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Abstract

Existing video event classification approaches suffer

from limited human-labeled semantic annotations. Weak se-

mantic annotations can be harvested from Web-knowledge

without involving any human interaction. However such

weak annotations are noisy, thus can not be effectively uti-

lized without distinguishing its reliability. In this paper, we

propose a novel approach to automatically maximize the

utility of weak semantic annotations (formalized as the se-

mantic relevance of video shots to the target event) to fa-

cilitate video event classification. A novel attention model

is designed to determine the attention scores of video shots,

where the weak semantic relevance is considered as atten-

tional guidance. Specifically, our model jointly optimizes

two objectives at different levels. The first one is the classifi-

cation loss corresponding to video-level groundtruth labels,

and the second is the shot-level relevance loss correspond-

ing to weak semantic relevance. We use a long short-term

memory (LSTM) layer to capture the temporal information

carried by the shots of a video. In each timestep, the LSTM

employs the attention model to weight the current shot un-

der the guidance of its weak semantic relevance to the event

of interest. Thus, we can automatically exploit weak seman-

tic relevance to assist video event classification. Extensive

experiments have been conducted on three complex large-

scale video event datasets i.e., MEDTest14, ActivityNet and

FCVID. Our approach achieves the state-of-the-art classi-

fication performance on all three datasets. The significant

performance improvement upon the conventional attention

model also demonstrates the effectiveness of our model.

1. Introduction

Video event classification is widely applied in many real-

world applications, such as security surveillance, human-

computer interaction, etc. It has been becoming one of the

most significant research problems in computer vision, mul-

timedia, and artificial intelligence communities [18, 45, 44,
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Figure 1: Illustration of the proposed framework. Our

framework first harvests weak semantic knowledge from

Web-knowledge, then uses it as a weak guidance to the at-

tention model. The LSTM layer then employ the attention

model to assign attention score for each shot in a video.

14, 41, 2]. The big intra-class variation in visual content is

a major challenge for video event classification. On the one

hand, most of the events (e.g., “birthday party”, “wedding

ceremony”) have unconstrained content which includes var-

ious entities (e.g., objects, people, animals) with diverse in-

teractions. On the other hand, even for the videos illus-

trating the same event, they may have very different visual

appearances. For instance, with regard to “repairing an ap-

pliance”, the appliance could be a television in black or a

washing machine with white paint. The above facts lead to

big intra-class variation in visual content for an event. To al-

leviate this variation, high quality semantic annotations are

in demand.

Essentially, a video consists of a sequence of shots. Gen-

erally, not all the shots are relevant to the event represented

by the video. A natural way to evaluate the importance of a
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video shot to its belonging event is exploiting its semantic

relevance [1, 30, 10] to the event of interest. Specifically,

when classifying a video, we wish to pay more attention on

the shots with high semantic relevance to the target event,

and neglect the ones with low relevance. How to assign se-

mantic annotations to each video shot and how to measure

its relevance to the target event are two major research is-

sues to address in video event classification.

In some recent works [1, 30, 10], a small number of

event-related semantic concepts (less than 100) are pre-

defined. Concept detectors are then trained on the manually

annotated video shots. The response scores of testing video

shots w.r.t these detectors are used as semantic relevance to

the target event. To prepare the annotated video training set,

a large amount of human effort is required. Moreover, when

a new event comes, it needs to annotate each video again.

In contrast to the prohibitive labour cost on obtaining suf-

ficient semantic annotations for every shot in millions of

videos, Li et al. [18] propose to automatically discover la-

tent concepts in a data-driven manner. Furthermore, weak

semantic relevance can be conveniently gained from easily

accessible Web-knowledge [6, 29]. For instance, in [20, 6],

event-related Web images are downloaded from Google and

Flickr by directly searching the event names. The authors

assume these Web images are in high relevance to their cor-

responding events and can be used in fine-tuning CNNs for

video event classification. In [38], CNNs pre-trained on ob-

ject and scene classification tasks are respectively applied

on videos. The probabilistic outputs of these CNNs are

considered as semantic relevance w.r.t object and scene re-

spectively, which are further used as the input features to a

fusion network.

Once a reliable semantic relevance has been achieved, a

straightforward way to utilize it is to directly combine it

with low-level shot features (e.g., SIFT [19], STIP [17],

Dense Trajectory [35] ). For example, before aggregat-

ing the shot features of a video into a global bag-of-words

(BoW) vector, we can weight them by their semantic rele-

vance to the target event. However the weak semantic rel-

evance gained from Web-knowledge is not always reliable

yet even noisy due to the domain gap [40, 29] between the

Web-knowledge and the videos. Directly employing it with-

out distinguishing its reliability can not maximize its utility.

Even worse, it may bring noise to the final representation,

resulting in inferior classification performance.

Motivated by the above facts, we propose a long short-

term memory (LSTM) [9] framework with a novel attention

model which takes semantic relevance gained from Web-

knowledge as weak guidance. Attention model [23] is re-

cently used on image and video captioning tasks [39, 43,

42]. When a caption is being generated for an image, the

caption model pays attention to different regions in each

step. Inspired by their success, we design a novel atten-

tion model to automatically evaluate the weight of current

testing video shot based on its weak semantic relevance to

the event of interest. As aforementioned, the semantic rel-

evance generated from Web-knowledge is weak and noisy.

To maximize its utility, the proposed attention model as-

signs attention score to the current video shot automatically

in each timestep by taking the semantic relevance as a weak

guidance rather than simply considering the semantic rel-

evance as the weight of each shot. The score of a testing

video to a target event will be then computed based on its

weighted shots.

The contributions of our work are summarised as fol-

lows:

• To leverage weak semantic relevance for video event

classification, our framework jointly optimizes two ob-

jectives at two levels. The first one is the classification

loss corresponding to the video-level groundtruth la-

bel, and the second one is the shot-level relevance loss

corresponding to the weak semantic relevance.

• To maximize the utility of weak semantic relevance for

video event classification, we propose a novel attention

model. Instead of entirely following the weak seman-

tic relevance, the proposed attention model takes it as

a weak guidance to automatically weight each testing

video shot.

• We conduct extensive experiments on three large-scale

video event datasets, i.e., MEDTest14, ActivityNet and

FCVID. The experimental results demonstrate the ef-

fectiveness of the proposed framework w.r.t leveraging

weak semantic relevance for video event classification.

We achieve state-of-the-art classification performance

on all of these three datasets.

2. Related Works

Complex video event classification has attracted wide at-

tention in computer vision, multimedia and artificial intelli-

gence communities. The major challenge to complex video

event classification is the high intra-class variation caused

by unconstrained content and various visual appearances.

To alleviate this issue, methods utilizing semantic informa-

tion have been proposed [1, 30, 10, 25, 12, 13, 32]. How-

ever methods based on human-labelled semantic informa-

tion [1, 30, 10] require large amount of human effort to

create and maintain a semantic information database. Al-

ternatively, in some recent works [6, 29], the methods ex-

ploiting Web-knowledge are proposed for zero-shot video

event classification. These methods harvest semantic rele-

vance from Web-knowledge, which are utilized by apply-

ing heuristic algorithms. Jain et al. [11] use ImageNet ob-

jects to encode unseen video classes via semantic embed-

ding. Gan et al. [5] fine-tune a CNN that are pre-trained
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on ImageNet for video event classification and evidence

recounting. In [20, 6], Web images related to events are

collected from Google and Flickr by directly searching the

event names. The authors assume these Web images are

in high relevance to their corresponding events, which can

be used in fine-tuning CNNs for video event classification.

In [38], CNNs pre-trained on object and scene classification

tasks are respectively applied on videos. The probabilistic

outputs of these CNNs are considered as semantic relevance

w.r.t object and scene respectively, which are further used as

the input features of a fusion network. Chang et al. [3] sort

the video shots by their semantic relevance, based on which

an isotonic regularizer is developed to exploit the ordering

information. Different from the above related works, we

use semantic relevance generated from Web-knowledge as

a weak guidance to our proposed attention model, where

an attention score will be assigned to current video shot in

each timestep. The whole process is automatic without hu-

man interfering.

Video event has plentiful temporal information. For ex-

ample, the event “birthday party” typically consists of the

following activities in sequence: “people singing”, “blow-

ing out candles”, “applauding”, and “cutting cake”. Un-

fortunately, this valuable temporal information is usually

neglected by traditional methods (e.g., BoW) for video

event classification. In our proposal, we use LSTM [9]

to capture the temporal information in complex events.

LSTM is a type of the recurrent neural network (RNN) [9],

which memorizes useful patterns of preceded observations

to provide long range context for the prediction of the cur-

rent step. There are many applications of LSTM such as

sentiment analysis, machine translation, image captioning,

etc. [31, 34].

Attention model [23] is recently introduced for image

and video captioning tasks [39, 43, 42]. In their models, the

current caption word is generated by paying different atten-

tions on different image regions or different video shots in

each timestep. The attention models they proposed are only

guided by the groundtruth of the captions. Different from

these traditional attention models, we design a novel one,

which is not only supervised by the video-level groundtruth

labels but also takes into account the semantic relevance as

a weak guidance to generate attention scores. The proposed

attention model aims to maximizes the utility of the weak

semantic relevance to assist video event classification.

3. The Proposed Approach

In this section, we propose a framework for video event

classification, which consists of a novel attention model to

generate an attention score for each shot and an LSTM layer

to capture the temporal information embedded in video

shots. Importantly, the proposed attention model takes the

weak semantic relevance as a guidance, where the utility of
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Figure 2: Demonstration of the proposed framework. xt

represents the feature of shot t. ht corresponds to the tem-

poral representation returned by LSTM at time t. αt is the

attention score for shot t, which is evaluated by the pro-

posed attention model. Our framework jointly optimizes

two objectives at two different levels respectively. One is

the relevance loss at shot-level, and the other one is the clas-

sification loss at video-level.

weak semantic relevance is effectively exploited to serve the

video event classification.

3.1. Weak Semantic Relevance Extraction

In this work we use ImageNet [26] and publicly available

NLP corpus such as Wikipedia Dump [37] as our sources

of computing weak semantic relevance. The ImageNet

dataset has C = 1000 categories, each of which comes

with an entity description (e.g., laptop computer, german

shepherd dog). Assume there are a number of E events in

our video dataset. Each event has a text description. We

use a Word2Vec embedding [22] that pre-trained on mas-

sive natural language corpus to evaluate the semantic rele-

vance between the ImageNet category and the target event

based on their text descriptions. In Word2vec embedding,

each word is embedded in a continuous vector space. Two

words with similar semantic meanings have close Cosine

distance in this vector space [24, 22, 21]. Note that, for a

description with multiple words, we use the average of these

word vectors as its final representation. Now, for each event

e ∈ [1, E] we obtain a C-dimensional relevance score vec-

tor Se ∈ R
C , in which each element indicates the relevance

of the corresponding category to the target event e.

For a video vi, we first segment it into a sequence of

shots and sample one frame from each as its representation.

For each shot t, a deep CNN [16, 28] pre-trained on Im-

ageNet is used to output a 1000-way vector pt
i, which is

a probability distribution over 1000 ImageNet categories.

In [3], the final semantic relevance score of the t-th shot to

the target event e is defined as the probabilistic expectation

of the relevance scores over all 1000 categories.
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r
t,e
i =

C∑

c=1

pti,cS
e
c (1)

where pti,c is the c-th element in the probability vector of

the t-th shot in video vi. However, the long tail of this dis-

tribution may pollute the final semantic relevance. Inspired

by [11], we select the top 50 most responsive elements in

pt
i and re-normalize them with softmax. The expectation

over this new distribution is taken as our final semantic rel-

evance.

This type of semantic relevance is generated from both

image domain and natural language domain. Semantic gaps

certainly exist among language, image and video domains,

resulting in low reliability compared with human-labelled

semantic relevance. Hence we call it weak semantic rele-

vance. Note that it is only one method to calculate rele-

vance. Other methods such as heuristic algorithm proposed

in [29] can also be applied in our framework.

3.2. Problem Formulation

Suppose we have N labelled videos (vi, li) in the train-

ing set, where i ∈ [1, N ], li ∈ {0, 1}E , lei indicates

whether vi belongs to event e. The feature of the t-th shot

from video vi is represented as xt
i, where t ∈ [1,Mi] and

Mi is the total number of shots in vi . Each video vi is as-

sociated with a weak relevance vector rei ∈ R
Mi , in which

each element r
t,e
i corresponds to the relevance score of shot

xt
i to the target event e. We denote the set of all videos

and labels as V and L respectively, and the set of relevance

vectors of all videos as R. Under the guidance of the weak

semantic relevance, the proposed attention model evaluates

the attention score α
t,e
i for video shot xt

i with regard to

event e. The proposed framework pays different attentions

to different shots when conducting classification.

To effectively leverage weak semantic relevance in our

framework, we aim to maximize its utility with the attention

model. To this end, we formulate the video event classifi-

cation task assisted by weak semantic relevance by jointly

optimizing the following two losses at two different levels

respectively:

Loss(V, L,R) = (1− λa)Lc(V, L) + λaLa(V,R) (2)

where Lc(V, L) is the classification loss corresponding to

the groundtruth labels L, and La(V,R) is the relevance loss

at shot-level with respect to the guidance from weak seman-

tic relevance R received by the attention model. λa is the

parameter controlling the contribution of the guidance from

the weak semantic relevance.

With Equation (2) as the objective function of the over-

all framework (illustrated in Fig. 2), we develop the spe-

cific formulations of Lc(V, L) and La(V,R) in the follow-

ing sections.

3.3. Video Event Classification by Paying Attention
to Relevant Shots

It is a natural way to focus attention on relevant shots

when performing classification on an event video. To

achieve that, we use an attention score to measure the rel-

evance of each video shot to its target event. The LSTM

layer [9] in our framework is designed to capture the tem-

poral information carried by the shots in a video. In each

timestep, the LSTM unit returns the representation for the

current shot, which memorizes useful patterns observed in

its preceded video shots. We classify a video based on

the representation sequence produced by the LSTM layer

and the attention score assigned by the proposed attention

model. The probability of video vi being classified to the

event e is denoted as pei , which is formally defined as:

pei = f(h̄e
i ;wf ) =

exp(we
f · h̄e

i )∑
j∈[1,E] exp(w

j
f · h̄j

i )

h̄e
i =

1

Ze
i

Mi∑

t=1

α
t,e
i · ht

i

ht
i = gl(x

t
i,h

t−1
i ;wl)

Ze
i =

Mi∑

t=1

α
t,e
i

(3)

where t ∈ [1,Mi], e ∈ [1, E]

where f(· ; wf ) is the softmax scoring function, parame-

terized by wf . [h1
i ,h

2
i , ...,h

Mi

i ] is the representation se-

quence produced by the LSTM layer, where ht
i is the

representation returned by the LSTM layer in timestep

t. It is further weighted by the attention score sequence

[α1,e
i , α

2,e
i , ..., α

Mi,e
i ] evaluated by the proposed attention

model. The weighted average of this representation se-

quence, i.e., h̄e
i , is taken as the input by the softmax function

f . gl(· , · ; wl) is the updating function within each LSTM

unit and wl is the corresponding parameters. The attention

score α
t,e
i for shot xt

i with regard to event e is calculated in

each timestep by the attention model.

Accordingly, we define the video-level classification loss

as the following categorical cross-entropy loss:

Lc(V, L) = −
1

N

N∑

i=1

E∑

e=1

lei log(p
e
i ) (4)

Note that, for a video with multiple labels, we normalize its

label vector li by L1 norm to get a probability vector.

3.4. The Proposed Attention Model

The attention model [23] is recently incorporated in

LSTM framework for sequence generation task, such as im-

age captioning [23, 43, 39] and video captioning [42]. Its
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basic idea is that, when generating a caption for an image

or video, in each timestep, the attention model computes the

weight, i.e., attention score, for every individual visual re-

gion (e.g., image regions, video shots). Based on the combi-

nation of the weighted visual regions, the LSTM layer gen-

erates a word for the current timestep.

However the above attention models are only supervised

by the ground-truth labels, i.e., the captions of images or

videos. To effectively leverage weak semantic relevance

in video classification, we design a novel attention model

which is not only supervised by the groundtruth event la-

bels, but also guided by weak semantic relevance.

For a video vi, in timestep t, we define the attention score

vector αt
i for shot xt

i by the following equations:

α
t
i = ga(h

t
i,x

t
i;wa)

where t ∈ [1,Mi]
(5)

where ga(· , · ; wa) is an attention network with softmax

output and being parameterized by wa. Each element α
t,e
i

in α
t
i is the attention score of shot xt

i with respect to event

e. We use a multi-layer perceptron as our attention network

conditioned on shot feature xt
i and its corresponding repre-

sentation ht
i produced by the LSTM layer.

Note that, most existing attention models are designed

for captioning, i.e., word sequence generation, where

strong relations between neighbouring words exist. Ba-

sically, these models compute the attention score for cur-

rent timestep t purely based on the previous representation

ht−1
i [39, 42]. In video event classification task, we focus

on the discriminative power of the final video representa-

tions. Therefore, our attention network is conditioned on ht
i

and xt
i. More specifically, we feed the concatenated vec-

tor [ht
i,x

t
i] to our attention network, where hi captures the

temporal information of the observed video shots and xi

preserves the inherent visual appearance of the current shot.

The weak semantic relevance can be hardly used as the

attention score directly to weight video shots, because it is

noisy and not reliable enough. Instead of completely rely on

it, we utilise it in our attention model as a weak guidance.

The attention loss La(V,R) is correspondingly formulated

as:

La(V,R) =
1

N

N∑

i=1

||αt
i − rti||

2 (6)

where αt
i is the attention score vector of video vi, calculated

by Equation (5). This loss function implies that αt
i follows

a Gaussian distribution with mean rti. By this way the pro-

posed attention model takes the weak relevance as a priori

when computing the attention score for the current shot.

The overall objective function, i.e., Equation (2), is op-

timized using stochastic gradient descent. By minimizing

this objective function, our model exploits weak semantic

relevance by the proposed attention model to facilitate video

classification.

As emphasised before, the proposed attention model is

supervised not only by video-level groundtruth event label,

but also under the weak guidance of the shot-level semantic

relevance. We can examine this by investigating the prop-

agation path of gradient w.r.t attention scores: according to

Equations (2), (3), (4), (5) and (6), the gradient w.r.t the at-

tention model is:

∂Loss(V, L,R)

∂αi

= (1−λa)
∂Lc(V, L)

∂h̄i

·
∂h̄i

∂αi

+λa

∂La(V,R)

∂αi

(7)

Similarly, the LSTM layer is also supervised by these two

level losses. The gradient w.r.t the parameters of LSTM

layer, i.e., wl is:

∂Loss(V, L,R)

∂wl

= (1− λa)
∂Lc(V, L)

∂h̄i

·
∂h̄i

∂wl

+ λa

∂La(V,R)

∂αi

·
∂αi

∂h̄i

·
∂h̄i

∂wl

(8)

The above equations clearly illustrates how the proposed

framework learns from two different knowledge sources,

i.e., event videos and Web-collected weak semantic rele-

vance.

4. Experiments

In this section, we conduct extensive experiments to

evaluate the effectiveness of our framework and the abil-

ity of the proposed attention model with leveraging weak

semantic relevance.

4.1. Experiment Setup

Dataset. The performance study is conducted on

three large-scale benchmark video event datasets, i.e.,

MEDTest14 [33], ActivityNet [8] and FCVID [15].

MEDTest14 [33] is a commonly-used benchmark dataset

covering 20 events for complex video event classification.

Each event has 100 positive training examples, and all

events share about 5,000 negative training examples. The

test set has approximately 23,000 videos.

ActivityNet [8] is recently released for complex human

activity recognition. It comprises 28K videos of 203 activ-

ity categories collected from YouTube. The lengths of the

videos range from several minutes to half an hour. The to-

tal length of the whole dataset is 849 hours. Many of the

videos in this dataset are shot by amateurs in uncontrolled

environments, where the variances within the same activity

category are often large. ActivityNet provides trimmed and

untrimmed videos for evaluation. Following the settings in

[38], we adopt a more challenging untrimmed setting for

our experiments. ActivityNet consists of training, valida-

tion, and test splits. The test split is not publicly available,
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as the authors are reserving the test data for a potential fu-

ture competition. Hence we use validation set as our test set

as well as [38] does.

FCVID [15] consists of 91,223 Web videos annotated

manually according to 239 categories. The total duration

of all videos is 4,232 hours and the average duration per

video is 167 seconds. The categories in FCVID cover

a wide range of topics like social events (e.g., “tailgate

party”), procedural events (e.g., “making cake”), objects

(e.g., “panda”), scenes (e.g., “beach”), etc. We use its stan-

dard split of 45,611 videos for training and 45,612 videos

for testing.

Implementation Details. Due to the computational lim-

itation of our experimental environment, we construct a

moderate sized network by segmenting each video into 30

shots. The color histogram difference between consecutive

frames is considered as the indicator of shot boundaries.

Other segmentation algorithms can also be employed in our

framework. For videos that have more than 30 shots, an

agglomerative clustering alike method is applied to repeat-

edly merge two shortest shots into one in each round until

the number of all shots is reduced to 30. For videos with

less than 30 shots, we simply pad them with zeros at the

tail. The middle frame of each shot is selected as its rep-

resentative, whose feature is extracted by applying a very

deep CNN architecture (from fc6 layer of VGG-19 [28]).

We also use its probability output to compute the weak se-

mantic relevance for each frame as explained in Sec. 3.1.

Since unidirectional LSTM can only capture the previously

observed temporal patterns (related to the current timestep)

in a video, we adopt bidirectional LSTM [27, 7] to capture

the intact temporal context (previous and post). Stochastic

gradient descent algorithm with momentum is used to train

our model. The batch size, momentum, and dropout rate

(applied on both LSTM layer and fully connected layer) are

set to be 64, 0.9 and 0.1 respectively. The learning rate is set

to be 0.01 initially and divided by 10 after every 10K itera-

tions. Finally, we employ mean average precision (mAP) to

evaluate the overall performance on all three datasets.

Compared methods. The proposed approach are com-

pared with the following alternative methods including two

baseline methods and four state-of-the-art methods that also

utilize weak semantic relevance generated from Web:

1. SVM-WA. The weak semantic relevance is directly

used to weight video shot features without considering

its reliability. The weighted shot features in a video

are then average-pooled into a global feature vector,

on which SVM is applied for classification.

2. LSTM-NR. It is a variant of the proposed method with-

out utilizing weak semantic relevance. It is equivalent

to LSTM with a conventional attention model.

3. Nearly-Isotonic SVM (NISVM) [3]. This state-of-the-

ActivityNet FCVID MEDTest14

SVM-WA 50.8% 69.9% 28.1%

LSTM-NR 55.1% 73.2% 29.1%

Ours 61.6% 77.8% 36.3%

Table 1: Comparisons with baseline methods on Activi-

tyNet, FCVID and MEDTest14 datasets

ActivityNet FCVID

Ma et al. [20] 53.8% -

Heilbron et al. [8] 42.5% -

Jiang et al. [15] - 73.0%

OSF [38] 56.8% 76.5%

Ours 61.6% 77.8%

Table 2: Comparisons with state-of-the-art methods on Ac-

tivityNet and FCVID datasets. Our method achieve best

classification performance on both of the two datasets.

art method sorts the video shots by their semantic rele-

vance. An isotonic regularizer is introduced to impose

larger weights on the shots with higher semantic rele-

vance.

4. Ma et al. [20]. The authors download 393K event-

related Web images from Google and Flickr by directly

searching the event names. These Web images are as-

sumed in high relevance to their corresponding events

and are further used in fine-tuning CNNs.

5. Jiang et al. [15]. It combines multiple state-of-the-art

handcrafted visual features (e.g., improved dense tra-

jectories) and deep features. The authors use a regular-

ized deep neural network to exploit feature and class

relationships.

6. OSF[38]. In this paper, the CNNs pre-trained on object

and scene classification tasks are respectively applied

on videos. The probabilistic outputs of these CNNs are

considered as the semantic relevance w.r.t object and

scene respectively and are used as the input features of

a fusion network.

Although there are other video classification methods,

they are either based on feature ensemble or fusion of snip-

pet scores [36] but not utilizing semantic information, hence

do not apply in our comparable experiments.

4.2. Comparison with Baseline Methods

To examine the extent to which the weak semantic rel-

evance harvested from Web-knowledge can facilitate video

classification, we compare our method with two baseline

models SVM-MA and LSTM-NR. Table 1 shows the video
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Figure 3: Results on MEDTest14 dataset. The mean APs of SVM-WA, LSTM-NR, NISVM and our full model are 28.1%,
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Figure 4: The effect of the relevance loss, i.e., trade-off pa-

rameter λa, on ActivityNet dataset
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Figure 5: The effect of the relevance loss, i.e., trade-off pa-

rameter λa, on FCVID dataset

classification performance of the evaluated baseline meth-

ods and the proposed approach. The proposed method out-

performs SVM-MA by large margins i.e., 10.8%, 7.9%,

and 8.2% on ActivityNet, FCVID, and MEDTest14 respec-

tively. It apparently evidences our assumption discussed in

Sec. 3.1 that utilising the weak semantic relevance without

distinguish its reliability may result in inferior classifica-

tion performance. The automatic learning process in our

proposal effectively distinguishes useful information from

noisy weak semantic relevance.

Our method is also compared with its variant LSTM-

NR. The main difference between these two methods lies

on the attention model training process, where the conven-

tional attention model used in LSTM-NR is supervised by

the groundtruth event label while our novel attention model

also takes weak semantic relevance as a weak guidance. We

get this variant by setting the parameter λa in Eq. (2) as 0.

As shown in Table 1, the proposed model outperforms its

variant over all three datasets. It indicates that our attention

model which leverages semantic relevance as weak guid-

ance is superior than the conventional one. The weak se-

mantic relevance makes significant contribution to achiev-

ing promising classification performance.

4.3. Comparison with State­of­the­art Methods

In this section, we compare our method with four state-

of-the-art methods: NISVM [3], Ma et al. [20], Jiang et

al. [15], and OSF[38]. In Fig. 3 and Table 2, we report the

results of the performance study over all three datasets.

NISVM [3] is similar to our method. The same points

we share are that, we both aim to assign larger weights to

video shots with higher semantic relevance and the same

sources to obtain weak semantic relevance are used. For

a fair comparison, we adopt same settings with [3]. On

MEDTest14 dataset, we use Eq. (1) to compute the seman-

tic relevance as in [3], without selecting top 50 most respon-

sive elements. We quote their best results to compare with

ours. In Fig. 3, the mean APs of NISVM and our model are

34.4% and 36.3% respectively. Our method outperforms

NISVM on 14 events out of 20 events. NISVM sorts the
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video shots by semantic relevance and only considers the

ordering information among video shots. As discussed be-

fore, our method employs both the semantic relevance as

a weak guidance to the proposed attention model and a

bidirectional LSTM layer to capture the long-term temporal

context among video shots. Hence, our model can exploit

more valuable information from both of the semantic rele-

vance and the temporal patterns in video shots.

For event categories 11, 12, 13 and 14, corresponding

to “bee keeping”, “wedding shower”, “non-motorized ve-

hicle repair”, and “fixing musical instrument”, our method

performs not as good as NISVM. After carefully investi-

gating the videos for these four events, we find out that

most of these videos are comprised of static scenes, such

as “farm”, “church”, etc. In result, the temporal informa-

tion is overwhelmed by the strong static visual appearance

and the LSTM layer in our model is overfitted. The fact that

LSTM-NR performs even worse than SVM-WA on these

four events also proves this observation.

In [20], Ma et al. evaluate several recent proposed very

deep CNN architectures such as VGG-16, VGG-19 [28]

and M2048 [4] etc., for fine-tuning. We quote their best

result on ActivityNet dataset from their original paper. Ob-

served from Table 2, the proposed method outperforms their

method by a clear margin of 6.7% on ActivityNet. The pos-

sible reasons are as follows. Firstly, the compared method

does not explicitly distinguish the reliability of the event-

related images, which may brings noise to the CNNs and be

used for fine-tuning. It is not clear how robust the CNNs

are to the noises. Secondly, an LSTM layer is used in our

model to capture the temporal information in videos, while

the CNNs used in [20] for fine-tuning can only capture the

spatial visual appearance of images.

We have also quoted the best results of [38] on Activi-

tyNet and FCVID datasets from their original paper in Ta-

ble 2. This demonstrates the superior effectiveness of our

model with regard to utilizing weak semantic relevance.

Note that, their method leverages semantic relevance from

three aspects i.e., object, scene, and low-level CNN feature,

each of which corresponds to a different source domain. In

this paper, our method only utilizes one source of semantic

relevance. However, it can be naturally extended to com-

bine heterogeneous semantic relevance sources and is ex-

pected to achieve an even better performance.

Jiang et al. [15] combines multiple state-of-the-art hand-

crafted visual features (e.g., improved dense trajectories)

and deep features for video event classification. They use a

regularized deep neural network to exploit feature and class

relationships. As clearly shown in Table 2, our model with

the consideration of semantic relevance is more effective.

In the meanwhile, our method is expected to be further im-

proved by considering motion features for video shot repre-

sentation, while we only use static CNN feature for model

simplicity in this work.

4.4. Experimental Study of The Contribution of
Weak Semantic Relevance

In this section, we conduct empirical analysis on the

contribution of the weak semantic relevance. In Fig. 4

and Fig. 5 we depict the performance on ActivityNet and

FCVID respectively of the proposed method against differ-

ent values of parameter λa in Eq. (2). A larger value of λa

means a larger weight on the weak semantic relevance. On

ActivityNet dataset our model achieves the best classifica-

tion performance when λa = 0.4, and on Fcvid dataset it

works best when λa = 0.3. On both of these two datasets,

when λa increases larger than 0.4, the classification perfor-

mance drops dramatically. It implies that, when λa gets

larger than 0.4 our model starts to be dominated by the weak

semantic relevance. This phenomenon can be understood

as follows: the semantic relevance we extract from Web-

knowledge is not reliable enough to contribute more than

“40%” (corresponds to λa=0.4) to the classification task. If

more reliable semantic relevance can be obtained, a larger

value should be imposed to λa, i.e., let semantic relevance

contributes more for better classification performance.

5. Conclusion

In this paper, we propose a framework with a novel at-

tention model to automatically utilize weak semantic rel-

evance to assist video classification task. This framework

jointly optimizes two objectives at video-level and shot-

level separately, which explicitly affect video classification

from both global-level (i.e., video-level labels) and local-

level (i.e., shot-level attention scores). To alleviate the ef-

fect of the noises carried by the weak semantic relevance,

we use weak semantic relevance as a weak guidance in the

proposed attention model, instead of considering it as the

attention score directly. This process significantly improves

the effectiveness of our proposed model.

Comprehensive performance studies have been con-

ducted by comparing our method with six other methods

over three large-scale benchmark datasets. The effective-

ness of our method is evidenced by its superior perfor-

mances compared with others.

Our framework can also be smoothly extended and
improved by generating weak semantic relevance from
heterogenous information sources or combining multiple
advanced visual features for video shot representation.
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