig. 2(a)(left), where zero eigenvalues are excluded for
better view. Fig. 2(a)(right) shows the two normalization
functions over [107°,10]. The graphs of A2 & its deriva-
tive and log(\) & its derivative, both zoomed on [107°, 1],
are shown in Fig. 2(b) and Fig. 2(c), respectively.

The function log(\) considerably changes the eigenvalue
magnitudes, reversing the order of eigenvalue significances,
e.g., a significant eigenvalue A = 50 — log(A) =~ 3.9 but
an insignificant one A = 1073 ~ log(\) ~ —6.9. From
the forward propagation formula P = Y, Aw;ul — Q =
>, log(A;)usu? it can be seen that the smallest eigenval-
ues will play more crucial roles than the largest ones. This
effect is also obvious if we consider the backprogation for-
mula for the gradient aaTli before and after normalization,
ie., ufa%ui — /\%u;fra%ui,i =1,...,d. For example,
the derivative of log(\) at A = 1072 is 103 but at A = 50 is
2 x 1072, Since significant eigenvalues are generally more
important in that they capture the statistics of principal di-
rections along which the feature variances are larger, matrix
logarithm will deteriorate the covariance representations.

Now let us consider 2. It nonlinearly shrinks the eigen-
values larger than one, and the larger, the more shrunk,
while stretching those less than one, and the smaller, the
more stretched. This kind of normalization conforms to
the general shrinkage principle as suggested in [28, 18].
Contrary to log()), it does not change the order of eigen-
value significances— significant (resp. insignificant) eigen-
values maintain significant (resp. insignificant). For exam-
ple, A = 50 — Az ~ 7.1 while A = 1073 — A2 ~ 0.032.
From the forward propagation formula S = >~, \,u;uf —
Q= Zl)\%uiuZT, we see that the order of amount of con-
tributions made by individual eigenvalues keep unchanged.
Similar conclusion can be drawn if we consider the back-

i Ol . T 0l .. 1_yToly.
propagation formula of an: W aqWi 7 3o Wi o Wis

2074

http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-alex.mat

5. Experiments

We make experiments on ImageNet 2012 classification
dataset [24], which consists of 1,000 classes, including
roughly 1.28 million training images, 50k validation im-
ages, and 100k testing ones. We do not adopt extra training
images. Following the common practice, we report top-1
and top-5 error rates on the validation set as measures of
recognition performance. We develop programs based on
MatConvNet [30] and Matlab 2015b under 64-bit Windows
7.0. The programs run on six workstations each of which
is equipped with a Intel i7-4790k@4.0Ghz CPU and 32G
RAM. Two NVIDA Titan X with 12 GB memory and four
NVIDA GTX 1080 with 8 GB memory are used, one graph-
ics card per workstation.

5.1. Implementation of MPN-COV Networks

To implement MPN-COV layer, we adopt the EIG algo-
rithm on CPU in single-precision floating-point format, as
its GPU version provided on the CUDA platform is several
times slower. Except for EIG, all other operations in for-
ward and backward propagations are performed on GPU.
Since MPN-COV allows non-negative eigenvalues, we trun-
cate to zeros the eigenvalues smaller than eps(A;), which
indicates the positive distance from the maximum eigen-
value)\ to its next larger floating-point number. Our MPN-
COV pooling replaces the common first-order, max/average
pooling after the last conv. layer, producing a global,
d(d + 1)/2—dimensional image representation by concate-
nation of the upper triangular part of one covariance ma-
trix. In state-of-the-art ConvNets, the feature dimension d
of the last conv. layer gets much larger. For such archi-
tectures, we add a 1 x 1 conv. layer of 256 channels after
the last conv. layer, so that the dimension of features in-
putted to the MPN-COV layer is fixed to 256 (see Sec. 5.3
and Sec. 5.4). As such, we alleviate the problem of small
sample of large-dimensional features while decreasing the
computational cost of the MPN-COV layer.

We adopt the standard color jittering technique [14] for
training set augmentation. For AlexNet [14] and VGG-
M [3], we follow the default setting in MatConvNet [30]
where each training image is rescaled such that its shorter
side is of 256 pixels. For VGG-16 [27] and ResNet [9],
following [27], we rescale isotropically each training image
with shorter side randomly sampled on [256, 512]. Then, we
sample a fixed size patch at random from the resized image
or its mirror, and subtract the mean RGB value from each
pixel. In testing stage, we first isotropically resize each test
image with short side 256, then adopt the commonly used 1-
crop prediction or 10-crop prediction for performance eval-
uation. Following [10], we adopt batch normalization right
after every convolution and before ReLU and no drop out.

We use mini-batch stochastic gradient descent with mo-
mentum (set to 0.9 throughout the experiments) for train-

N
w

| | —first-order
-6 -second-order (cov)

S
N

Top-1 error (%)
B B
3 =
-3

(]
©

% 05 1 15

Exponent « of power function

Figure 3. Impact of « on second-order cov pooling under AlextNet
Architecture. Top-1 errors (/-crop) are reported. The bold line
indicates the result of the AlexNet with first-order pooling.

ing. For AlexNet, VGG-M and VGG-16, we set the weight
decay to 5 x 10~—%, and their mini-batch sizes are set to
128, 100 and 32, respectively. For training from scratch,
the filter weights are initialized with a normal distribution
N(0,0.01) with mean O and variance 0.01 and the biases
are initialized with zero [27]; ConvNets are trained up to
20 epochs, where the learning rates follow exponential de-
cay, changing from 10~! to 10~% and 10~"2 to 10~° for
the ConvNets with first-order pooling and those with MPN-
COV pooling, respectively. For ResNets, following [9], we
use a weight decay of 10~* and a mini-batch size of 256,
and initialize the biases with zero and the filter weights with
N(0,2/n), where n is the product of the size and #channels
of filters. The ResNet-50 with MPN-COV is trained up to
90 epochs with learning rate initialized to 10~!-? and di-
vided by 10 when the error plateaus.

5.2. Evaluation of MPN-COV Under AlexNet Ar-
chitecture

In the first part of experiments, we evaluate MPN-COV
by selecting AlexNet architecture [14], since it is shallower
and runs faster than its variants. As recently proposed
deeper ConvNets [27, 9] follow the basic architecture of
AlexNet, our analysis here can extrapolate to them. We
study the impact of exponent « of power function and vari-
ous matrix normalization methods on cov pooling. We also
compare with two existing end-to-end, second-order pool-
ing methods, i.e., DeepO2P [11] concerned with matrix nor-
malization by logarithm and B-CNN [22] which performs
element-wise power normalization.

Impact of Exponent o of Power Function. We first
evaluate covariance (cov) pooling against the exponent o
of power function. Fig. 3 shows top-1 errors versus « us-
ing single-crop prediction. We first note that the plain cov
pooling (v = 1, no normalization) produces an error rate
of 40.41%, about 1.1% less than first-order max pooling.
When o < 1, the normalization function shrinks eigenval-
ues larger 1.0 and stretches those less than 1.0. As « (less
than 1.0) decreases, the error rate continuously gets smaller

2075

method MPN M-Fro M-{2 init. top-1 err.
Random 41.52

First-order (ours) — - -

No No No Random 40.41
Yes No No Random 38.51
No Yes No Random 39.87
cov pool. (ours) No No Yes Random 39.65
Yes Yes No Random 39.93
Yes No Yes Random 39.62
Yes No No Warm 37.35

Table 1. Impact of various matrix normalizations under AlexNet
architecture. We measure top-1 error (%, 1-crop) for MPN, M-Fro
and M-/5 as well as combinations of them.

method top-1 error top-5 error
MPN-COV (AlexNet) (ours) 33.84 14.01
Krizhevsky et al. [14] 40.7 18.2
VGG-F [3] 39.11 16.77

Table 2. Error (%, 10-crop) comparison of MPN-COV (AlexNet)
with ConvNets having similar architecture.

until the smallest value at around o = % With further de-
cline of o, however, we observe the error rate grows consis-
tently and soon is larger than that of the plain cov pooling.
Note that over the interval [0.4, 0.9] the performance of cov
pooling varies insignificantly. When o > 1, the effect of
normalization is contrary, i.e., eigenvalues less than 1.0 are
shrunk while those larger than 1.0 are stretched, which is
not beneficial for covariance representations as indicated by
the consistent growth of the error rates. In all the following
experiments, we set o = %

Impact of Various Normalization Methods. We mainly
compare three kinds of normalizations (i.e., MPN, M-Fro
and M-/5) as well as their combinations. Table | summa-
rizes the comparison results. Compared to first-order pool-
ing, the plain cov pooling and cov pooling with normal-
izations decrease the errors by a gap of over 1.1%, which
clearly indicates that the second-order pooling is better than
the most commonly used, first-order pooling. When used
separately, all of the three matrix normalizations improve
over the plain cov pooling. MPN outperforms M-Fro and
M-¢y by ~1.3% and ~1.1%, respectively, but combina-
tions of M-Fro (or MPN-/5) with MPN degrade the per-
formance of separate MPN. We also made experiments by
performing element-wise power normalization right after
MPN , which, however, degraded the performance by over
1%. As our MPN-COV explores the second-order statis-
tics, which is more complex than the first-order one and
may complicate minimization of the loss function, we con-
sider warm initialization. Specifically, the weights of all
layers before the cov pooling are initialized with the trained
network with max pooling and their learning rates are set
to logspace[—2, —5, 20], while those after cov pooling are
randomly initialized with learning rates doubled. Compared

method init. top-1 error top-5 error
Plain COV (ours) random 40.41 18.94
MPN-COV (ours) random 38.51 17.60
B-CNN [22] random 39.89 18.32
DeepO2P [11] random 42.16 19.62

Table 3. Error (%, I-crop) comparison of MPN-COV with two ex-
isting second-order pooling methods under AlexNet architecture.

to random initialization (training from scratch), the warm
initialization decreases error by ~1.1%, which indicates it
helps MPN-COV network converge to a better local mini-
mum of the loss function. In the end, we compare in Table 2
our MPN-COV network with two ConvNets with similar ar-
chitectures, i.e., VGG-F [3] and Krizhevsky et al. [14]. The
result of VGG-F is obtained by us using the model released
on the MatConvNet website. Our MPN-COV network per-
forms much better than both of them.

Comparison with Existing Second-order Methods.
Here we compare with DeepO,P [1 1] and B-CNN [22], two
existing end-to-end, second-order pooling methods, nei-
ther of which has been previously evaluated on ImageNet
dataset. For DeepO,P, Ionescu et al. suggested implemen-
tation of the nonlinear, matrix logarithm using SVD and
double-precision floating-point format for both the forward
and backward propagations. We adopted the code released
by them. As suggested, we add ¢ = 1073 to the eigenval-
ues for numerical stability. For a matrix P = [p;;], B-CNN
computes Q = [sign(pi;)(|pij| + €)°] where sign is the
signum function. For implementation, we adopted the code
released by the authors of B-CNN, where 5 = 0.5 and
€ = 1077 as suggested. Table 3 presents the comparison
results. We can see that DeepO5P is inferior to the plain
cov pooling (no normalization). As analyzed in Sec. 4.3,
we attribute this to the fact that logarithm is not suitable for
the convolutional features given the distribution as shown
in Fig. 2(a) (left), as it changes the order of eigenvalue sig-
nificances. B-CNN slightly improves the plain cov pooling
by ~0.5%, but outperformed by MPN-COV by 1.4%. We
mention that we tuned € for DeepO5P and S and € for B-
CNN but achieved trivial improvement.

5.3. MPN-COV Under VGG-Net Architectures

In this section, we combine MPN-COV with two VGG
networks, i.e. VGG-M [3] and VGG-16 [27]. We slightly
modify VGG-M by presenting two configurations (config.).
In config. a, we add an additional 1 x 1 x 256 conv. layer
(filter size: 1 x 1, channel: 256) right after Conv5, and for
config. b, the numbers of channels of Conv3 and Conv4
are both raised from 512 to 640 while that of Conv5 is re-
duced to 256. Then our MPN-COV layer follows. Note
that the 1 x 1 convolution has been used for dimensional-
ity reduction and introducing nonlinearity [21, 29]. Either
config. produces a sample of features X € R2°6*169 for

2076

http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-vgg-f.mat
http://www.maths.lth.se/matematiklth/personal/sminchis/code/matrix-backprop.html
http://vis-www.cs.umass.edu/bcnn/

method init. config. a config. b
Random 37.07 37.31
Random 34.60 35.27

warm 33.44 34.25

First-order (ours)

MPN-COV (ours)

Table 4. Top-1 error (%, 1-crop) under VGG-M architecture.

method init. top-1 error top-5 error
First-order (ours) random 29.62 10.81
MPN-COV (ours) random 26.55 8.94

Table 5. Error rates (%, 1-crop) under VGG-16 architecture.

method top-1 error top-5 error
MPN-COV (VGG-M) (ours) 30.39 11.43
VGG-M [3] 34.00 13.49
Zeiler & Fergus [33] 37.5 16.0
OverFeat [20] 35.60 14.71

Table 6. Error (%, 10-crop) comparison of MPN-COV (VGG-M)
with ConvNets sharing similar architecture.

method #layers top-1err. top-5 err.
MPN-COV(VGG-16)(ours) 17 24.68 7.75
VGG-16 [27] 16 2741 9.20
GoogleNet [29] 22 - 9.15
PReLU-net B [§] 22 25.53 8.13

Table 7. Error (%, 10-crop) comparison of MPN-COV (VGG-16)
with two ConvNets having comparable number of conv. layers.

the MPN-COV layer. As seen from Table 4, under config. a
with random initialization MPN-COV outperforms the first-
order, max pooling by ~2.5% and with warm initialization
the gap increases to ~3.6%. For config. b the gains over
max pooling are a little less than Config. a, i.e., ~2% and
~3% under random and warm initialization, respectively.
For VGG-16, we add a1 x 1 x 256 convolution after the
last conv. layer, obtain the feature matrix X € R2°6x196
for cov pooling. The results are shown in Table 5, from
which we see that MPN-COV can bring large improvement
for VGG-16 architecture.

Table 6 presents comparison of MPN-COV (VGG-M)
with the original VGG-M [3], Zeiler & Fergus [33] and
OverFeat [26], all sharing similar network architecture. Our
MPN-COV (VGG-M) shows much better performance than
them. In Table 7, we can see that in terms of top-1 er-
ror, MPN-COV (VGG-16) outperforms the original VGG-
16 [27] by ~2.7%, and in terms of top-5 error, it per-
forms better than GoogleNet [29] and PReL.U-net B [8] by
~1.4% and ~0.4%, respectively. PReLU-net C is simi-
lar to PReLU-net B but significantly increases #channels of
every filter [8], producing slightly better performance than
ours. Note that as the authors did not report the 10-crop re-
sults of the original VGG-M and VGG-16, we obtain them
by using the best-performing models, i.e., matconvnet-vg-
g-m.mat and vgg-verydeep-16.mat, respectively.

method init. top-1 error top-5 error
First-order (ours) random 24.95 7.52
MPN-COV (ours) random 22.73 6.54

Table 8. Error rates (%,I-crop) under ResNet-50 architecture.

method top-1 error top-5 error
MPN-COV (ResNet-50) (ours) 21.20 5.74
ResNet-50 [9] 22.85 6.71
ResNet-101 [9] 21.75 6.05
ResNet-152 [9] 21.43 5.71

Table 9. Error (%, 10-crop) comparison of MPN-COV (ResNet-
50) with the original ResNets.

5.4. MPN-COV Under ResNet Architecture

Finally, we integrate MPN-COV into ResNet-50 (base-
line). To retain as many number of features as possible,
we do not perform downsampling in conv5_1, as done in
the original network, for the last set of building blocks (i.e.
conv5_x). Then we connect the last addition layer (with
ReLU) to a 1 x 1 x 256 conv. layer, followed by the
MPN-COV layer. As such, we have a sample of features
X € R26x196 for covariance estimation. Regarding the
time (ms) taken per image, MPN-COV network vs baseline
are 18.21 vs 14.37 for training and 5.8 vs 3.5 for inference,
respectively. We observe MPN-COV network converges
faster: training/validation error rates (%) of MPN-COV vs
baseline reach 37.0/34.3 vs 50.35/44.55 at epoch 30 and
18.02/23.19 vs 25.98/25.76 at epoch 60. Table 8 shows that
MPN-COV produces ~2.2% top-1 error (1-crop) less than
the first-order average pooling. Table 9 shows that, com-
pared to the original ResNets, with 10-crop prediction our
MPN-COV network performs 1.65% better than ResNet-
50, while outperforming ResNet-101 and being compara-
ble to ResNet-152. By exploiting second-order statistics we
achieve performance matching extremely deep ConvNets
with much shallower one.

6. Conclusion

This paper proposed a matrix normalized covariance
(MPN-COV) method for exploring the second-order statis-
tics in large-scale classification. MPN-COV amounts to ro-
bust covariance estimation given a small number of large-
dimensional features. It also approximately exploits the
geometry of the space of covariance matrices, while cir-
cumventing the downside of the well-known Log-Euclidean
metric. Extensive experiments on ImageNet 2012 dataset
showed that our MPN-COV networks achieved competitive
gains over its counterparts using only first-order informa-
tion. In future we will combine MPN-COV with the Incep-
tion architecture [29], and study applications of MPN-COV
to visual tasks such as object detection, scene categorization
and fine-grained visual recognition.

2077

http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-vgg-m.mat
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-16.mat

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17

(18]

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geomet-
ric means in a novel vector space structure on symmetric
positive-definite matrices. SIAM J. on Matrix Analysis and
Applications, 2006. 1,2, 4

J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In ECCV,
pages 430-443, 2012. 2

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. In BMVC, 2014. 6,7, 8

Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero. Shrink-
age algorithms for MMSE covariance estimation. /[EEE TSP,
58(10):5016-5029, 2010. 4

A. Cherian, P. Koniusz, and S. Gould. Higher-order pooling
of CNN features via kernel linearization for action recogni-
tion. In WACV, 2017. 2

M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and segmentation. In CVPR, 2015. 1, 2
I. L. Dryden, A. Koloydenko, and D. Zhou. Non-Euclidean
statistics for covariance matrices, with applications to dif-
fusion tensor imaging. The Annals of Applied Statistics,
3(3):1102-1123, 2009. 4, 5

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In ICCV, 2015. 8

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1,4, 6, 8

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 4,6

C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-
propagation for deep networks with structured layers. In
ICCV,2015. 1,2,3,5,6,7

C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep
networks with structured layers by matrix backpropagation.
arXiv, abs/1509.07838, 2015. 2, 3, 4

P. Koniusz, F. Yan, P. H. Gosselin, and K. Mikolajczyk.
Higher-order occurrence pooling for bags-of-words: Visual
concept detection. IEEE TPAMI, 39(2):313-326, Feb 2017.
2

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 1,6,7

L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multi-
linear singular value decomposition. SIAM. J. Matrix Anal.
Appl., 21(4):1253-1278, 2000. 2

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006. 1

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEFE, 86(11):2278-2324, 1998. 1

O. Ledoit and M. Wolf. A well-conditioned estimator for
large-dimensional covariance matrices. J. Multivariate Anal-
ysis, 88(2):365-411, 2004. 4, 5

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

2078

P. Li, X. Lu, and Q. Wang. From dictionary of visual words
to subspaces: Locality-constrained affine subspace coding.
In CVPR, 2015. 2

P.Li, Q. Wang, H. Zeng, and L. Zhang. Local Log-Euclidean
multivariate Gaussian descriptor and its application to image
classification. IEEE TPAMI, 2017. 2

M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,
2014. 7

T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN
models for fine-grained visual recognition. In ICCV, 2015.
1,2,6,7

X. Pennec, P. Fillard, and N. Ayache. A Riemannian frame-
work for tensor computing. IJCV, pages 41-66, 2006. 4

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C.Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. IJCV, 115(3):211-252, 2015. 1,6

J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image
classification with the Fisher vector: Theory and practice.
IJCV, 105(3):222-245,2013. 2,3

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. In ICLR, 2014.
8

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
1,4,6,7,8

C. Stein. Lectures on the theory of estimation of many pa-
rameters. Journal of Soviet Mathematics, 34(1):1373-1403,
1986. 4, 5

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 1,7, 8

A. Vedaldi and K. Lenc. Matconvnet — convolutional neural
networks for MATLAB. In ACM on Multimedia, 2015. 6
Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust es-
timation of approximate infinite dimensional Gaussian with
application to material recognition. In CVPR, 2016. 1, 2, 4
E. Yang, A. Lozano, and P. Ravikumar. Elementary esti-
mators for sparse covariance matrices and other structured
moments. In ICML, 2014. 4

M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, pages 818-833, 2014. 1,
8

D. Zhou, I. L. Dryden, A. A. Koloydenko, K. M. Audenaert,
and L. Bai. Regularisation, interpolation and visualisation of
diffusion tensor images using non-Euclidean statistics. Jour-
nal of Applied Statistics, 43(5):943-978, 2016. 4, 5

