
Is Second-order Information Helpful for Large-scale Visual Recognition?

Peihua Li1, Jiangtao Xie1, Qilong Wang1, Wangmeng Zuo2

1Dalian University of Technology, 2Harbin Institute of Technology

peihuali@dlut.edu.cn,{jiangtaoxie,qlwang}@mail.dlut.edu.cn,wmzuo@hit.edu.cn

Abstract

By stacking layers of convolution and nonlinearity, con-

volutional networks (ConvNets) effectively learn from low-

level to high-level features and discriminative representa-

tions. Since the end goal of large-scale recognition is to

delineate complex boundaries of thousands of classes, ad-

equate exploration of feature distributions is important for

realizing full potentials of ConvNets. However, state-of-the-

art works concentrate only on deeper or wider architecture

design, while rarely exploring feature statistics higher than

first-order. We take a step towards addressing this prob-

lem. Our method consists in covariance pooling, instead

of the most commonly used first-order pooling, of high-

level convolutional features. The main challenges involved

are robust covariance estimation given a small sample of

large-dimensional features and usage of the manifold struc-

ture of covariance matrices. To address these challenges,

we present a Matrix Power Normalized Covariance (MPN-

COV) method. We develop forward and backward propa-

gation formulas regarding the nonlinear matrix functions

such that MPN-COV can be trained end-to-end. In addi-

tion, we analyze both qualitatively and quantitatively its ad-

vantage over the well-known Log-Euclidean metric. On the

ImageNet 2012 validation set, by combining MPN-COV we

achieve over 4%, 3% and 2.5% gains for AlexNet, VGG-M

and VGG-16, respectively; integration of MPN-COV into

50-layer ResNet outperforms ResNet-101 and is compara-

ble to ResNet-152. The source code will be available on the

project page: http://www.peihuali.org/MPN-COV.

1. Introduction

Since outperforming significantly the classical, shal-

low classification framework, deep convolutional networks

(ConvNets) [14] have triggered fast growing interests and

achieved great advance in large-scale visual recognition [27,

29, 9]. The ConvNet architecture [17] renders learning of

features, representations and classification in an end-to-end

The work was supported by National Natural Science Foundation of China

(No. 61471082). Peihua Li is the corresponding author.

manner, superior to the classical Bag of Words (BoW) [16]

architecture where these components are separately opti-

mized, independent of each other. The large-scale, la-

beled ImageNet dataset [24] and high computing capability

of GPUs contribute to successful training of increasingly

wider and deeper ConvNets.

The ConvNet model, which starts from the raw color im-

ages as inputs, learns progressively the low-level, middle-

level and high-level features from bottom, intermediate to

top convolutional (conv.) layers [33], obtaining discrimina-

tive representations connected to fully-connected (FC) lay-

ers. The gradient backprogation algorithm enables the clas-

sifier to learn decision boundaries delineating thousands of

classes in the space of large-dimensional features generally

with complex distributions. Hence, for realizing full po-

tentials of ConvNets, it is important to adequately consider

feature distributions. However, most ConvNets concentrate

only on designing wider or deeper architectures, rarely ex-

ploring statistical information higher than first-order. In

the traditional classification paradigm where sufficient la-

beled data are not available, high-order methods combined

with ConvNet models pretrained on ImageNet dataset have

achieved impressive recognition accuracies [6, 31]. In the

small-scale classification scenarios, researchers have stud-

ied end-to-end methods, including DeepO2P [11] and B-

CNN [22], for exploiting second-order statistics in deep

ConvNets [11, 22]. As such, one interesting problem aris-

ing naturally is whether statistics higher than first-order is

helpful for large-scale visual recognition.

In this paper, we take a step towards addressing this

problem. Motivated by [11, 22], we perform covariance

pooling of the last convolutional features rather than the

commonly used first-order pooling, producing covariance

matrices as global image representations. The main chal-

lenges involved are robust covariance estimation provided

only with a small sample of large-dimensional features and

usage of the manifold structure of the covariance matri-

ces. Existing methods can not well address the two prob-

lems, producing unsatisfactory improvement in the large-

scale setting. DeepO2P adopts Log-Euclidean (Log-E) met-

ric [1] for exploiting geometry of covariance spaces, which

2070

http://www.peihuali.org/MPN-COV

however brings side effect on covariance representations.

B-CNN performs element-wise normalization, without con-

sidering the manifold of covariance matrices. For tackling

the challenges, we propose a Matrix Power Normalized Co-

variance (MPN-COV) method. We show that MPN-COV

amounts to robust covariance estimation; it also approxi-

mately exploits the geometry of covariance space while cir-

cumventing the downside of the well-known Log-E met-

ric [1]. As MPN-COV involves nonlinear matrix functions

whose backpropagation is not straightforward, we develop

the gradients associated with MPN-COV based on the ma-

trix propagation methodology [12] for end-to-end learning.

Our main contributions are summarized as follows.

Firstly, we are among the first who attempt to exploit statis-

tics higher than first-order for improving the large-scale

classification. We propose matrix power normalized co-

variance method for more discriminative representations,

and develop the forward and backward propagation formu-

las for the nonlinear matrix functions, achieving end-to-

end MPN-COV networks. Secondly, we provide interpre-

tations of MPN-COV from statistical, geometric and com-

putational points of view, explaining the underlying mecha-

nism that MPN-COV can address the aforementioned chal-

lenges. Thirdly, on the ImageNet 2012 dataset, we thor-

oughly evaluate MPN-COV for validating our mathemat-

ical derivation and understandings, obtaining competitive

improvements over its first-order counterparts under a va-

riety of ConvNet architectures.

2. Related Work

The statistics higher than first-order has been success-

fully used in both classical and deep learning based clas-

sification scenarios. In the area of low-level patch de-

scriptors, local Gaussian descriptors has demonstrated bet-

ter performance than descriptors exploiting zeroth- or first-

order statistics [20]. Fisher Vector (FV) makes use of the

first- and second-order statistics, reporting state-of-the-art

results based on hand-crafted features [25]. The locality-

constrained affine subspace coding [19] proposed to use

Fisher Information matrix for improving classification per-

formance. By adopting features computed from pretrained

ConvNets, FV considerably improves recognition accuracy

over using hand-crafted features on small-scale datasets [6].

Wang et al. [31] present global Gaussian distributions as im-

age representations for material recognition using the con-

volutional features from pretrained ConvNets. In [6, 31],

feature design, image representation and classifier training

are not jointly optimized. Different from them, we propose

end-to-end deep learning to exploit the second-order statis-

tics for improving large-scale visual recognition.

In image classification the second-order pooling known

as O2P is proposed in [2]. The O2P computes non-central,

second-order moments which is subject to matrix logarithm

⇆

last

conv.

layer

⇆

X
COV
−→ P

EIG
−→ (U,Λ)

POW
−→ Q

⇆
FC

layer
⇆

∂�

∂X
←−

∂�

∂P
←−

(

∂�

∂U
,
∂�

∂Λ

)

←−

∂�

∂Q

MPN-COV layer

Figure 1. Illustration of forward and backward propagations of

ConvNets with MPN-COV. The proposed MPN-COV as a layer

is inserted between the last conv. layer and FC layer, trainable

end-to-end. See text for notations and in-depth description.

for representing free-form regions. In the context of classi-

cal image classification, Koniusz et al. [13] propose second-

and third-order pooling of hand-crafted features or their

coding vectors. For the goal of counteracting correlated

burstiness due to non-i.i.d. data, they apply power normal-

ization of eigenvalues (ePN) to autocorrelation matrices or

to the core tensors [15] of the autocorrelation tensors. In [5],

Higher-order Kernel (HoK) descriptor is proposed for ac-

tion recognition in videos. HoK concerns pooling of higher-

order tensors of probability scores from pretrained Con-

vNets in video frames, which are subject to ePN and then

fed to SVM classifiers. Our main differences from [13, 5]

are (1) we develop an end-to-end MPN-COV method in

deep ConvNet architecture, and verify that statistics higher

than first-order is helpful for large-scale recognition; (2) we

provide statistical, geometric and computational interpreta-

tions, explaining the mechanism underlying matrix power

normalization.

Ionescu et al. [11] present the theory of matrix back-

progation which makes possible inclusion of structured,

global layers into deep ConvNets. Furthermore, they pro-

pose DeepO2P for end-to-end, second-order pooling in deep

ConvNets by Singular Value Decomposition (SVD). B-

CNN [22] aggregates the outer products of convolutional

features from two networks. The resulting matrices un-

dergo element-wise power normalization. Note that B-

CNN produces second-order, non-central moments when

the two ConvNets involved share the same configuration.

Our MPN-COV is similar to DeepO2P and B-CNN but hav-

ing clear distinctions. We show that matrix power normal-

ization plays a key role for the second-order pooling to

achieve competitive performance, instead of matrix loga-

rithm [1] or element-wise power normalization [25]. More-

over, we provide the rationale why MPN-COV well ad-

dresses the two challenges of the covariance pooling. Fi-

nally, DeepO2P and B-CNN have not been evaluated on

challenging, large-scale ImageNet dataset.

3. The Proposed MPN-COV

For an input image, MPN-COV produces a normalized

covariance matrix as a representation, which characterizes

the correlations of feature channels and actually designates

the shape of feature distribution. Fig. 1 illustrates the for-

2071

ward and backward propagations of MPN-COV. Given the

responses X of the last conv. layer as features, we first

compute the sample covariance matrix P of X. Then we

perform eigenvalue decomposition (EIG) of P to obtain the

orthogonal matrix U and diagonal matrix Λ, through which

the matrix power Q
△

= P� can be transformed to the power

of eigenvalues of P. Finally, Q will be inputted to the sub-

sequent, top FC layer. Accordingly, in backward pass, given

the partial derivative ∂�
∂Q

of loss function � with respect to

Q propagated from the top FC layer, we need to compute in

reverse order the associated partial derivatives.

3.1. Forward Propagation

Let X ∈ ℝ
�×� be a matrix whose columns consist of a

sample of � features of dimension �. The sample covari-

ance matrix P of X is computed as

X �→ P, P = XĪX� . (1)

Here Ī = 1
�
(I − 1

�
11�), where I is the � × � identity

matrix, 1 = [1, . . . , 1]� is a �−dimensional vector, and �
denotes the matrix transpose. The sample covariance matrix

P is symmetric positive semi-definite, which has eigenvalue

decomposition as follows:

P �→ (U,Λ), P = UΛU� , (2)

where Λ = diag(�1, . . . , ��) is a diagonal matrix and

��, � = 1, . . . , � are eigenvalues arranged in non-increasing

order; U = [u1, . . . ,u�] is an orthogonal matrix whose

column u� is the eigenvector corresponding to ��. Through

EIG we can convert matrix power to the power of eigenval-

ues. Hence, we have

(U,Λ) �→ Q, Q
△

= P� = UF(Λ)U� . (3)

Here � is a positive real number and F(Λ) =
diag(�(�1), . . . , �(��)), where �(��) is the power of eigen-

values

�(��) = ��
� , for MPN. (4)

Inspired by the element-wise power normalization tech-

nique [25], we can further perform, right after MPN, nor-

malization by matrix ℓ2−norm (M-ℓ2) or by matrix Frobe-

nius norm (M-Fro). The matrix ℓ2−norm (also known as

the spectral norm) of a matrix P, denoted by ∥P∥2, is de-

fined as the largest singular value of P, which equals the

largest eigenvalue if P is a covariance matrix. The matrix

Frobenius norm of P can be defined in various ways such as

∥P∥� = (tr(P�P))
1

2 = (
∑

� �
2
�)

1

2 , where �� are singular

values of P. As such, we have

�(��) =

⎧
⎨
⎩

��
�

/
��
1 for MPN+M-ℓ2

��
�

/
(
∑

� �
2�
�)

1

2 for MPN+M-Fro
(5)

Note that, in (5), when � = 1 the first and second identities

reduce to separate M-ℓ2 and M-Fro normalizations, respec-

tively.

3.2. Backward Propagation

We use the methodology of matrix backpropagation, for-

mulated in [11, 12], to compute the partial derivative of loss

function � with respect to the input matrix of some layer. It

is built on the theory of matrix calculus, enabling inclusion

of structured, nonlinear matrix functions in neural networks

while considering the invariants involved such as orthogo-

nality, diagonality and symmetry.

Let us consider derivation of ∂�
∂U

and ∂�
∂Λ

, given ∂�
∂Q

propagated from the top FC layer. The expression of the

chain rule is

tr
((∂�

∂U

)�

dU+
(∂�

∂Λ

)�

dΛ
)
= tr

((∂�

∂Q

)�

dQ
)
, (6)

where dQ denotes variation of matrix Q. From Eq. (3), we

have dQ = dUFU� +UdFU� +UFdU� . We note that

dF = diag
(
���−1

1 , . . . , ���−1
�

)
dΛ. After some arrange-

ments, we obtain

∂�

∂U
=

(∂�

∂Q
+
(∂�

∂Q

)�)
UF (7)

∂�

∂Λ
= �

(
diag

(
��−1
1 , . . . , ��−1

�

)
U� ∂�

∂Q
U
)

diag
,

where Adiag denotes the operation preserving the diagonal

entries of A while setting all non-diagonal entries to zero.

For MPN+M-ℓ2 and MPN+M-Fro, ∂�
∂Λ

takes respectively

the following forms:

∂�

∂Λ
=

�

��
1

(
diag

(
��−1
1 , . . . , ��−1

�

)
U� ∂�

∂Q
U
)

diag
(8)

− diag

(
�

�1

tr
(
Q

∂�

∂Q

)
, 0, . . . , 0

)

and

∂�

∂Λ
=

�√∑
� �

2�
�

(
diag

(
��−1
1 , . . . , ��−1

�

)
U� ∂�

∂Q
U
)

diag

−
�∑
� �

2�
�

tr
(
Q

∂�

∂Q

)
diag

(
�2�−1
1 , . . . , �2�−1

�

)
. (9)

Next, given ∂�
∂U

and ∂�
∂Λ

, let us compute ∂�
∂P

associ-

ated with EIG (2). The chain rule is tr((∂�
∂P

)�dP) =

tr((∂�
∂U

)�dU+ (∂�
∂Λ

)�dΛ). Note that U should satisfy the

orthogonal constraint. After some arrangements, we have

∂�

∂P
= U

((
K� ∘

(
U� ∂�

∂U

))
+
(∂�

�Λ

)

diag

)
U� , (10)

where ∘ denotes matrix Kronecker product. The matrix

K = {���} where ��� = 1/(��−��) if � ∕= � and ��� = 0

2072

otherwise. We refer readers to [12, Proposition 2] for in-

depth derivation of Eq. (10).

Finally, given ∂�
∂P

, we derive the gradient of the loss

function with respect to the input matrix X, which takes

the following form:

∂�

∂X
= ĪX

(
∂�

∂P
+

(
∂�

∂P

)�)
. (11)

4. The Mechanism Underlying MPN-COV

This section explains the mechanism underlying MPN-

COV. We provide interpretations from the statistical and ge-

ometric points of view, and make qualitative analysis from

computational perspective.

4.1. MPN-COV Amounts to Robust Covariance Es-
timation

The sample covariance amounts to the solution to the

Maximum Likelihood Estimation (MLE) of normally dis-

tributed random vectors. Though MLE is widely used to es-

timate covariances, it is well known that it performs poorly

when the sample of data is of large dimension with small

size [4, 32]. This is just what our covariance pooling faces:

in most state-of-the-art ConvNets [27, 10, 9], the last con-

volutional layer outputs less than 200 features of dimension

larger than 512, and so the sample covariances are always

rank-deficient, rendering robust estimation critical.

The robust estimation of large-dimensional covariances

with small sample size has been of great interest in statis-

tics [28], signal processing [4] and biology [32]. Stein [28]

for the first time proposes the shrinkage principle for eigen-

values of sample covariances. Ledioit and Wolf [18] has

shown that the largest eigenvalues are systematically biased

upwards while the smallest ones are biased downwards,

and thus introduced the optimal linear shrinkage estima-

tor, where the estimated covariance matrix Q is a linear

combination of the sample covariance P with the identity

matrix (i.e., Q = �1P + �2I). This method with �� de-

cided by cross-validation is widely used to counteract the

ill-conditioning of covariance matrices. Our MPN-COV

closely conforms to the shrinkage principle [28, 18], i.e.,

shrinking the largest sample eigenvalues and stretching the

smallest ones, as will be shown later in Sec. 4.3. It only

depends on the sample covariance, delivering an individu-

alized shrinkage intensity to each eigenvalue.

A number of researchers propose various regularized

MLE methods for robust covariance estimation (see [32]

and references therein). An important conclusion we can

draw is that MPN-COV can be deemed a robust covariance

estimator, explicitly derived from a regularized MLE called

vN-MLE, according to our previous work [31]. Specifically,

we have

Proposition 1 MPN-COV with � = 1
2

is the unique solu-

tion to the regularized MLE of covariance matrix, i.e.,

P
1

2 = argmin
Σ

log ∣Σ∣+ tr(Σ−1P) +�vN(I,Σ), (12)

where Σ is constrained to be positive semidefinite, and

�vN(A,B) = tr(A(log(A)− log(B))−A+B) is matrix

von Neumann divergence.

Proposition 1 follows immediately by setting to one the reg-

ularizing parameter in [31, Theorem 1]. Note that the classi-

cal MLE only includes the first two terms on the right-hand

side of Eq. (12), while the robust vN-MLE estimator intro-

duces the third term, constraining the covariance matrix be

similar to the identity matrix. It has been shown [31] that the

vN-MLE outperforms other shrinkage methods [28, 18, 4]

and regularized MLE method [32].

4.2. MPN-COV Approximately Exploits Rieman-
nian Geometry

As the space of � × � covariance matrices, denoted by

���+
� , is a Riemannian manifold, it is appropriate to con-

sider the geometrical structure when operating on this man-

ifold. There are mainly two kinds of Riemannian metrics,

i.e., the affine Riemannian metric [23] and the Log-E met-

ric [1]. The former metric is affine-invariant, but is compu-

tationally inefficient and is coupled, not scalable to large-

scale setting. In contrast, the most often used Log-E metric

is similarity-invariant, efficient to compute and scalable to

large-scale problems as it is a decoupled metric.

The metric for MPN-COV corresponds to the Power Eu-

clidean (Pow-E) metric [7]. It has close connection with the

Log-E metric, as presented in the following proposition:

Proposition 2 For any two covariance matrices P and P̃,

the limit of the Pow-E metric ��(P, P̃) = 1
�

∥∥P� − P̃�
∥∥
�

as � > 0 approaches 0 equals the Log-E metric, i.e.,

lim
�→0

��(P, P̃) =
∥∥ log(P)− log(P̃)

∥∥
�

.

This conclusion was first mentioned in [7] but without

proof. Here we briefly prove this claim. Note that

��(P, P̃) =
∥∥ 1
�
(P� − I) − 1

�
(P̃� − I)

∥∥
�

. Based

on the eigenvalue decomposition of P we have 1
�
(P� −

I) = Udiag(
��

1
−1

�
, . . . ,

��

�
−1

�
)U� . The identity about

the limit in Proposition 2 follows immediately by recalling

lim�→0
��−1

�
= log(�).

Hence, the proposed MPN-COV can be viewed as ap-

proximately exploiting the Riemannian geometry of ���+
� .

It might seem that the Log-E metric is a better option

than the Pow-E metric, since the former measures the true

geodesic distance but the latter one only measures it approx-

imately. We argue that this is not the case of our problem for

two reasons. First, the Log-E metric requires the eigenval-

ues involved to be strictly positive [1, 34] while the Pow-E

2073

10
-10

10
-5

10
0

λ

0

0.01

0.02

0.03

0.04

0.05

0.06

h
is

t

10-5 100

λ

-10

0

10

20

f(
λ

)

λ

λ
1/2

log(λ)

(a) Eigenvalue histogram and normalization functions

10-5 100

λ

0

0.2

0.4

0.6

0.8

1

f
(λ

)

λ

λ
1/2

10-5 100

λ

0

50

100

150

200

f
'(
λ

)

1

0.5/λ
1/2

(b) �
1

2 and its derivative zoomed on [10−5, 1]

10-5 100

λ

-15

-10

-5

0

5

f
(λ

)

λ

log(λ)

10-5 100

λ

0

2

4

6

8

10

f
'(
λ

)

×104

1
1/λ

(c) log(�) and its derivative zoomed on [10−5, 1]

Figure 2. Illustration of empirical distribution of eigenvalues and

normalization functions. The identity �(�) = � (no normaliza-

tion) and its derivative are also plotted for reference. �
1

2 con-

forms to the general shrinkage principle as suggested in [28, 18],

which shrinks the largest eigenvalues and stretches the smallest

ones, while preserving the order of eigenvalue significances. In

contrast, log(�) over-stretches the smallest eigenvalues, reversing

the order of significance such that, after normalization, the small-

est eigenvalues play more crucial roles than the largest ones.

metric allows non-negative eigenvalues [7, 34]. For Log-

E the common method is to add a small positive number �
to eigenvalues for improving numerical stability. Although

� can be decided by cross-validation, it is difficult to seek

a particular � well suitable for a huge number of images.

For example, [11] suggest � = 10−3, which will smooth

out eigenvalues less than 10−3. Above all, the distributions

of high-level, convolutional features are such that the log-

arithm brings side effect, which will be qualitatively ana-

lyzed in the next subsection. We will also quantitatively

compare the two metrics by experiments in Sec. 5.2.

4.3. Qualitative Analysis

This section qualitatively analyzes, from the computa-

tional perspective, the impact of matrix power and loga-

rithm on the eigenvalues of sample covariances. The ma-

trix logarithm can be regarded as a kind of normalization,

nonlinearly applied to the eigenvalues: Q
△

= log(P) =
Udiag(log(�1), . . . , log(��))U

� . Below we will concen-

trate on power function �(�) = �
1

2 and logarithm �(�) =
log(�).

We first examine the empirical distribution of eigenval-

ues of sample covariances. We randomly select 300,000

images from the training set of ImageNet 2012. For each

image, we extract the output of the 5th conv. (Conv5) layer

(with ReLU) using AlexNet model pretrained on ImageNet

2012, estimate the sample covariance P, and then compute

its eigenvalues using EIG in single-precision floating-point

format. For a training image of 227 × 227, Conv5 outputs

13 × 13 features with 256 channels, reshaped to a matrix

X ∈ R256×169. As the rank of P is less than 169, P has

less than 169 non-zeros eigenvalues. We mention that very

small eigenvalues obtained by EIG may be inaccurate due to

machine precision. The histogram of eigenvalues is shown

in Fig. 2(a)(left), where zero eigenvalues are excluded for

better view. Fig. 2(a)(right) shows the two normalization

functions over [10−5, 10]. The graphs of �
1

2 & its deriva-

tive and log(�) & its derivative, both zoomed on [10−5, 1],
are shown in Fig. 2(b) and Fig. 2(c), respectively.

The function log(�) considerably changes the eigenvalue

magnitudes, reversing the order of eigenvalue significances,

e.g., a significant eigenvalue � = 50 �→ log(�) ≈ 3.9 but

an insignificant one � = 10−3 �→ log(�) ≈ −6.9. From

the forward propagation formula P =
∑

� ��u�u
�
� �→ Q =∑

� log(��)u�u
�
� it can be seen that the smallest eigenval-

ues will play more crucial roles than the largest ones. This

effect is also obvious if we consider the backprogation for-

mula for the gradient ∂�
∂��

before and after normalization,

i.e., u�
�

∂�
∂Q

u� �→ 1
��

u�
�

∂�
∂Q

u�, � = 1, . . . , �. For example,

the derivative of log(�) at � = 10−3 is 103 but at � = 50 is

2× 10−2. Since significant eigenvalues are generally more

important in that they capture the statistics of principal di-

rections along which the feature variances are larger, matrix

logarithm will deteriorate the covariance representations.

Now let us consider �
1

2 . It nonlinearly shrinks the eigen-

values larger than one, and the larger, the more shrunk,

while stretching those less than one, and the smaller, the

more stretched. This kind of normalization conforms to

the general shrinkage principle as suggested in [28, 18].

Contrary to log(�), it does not change the order of eigen-

value significances– significant (resp. insignificant) eigen-

values maintain significant (resp. insignificant). For exam-

ple, � = 50 �→ �
1

2 ≈ 7.1 while � = 10−3 �→ �
1

2 ≈ 0.032.

From the forward propagation formula S =
∑

� ��u�u
�
� �→

Q =
∑

� �
1

2u�u
�
� , we see that the order of amount of con-

tributions made by individual eigenvalues keep unchanged.

Similar conclusion can be drawn if we consider the back-

propagation formula of ∂�
∂��

: u�
�

∂�
∂Q

u� �→
1

2
√
��

u�
�

∂�
∂Q

u�.

2074

http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-alex.mat

5. Experiments

We make experiments on ImageNet 2012 classification

dataset [24], which consists of 1,000 classes, including

roughly 1.28 million training images, 50k validation im-

ages, and 100k testing ones. We do not adopt extra training

images. Following the common practice, we report top-1

and top-5 error rates on the validation set as measures of

recognition performance. We develop programs based on

MatConvNet [30] and Matlab 2015b under 64-bit Windows

7.0. The programs run on six workstations each of which

is equipped with a Intel i7-4790k@4.0Ghz CPU and 32G

RAM. Two NVIDA Titan X with 12 GB memory and four

NVIDA GTX 1080 with 8 GB memory are used, one graph-

ics card per workstation.

5.1. Implementation of MPN-COV Networks

To implement MPN-COV layer, we adopt the EIG algo-

rithm on CPU in single-precision floating-point format, as

its GPU version provided on the CUDA platform is several

times slower. Except for EIG, all other operations in for-

ward and backward propagations are performed on GPU.

Since MPN-COV allows non-negative eigenvalues, we trun-

cate to zeros the eigenvalues smaller than eps(�1), which

indicates the positive distance from the maximum eigen-

value �1 to its next larger floating-point number. Our MPN-

COV pooling replaces the common first-order, max/average

pooling after the last conv. layer, producing a global,

�(�+ 1)/2−dimensional image representation by concate-

nation of the upper triangular part of one covariance ma-

trix. In state-of-the-art ConvNets, the feature dimension �
of the last conv. layer gets much larger. For such archi-

tectures, we add a 1 × 1 conv. layer of 256 channels after

the last conv. layer, so that the dimension of features in-

putted to the MPN-COV layer is fixed to 256 (see Sec. 5.3

and Sec. 5.4). As such, we alleviate the problem of small

sample of large-dimensional features while decreasing the

computational cost of the MPN-COV layer.

We adopt the standard color jittering technique [14] for

training set augmentation. For AlexNet [14] and VGG-

M [3], we follow the default setting in MatConvNet [30]

where each training image is rescaled such that its shorter

side is of 256 pixels. For VGG-16 [27] and ResNet [9],

following [27], we rescale isotropically each training image

with shorter side randomly sampled on [256, 512]. Then, we

sample a fixed size patch at random from the resized image

or its mirror, and subtract the mean RGB value from each

pixel. In testing stage, we first isotropically resize each test

image with short side 256, then adopt the commonly used 1-

crop prediction or 10-crop prediction for performance eval-

uation. Following [10], we adopt batch normalization right

after every convolution and before ReLU and no drop out.

We use mini-batch stochastic gradient descent with mo-

mentum (set to 0.9 throughout the experiments) for train-

0 0.5 1 1.5

Exponent α of power function

38

39

40

41

42

43

T
o

p
-1

e

rr
o

r
(%

)

first-order
second-order (cov)

Figure 3. Impact of � on second-order cov pooling under AlextNet

Architecture. Top-1 errors (1-crop) are reported. The bold line

indicates the result of the AlexNet with first-order pooling.

ing. For AlexNet, VGG-M and VGG-16, we set the weight

decay to 5 × 10−4, and their mini-batch sizes are set to

128, 100 and 32, respectively. For training from scratch,

the filter weights are initialized with a normal distribution

� (0, 0.01) with mean 0 and variance 0.01 and the biases

are initialized with zero [27]; ConvNets are trained up to

20 epochs, where the learning rates follow exponential de-

cay, changing from 10−1 to 10−4 and 10−1.2 to 10−5 for

the ConvNets with first-order pooling and those with MPN-

COV pooling, respectively. For ResNets, following [9], we

use a weight decay of 10−4 and a mini-batch size of 256,

and initialize the biases with zero and the filter weights with

� (0, 2/�), where � is the product of the size and #channels

of filters. The ResNet-50 with MPN-COV is trained up to

90 epochs with learning rate initialized to 10−1.2 and di-

vided by 10 when the error plateaus.

5.2. Evaluation of MPN-COV Under AlexNet Ar-
chitecture

In the first part of experiments, we evaluate MPN-COV

by selecting AlexNet architecture [14], since it is shallower

and runs faster than its variants. As recently proposed

deeper ConvNets [27, 9] follow the basic architecture of

AlexNet, our analysis here can extrapolate to them. We

study the impact of exponent � of power function and vari-

ous matrix normalization methods on cov pooling. We also

compare with two existing end-to-end, second-order pool-

ing methods, i.e., DeepO2P [11] concerned with matrix nor-

malization by logarithm and B-CNN [22] which performs

element-wise power normalization.

Impact of Exponent � of Power Function. We first

evaluate covariance (cov) pooling against the exponent �
of power function. Fig. 3 shows top-1 errors versus � us-

ing single-crop prediction. We first note that the plain cov

pooling (� = 1, no normalization) produces an error rate

of 40.41%, about 1.1% less than first-order max pooling.

When � < 1, the normalization function shrinks eigenval-

ues larger 1.0 and stretches those less than 1.0. As � (less

than 1.0) decreases, the error rate continuously gets smaller

2075

method MPN M-Fro M-ℓ2 init. top-1 err.

First-order (ours) – – – Random 41.52

cov pool. (ours)

No No No Random 40.41

Yes No No Random 38.51

No Yes No Random 39.87

No No Yes Random 39.65

Yes Yes No Random 39.93

Yes No Yes Random 39.62

Yes No No Warm 37.35

Table 1. Impact of various matrix normalizations under AlexNet

architecture. We measure top-1 error (%, 1-crop) for MPN, M-Fro

and M-ℓ2 as well as combinations of them.

method top-1 error top-5 error

MPN-COV (AlexNet) (ours) 33.84 14.01

Krizhevsky et al. [14] 40.7 18.2

VGG-F [3] 39.11 16.77

Table 2. Error (%, 10-crop) comparison of MPN-COV (AlexNet)

with ConvNets having similar architecture.

until the smallest value at around � = 1
2

. With further de-

cline of �, however, we observe the error rate grows consis-

tently and soon is larger than that of the plain cov pooling.

Note that over the interval [0.4, 0.9] the performance of cov

pooling varies insignificantly. When � > 1, the effect of

normalization is contrary, i.e., eigenvalues less than 1.0 are

shrunk while those larger than 1.0 are stretched, which is

not beneficial for covariance representations as indicated by

the consistent growth of the error rates. In all the following

experiments, we set � = 1
2

.

Impact of Various Normalization Methods. We mainly

compare three kinds of normalizations (i.e., MPN, M-Fro

and M-ℓ2) as well as their combinations. Table 1 summa-

rizes the comparison results. Compared to first-order pool-

ing, the plain cov pooling and cov pooling with normal-

izations decrease the errors by a gap of over 1.1%, which

clearly indicates that the second-order pooling is better than

the most commonly used, first-order pooling. When used

separately, all of the three matrix normalizations improve

over the plain cov pooling. MPN outperforms M-Fro and

M-ℓ2 by ∼1.3% and ∼1.1%, respectively, but combina-

tions of M-Fro (or MPN-ℓ2) with MPN degrade the per-

formance of separate MPN. We also made experiments by

performing element-wise power normalization right after

MPN , which, however, degraded the performance by over

1%. As our MPN-COV explores the second-order statis-

tics, which is more complex than the first-order one and

may complicate minimization of the loss function, we con-

sider warm initialization. Specifically, the weights of all

layers before the cov pooling are initialized with the trained

network with max pooling and their learning rates are set

to logspace[−2,−5, 20], while those after cov pooling are

randomly initialized with learning rates doubled. Compared

method init. top-1 error top-5 error

Plain COV (ours) random 40.41 18.94

MPN-COV (ours) random 38.51 17.60

B-CNN [22] random 39.89 18.32

DeepO2P [11] random 42.16 19.62

Table 3. Error (%, 1-crop) comparison of MPN-COV with two ex-

isting second-order pooling methods under AlexNet architecture.

to random initialization (training from scratch), the warm

initialization decreases error by ∼1.1%, which indicates it

helps MPN-COV network converge to a better local mini-

mum of the loss function. In the end, we compare in Table 2

our MPN-COV network with two ConvNets with similar ar-

chitectures, i.e., VGG-F [3] and Krizhevsky et al. [14]. The

result of VGG-F is obtained by us using the model released

on the MatConvNet website. Our MPN-COV network per-

forms much better than both of them.

Comparison with Existing Second-order Methods.

Here we compare with DeepO2P [11] and B-CNN [22], two

existing end-to-end, second-order pooling methods, nei-

ther of which has been previously evaluated on ImageNet

dataset. For DeepO2P, Ionescu et al. suggested implemen-

tation of the nonlinear, matrix logarithm using SVD and

double-precision floating-point format for both the forward

and backward propagations. We adopted the code released

by them. As suggested, we add � = 10−3 to the eigenval-

ues for numerical stability. For a matrix P = [���], B-CNN

computes Q =
[
sign(���)(∣��� ∣ + �)�

]
where sign is the

signum function. For implementation, we adopted the code

released by the authors of B-CNN, where � = 0.5 and

� = 10−5 as suggested. Table 3 presents the comparison

results. We can see that DeepO2P is inferior to the plain

cov pooling (no normalization). As analyzed in Sec. 4.3,

we attribute this to the fact that logarithm is not suitable for

the convolutional features given the distribution as shown

in Fig. 2(a) (left), as it changes the order of eigenvalue sig-

nificances. B-CNN slightly improves the plain cov pooling

by ∼0.5%, but outperformed by MPN-COV by 1.4%. We

mention that we tuned � for DeepO2P and � and � for B-

CNN but achieved trivial improvement.

5.3. MPN-COV Under VGG-Net Architectures

In this section, we combine MPN-COV with two VGG

networks, i.e. VGG-M [3] and VGG-16 [27]. We slightly

modify VGG-M by presenting two configurations (config.).

In config. a, we add an additional 1 × 1 × 256 conv. layer

(filter size: 1 × 1, channel: 256) right after Conv5, and for

config. b, the numbers of channels of Conv3 and Conv4

are both raised from 512 to 640 while that of Conv5 is re-

duced to 256. Then our MPN-COV layer follows. Note

that the 1 × 1 convolution has been used for dimensional-

ity reduction and introducing nonlinearity [21, 29]. Either

config. produces a sample of features X ∈ R256×169 for

2076

http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-vgg-f.mat
http://www.maths.lth.se/matematiklth/personal/sminchis/code/matrix-backprop.html
http://vis-www.cs.umass.edu/bcnn/

method init. config. a config. b

First-order (ours) Random 37.07 37.31

MPN-COV (ours)
Random 34.60 35.27

warm 33.44 34.25

Table 4. Top-1 error (%, 1-crop) under VGG-M architecture.

method init. top-1 error top-5 error

First-order (ours) random 29.62 10.81

MPN-COV (ours) random 26.55 8.94

Table 5. Error rates (%, 1-crop) under VGG-16 architecture.

method top-1 error top-5 error

MPN-COV (VGG-M) (ours) 30.39 11.43

VGG-M [3] 34.00 13.49

Zeiler & Fergus [33] 37.5 16.0

OverFeat [26] 35.60 14.71

Table 6. Error (%, 10-crop) comparison of MPN-COV (VGG-M)

with ConvNets sharing similar architecture.

method #layers top-1 err. top-5 err.

MPN-COV(VGG-16)(ours) 17 24.68 7.75

VGG-16 [27] 16 27.41 9.20

GoogleNet [29] 22 – 9.15

PReLU-net B [8] 22 25.53 8.13

Table 7. Error (%, 10-crop) comparison of MPN-COV (VGG-16)

with two ConvNets having comparable number of conv. layers.

the MPN-COV layer. As seen from Table 4, under config. a

with random initialization MPN-COV outperforms the first-

order, max pooling by ∼2.5% and with warm initialization

the gap increases to ∼3.6%. For config. b the gains over

max pooling are a little less than Config. a, i.e., ∼2% and

∼3% under random and warm initialization, respectively.

For VGG-16, we add a 1 × 1 × 256 convolution after the

last conv. layer, obtain the feature matrix X ∈ R256×196

for cov pooling. The results are shown in Table 5, from

which we see that MPN-COV can bring large improvement

for VGG-16 architecture.

Table 6 presents comparison of MPN-COV (VGG-M)

with the original VGG-M [3], Zeiler & Fergus [33] and

OverFeat [26], all sharing similar network architecture. Our

MPN-COV (VGG-M) shows much better performance than

them. In Table 7, we can see that in terms of top-1 er-

ror, MPN-COV (VGG-16) outperforms the original VGG-

16 [27] by ∼2.7%, and in terms of top-5 error, it per-

forms better than GoogleNet [29] and PReLU-net B [8] by

∼1.4% and ∼0.4%, respectively. PReLU-net C is simi-

lar to PReLU-net B but significantly increases #channels of

every filter [8], producing slightly better performance than

ours. Note that as the authors did not report the 10-crop re-

sults of the original VGG-M and VGG-16, we obtain them

by using the best-performing models, i.e., matconvnet-vg-

g-m.mat and vgg-verydeep-16.mat, respectively.

method init. top-1 error top-5 error

First-order (ours) random 24.95 7.52

MPN-COV (ours) random 22.73 6.54

Table 8. Error rates (%,1-crop) under ResNet-50 architecture.

method top-1 error top-5 error

MPN-COV (ResNet-50) (ours) 21.20 5.74

ResNet-50 [9] 22.85 6.71

ResNet-101 [9] 21.75 6.05

ResNet-152 [9] 21.43 5.71

Table 9. Error (%, 10-crop) comparison of MPN-COV (ResNet-

50) with the original ResNets.

5.4. MPN-COV Under ResNet Architecture

Finally, we integrate MPN-COV into ResNet-50 (base-

line). To retain as many number of features as possible,

we do not perform downsampling in conv5 1, as done in

the original network, for the last set of building blocks (i.e.

conv5 x). Then we connect the last addition layer (with

ReLU) to a 1 × 1 × 256 conv. layer, followed by the

MPN-COV layer. As such, we have a sample of features

X ∈ R
256×196 for covariance estimation. Regarding the

time (ms) taken per image, MPN-COV network vs baseline

are 18.21 vs 14.37 for training and 5.8 vs 3.5 for inference,

respectively. We observe MPN-COV network converges

faster: training/validation error rates (%) of MPN-COV vs

baseline reach 37.0/34.3 vs 50.35/44.55 at epoch 30 and

18.02/23.19 vs 25.98/25.76 at epoch 60. Table 8 shows that

MPN-COV produces ∼2.2% top-1 error (1-crop) less than

the first-order average pooling. Table 9 shows that, com-

pared to the original ResNets, with 10-crop prediction our

MPN-COV network performs 1.65% better than ResNet-

50, while outperforming ResNet-101 and being compara-

ble to ResNet-152. By exploiting second-order statistics we

achieve performance matching extremely deep ConvNets

with much shallower one.

6. Conclusion

This paper proposed a matrix normalized covariance

(MPN-COV) method for exploring the second-order statis-

tics in large-scale classification. MPN-COV amounts to ro-

bust covariance estimation given a small number of large-

dimensional features. It also approximately exploits the

geometry of the space of covariance matrices, while cir-

cumventing the downside of the well-known Log-Euclidean

metric. Extensive experiments on ImageNet 2012 dataset

showed that our MPN-COV networks achieved competitive

gains over its counterparts using only first-order informa-

tion. In future we will combine MPN-COV with the Incep-

tion architecture [29], and study applications of MPN-COV

to visual tasks such as object detection, scene categorization

and fine-grained visual recognition.

2077

http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-vgg-m.mat
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-16.mat

References

[1] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geomet-

ric means in a novel vector space structure on symmetric

positive-definite matrices. SIAM J. on Matrix Analysis and

Applications, 2006. 1, 2, 4

[2] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-

mantic segmentation with second-order pooling. In ECCV,

pages 430–443, 2012. 2

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 6, 7, 8

[4] Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero. Shrink-

age algorithms for MMSE covariance estimation. IEEE TSP,

58(10):5016–5029, 2010. 4

[5] A. Cherian, P. Koniusz, and S. Gould. Higher-order pooling

of CNN features via kernel linearization for action recogni-

tion. In WACV, 2017. 2

[6] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for

texture recognition and segmentation. In CVPR, 2015. 1, 2

[7] I. L. Dryden, A. Koloydenko, and D. Zhou. Non-Euclidean

statistics for covariance matrices, with applications to dif-

fusion tensor imaging. The Annals of Applied Statistics,

3(3):1102–1123, 2009. 4, 5

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 8

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 4, 6, 8

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 4, 6

[11] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In

ICCV, 2015. 1, 2, 3, 5, 6, 7

[12] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep

networks with structured layers by matrix backpropagation.

arXiv, abs/1509.07838, 2015. 2, 3, 4

[13] P. Koniusz, F. Yan, P. H. Gosselin, and K. Mikolajczyk.

Higher-order occurrence pooling for bags-of-words: Visual

concept detection. IEEE TPAMI, 39(2):313–326, Feb 2017.

2

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1, 6, 7

[15] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multi-

linear singular value decomposition. SIAM. J. Matrix Anal.

Appl., 21(4):1253–1278, 2000. 2

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, 2006. 1

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[18] O. Ledoit and M. Wolf. A well-conditioned estimator for

large-dimensional covariance matrices. J. Multivariate Anal-

ysis, 88(2):365–411, 2004. 4, 5

[19] P. Li, X. Lu, and Q. Wang. From dictionary of visual words

to subspaces: Locality-constrained affine subspace coding.

In CVPR, 2015. 2

[20] P. Li, Q. Wang, H. Zeng, and L. Zhang. Local Log-Euclidean

multivariate Gaussian descriptor and its application to image

classification. IEEE TPAMI, 2017. 2

[21] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,

2014. 7

[22] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN

models for fine-grained visual recognition. In ICCV, 2015.

1, 2, 6, 7

[23] X. Pennec, P. Fillard, and N. Ayache. A Riemannian frame-

work for tensor computing. IJCV, pages 41–66, 2006. 4

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. IJCV, 115(3):211–252, 2015. 1, 6

[25] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image

classification with the Fisher vector: Theory and practice.

IJCV, 105(3):222–245, 2013. 2, 3

[26] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. In ICLR, 2014.

8

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 4, 6, 7, 8

[28] C. Stein. Lectures on the theory of estimation of many pa-

rameters. Journal of Soviet Mathematics, 34(1):1373–1403,

1986. 4, 5

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1, 7, 8

[30] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for MATLAB. In ACM on Multimedia, 2015. 6

[31] Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust es-

timation of approximate infinite dimensional Gaussian with

application to material recognition. In CVPR, 2016. 1, 2, 4

[32] E. Yang, A. Lozano, and P. Ravikumar. Elementary esti-

mators for sparse covariance matrices and other structured

moments. In ICML, 2014. 4

[33] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, pages 818–833, 2014. 1,

8

[34] D. Zhou, I. L. Dryden, A. A. Koloydenko, K. M. Audenaert,

and L. Bai. Regularisation, interpolation and visualisation of

diffusion tensor images using non-Euclidean statistics. Jour-

nal of Applied Statistics, 43(5):943–978, 2016. 4, 5

2078

