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Abstract

Activity recognition has become an important function in

many emerging computer vision applications e.g. automatic

video surveillance system, human-computer interaction ap-

plication, and video recommendation system, etc. In this

paper, we propose a novel semantics based group activity

recognition scheme, namely SBGAR, which achieves higher

accuracy and efficiency than existing group activity recog-

nition methods. SBGAR consists of two stages: in stage I,

we use a LSTM model to generate a caption for each video

frame; in stage II, another LSTM model is trained to predict

the final activity categories based on these generated cap-

tions. We evaluate SBGAR using two well-known datasets:

the Collective Activity Dataset and the Volleyball Dataset.

Our experimental results show that SBGAR improves the

group activity recognition accuracy with shorter computa-

tion time compared to the state-of-the-art methods.

1. Introduction

Automatically recognizing human activities in videos is

one of the core tasks in the field of computer vision. It has

many potential applications. For example, Lao et al. [1]

present an automatic video surveillance system by analyz-

ing human motion in videos, Rautaray et al. [2] design a

new human-computer interaction method based on real time

hand gesture recognition, and Davidson et al. discuss the

video recommendation system in use at YouTube in [3].

In the modern era, dramatic progress has been made in

recognizing human activities within videos. For example,

Wu et al. [4] and Li et al. [5] present models to recognize

human activities based on RGB frames (or optical flow im-

ages). In addition, Du et al. [6] and Veeriah et al. [7] recog-

nize human activities using 3D representation (body joints).

Even though all of these approaches yield a good perfor-

mance, they have limitations. For RGB-based approaches,

only a few of them were evaluated on datasets which con-

tain complex activities, like group activities. Compared to

the single-person activity recognition task, group activity

recognition requires a more robust scheme that can differ-

entiate higher level classes of activities, e.g. how different

persons interact with one another in a group activity. For

3D-based approaches, they rely on specific hardware sen-

sors or some time-consuming algorithms to detect and lo-

cate the body joints. In addition, the sensors and the meth-

ods cannot work well when people are far away from the

cameras/sensors or if the resolution of frames is low.

The contributions of this paper are as follows. First, we

present a novel solution, namely SBGAR, for group activ-

ity recognition. It can be used to recognize single-person

activity and group activity. Second, our proposed scheme

is semantics-based. Specifically, we analyze the videos to

generate sentences describing the video frames, and then

recognize the activities based on the semantic meaning of

these sentences. To the best of our knowledge, this is the

first work that uses semantics to recognize human activi-

ties in videos. Finally, our solution yields significantly bet-

ter performance compared to the state-of-the-art approaches

using two well-known datasets.

The rest of this paper is organized as follows. In Section

2, we briefly discuss related work, followed by the intro-

duction of some important building blocks in Section 3. In

Section 4, we describe our proposed group activity recog-

nition scheme and implementation details. We report our

experimental results in Section 5. Finally, we conclude this

paper in Section 6.

2. Related Work

In recent years, some research has been done to recog-

nize group activities from videos. Lan et al. [8] believe

that the contextual information of what other people in the

scene are doing provides a useful clue for understanding

high-level activities. Thus, they present a solution to recog-

nize group activities by exploring group-person interaction

and person-person interaction information.

Based on the similar intuition that a strong correlation

exists between a person’s action and the actions of other

nearby people, Choi et al. [9] exploit the spatial distribution

of pedestrians in the scene as well as their pose and motion

to achieve a robust action classification result. Next, they

present a solution in [10] for simultaneously tracking mul-

tiple people and estimating their collective activities. They
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Figure 1: The architecture of the proposed Scheme. Caption Generation Model generates a caption to describe the corresponding frame.

Activity Prediction Model is used to predict the group activity based on generated captions of a continuous sequence of frames. Symbol ⊗

indicates the operation of computing the dense optical flow image using two continuous frames, while symbol ⊕ indicates the operation

of concatenating two CNN feature vectors into one single vector. In order to simplify the figure, the details of models are not shown here.

Please refer to Figure 2 for more details of the Caption Generation Model, and Figure 3 for the Activity Prediction Model.

introduce a hierarchy of activity types which leads a specific

person’s action to the activity of the group.

Moreover, Ibrahim et al. [11] propose a hierarchical deep

temporal model to infer group activities. Given a set of de-

tected and tracked people, they run temporal deep networks

(LSTMs) to analyze each individual person. They then ag-

gregated these LSTMs over individual persons into a higher

level deep temporal model. This allows the deep model to

learn the relations between the people that contribute to rec-

ognizing a particular group activity.

Although all approaches discussed above achieve good

performance in the task of group activities recognition, they

are tracking based approaches. The biggest weakness of

such approaches is their high computation time. These ap-

proaches have to first identify individual person in video

frames, track their individual activities, and then later infer

the relationships of their activities before they can predict

the group activity label and thus incur much computation.

3. Important Building Blocks

Before we present the detailed description of our newly

designed scheme, we first give a brief introduction about

some building blocks.

1. Image Feature Extraction Via CNN: Convolutional

Neural Network (CNN) [12] is a type of feed-forward arti-

ficial neural network. Recently, with the availability of ef-

ficient GPU computing, researchers have been able to train

larger CNN-based networks. This has allowed CNNs to be

widely used in solving several tough tasks such as image

recognition [13], natural language processing [14], etc. In

[15], Fischer et al. prove that CNN features contain more

representative information of an image than other manually

designed features, e.g. SIFT. In addition, CNN features per-

form well in the task of scene classification [16], which pro-

vides us a way to extract useful information of the scene

from an image.

2. Long Short Term Memory: Long Short Term Mem-

ory (LSTM) model was first proposed by Hochreiter et al.

[17]. It is a particular type of Recurrent Neural Network

that works slightly better in practice, owing to its more

powerful update equation and some appealing backpropa-

gation dynamics. Donahue et al. [18] proposed a scheme

which yields a good performance in the tasks of activity

recognition, image description, and video description by us-

ing a LSTM model. Furthermore, Vinyals et al. [19] pro-

pose a Neural Image Caption (NIC) model based on LSTM

to automatically describe the content of an image. They

show that their model generates a better caption compared

to other existing state-of-the-art approaches.

3. Dense Optical Flow: Dense Optical Flow was first

proposed by Baker et al. [20]. It describes how each point

in the scene moves from a frame to the next. In [21], Tao

et al. propose an improved method, named SimpleFlow,

which significantly reduces the computing time.

4. Proposed Scheme

Here, we present a novel model for recognizing group

activities in videos. The intuition of our scheme is that peo-

ple can easily infer an activity from a sequence of sentences.

For example, given the following three sentences describing

a volleyball game: “There is a player jumping on the right

side, while others are standing. There is one player spik-

ing on the right side and three players blocking on the left

side, while others are standing. All players are standing”,

a person can easily infer that the right team is performing

an offensive action (spiking) while the left team is playing a

defensive action (blocking). Thus, we design a model which

generates a caption for each frame in a video and then pre-
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dicts the activity based on a sequence of generated captions.

Figure 1 shows the architecture of our scheme which con-

sists of three steps: input preprocessing, caption generation,

and activity prediction.

4.1. Preprocessing

We believe that both the scene features extracted from

the original frames, and the movement features extracted

using dense optical flow method [22] contribute towards

group activity recognition. The original video frames con-

tain more information about the environment, e.g. indoor

or outdoor, while the derived optical flow images provide

motion information. Thus, we use both types of features.

During preprocessing, we generate an optical flow im-

age for every single video frame (except the first frame in a

video). Given a video frame (frame t) as well as its previous

one (frame (t − 1)), we compute the displacement (direc-

tion and distance) of each pixel point in the frame. Then, in

HSV color space, we set the direction and distance corre-

sponding to the Hue and value plane correspondingly, and

set the saturation value to be a constant value, e.g. 255. The

generated optical flow images are illustrated in Figure 1.

4.2. Caption Generation Model

After preprocessing, at time t, we have an original video

frame and its corresponding dense optical flow image. We

extract CNN features from both original frames (CNN2 in

Figure 1) and optical flow images (CNN1 in Figure 1).

Then, we concatenate CNN1 and CNN2 into a single vector.

Next, we build a Language Model using the LSTM

model. There are two reasons why a LSTM model is used

here: (1). A LSTM model can generate good captions using

the CNN feature vector as its input [19]. (2). A LSTM

model also helps us handle some scenarios in which we

need to split the scene into different groups, e.g. a left and a

right team in a volleyball game. Figure 2 shows the details

of our model for caption generation.
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Figure 2: Caption generation model. <SOS> and <EOS> are

symbols used to indicate the beginning and the ending of a caption

correspondingly.

During the training process: The inputs of the Caption

Generation Model consist of (i) concatenated CNN Fea-

tures, (ii) Input Captions, and (iii) Target Captions (Ground

Truth). In this paper, we encode each word of the Input

Caption into a vector using One-Hot encoding. Considering

One-Hot code is a high dimensional sparse feature which

costs large storage and inefficient computation, we employ

the word2vec model [23] to convert the One-Hot code into

a continuous vector with a much lower dimension. We then

feed the CNN Feature as well as the word2vec vector into

a LSTM model (LSTM1) to generate the probability distri-

bution of the next word in the sequence. Finally, the prob-

ability distribution will be compared to the Target Caption

(Ground Truth) to tune the parameters of the model such

that the predicted probability of the correct next word is

higher than others.

Figure 2 shows the process when our model is fed the

CNN Feature and the Input Caption “<SOS> A player

is jumping” as the input, assuming the vocabulary is

{“<SOS>”, “A”, “player”, “is”, “jumping”, “<EOS>”}.

The Output Layer contains the predicted probabilities that

the LSMT1 assigns to the next word. The predicted result

is “jumping A jumping is is”, while the Target Caption is

“A player is jumping <EOS>”. It is obvious that such a

prediction is not our expectation. Thus, we tune the param-

eters to increase the probability of the correct word (in red

color) and decrease the probabilities of all other words (in

green color). The process is repeated multiple times until

the model converges and it can perform a good prediction.

During the testing process: The inputs of our model

only consist of (i) CNN Features and (ii) Input Captions

(initialized with a single starting symbol, <SOS>). The

trained model, LSTM1, generates a probability distribu-

tion over what words are likely to come next. We then

choose one word with the highest predicted probability and

feed it right back into the model (blue dashed-line in Fig-

ure 2). This process is repeated many times until the pre-

dicted word with highest probability is the ending symbol,

<EOS>, or the length of the generated caption is longer

than a pre-determined threshold (e.g. 20).

4.3. Activity Prediction Model

The final step of SBGAR is to predict the activity label

based on a sequence of generated captions using a LSTM

model (LSTM2 in Figure 1). Instead of taking the captions

as the input of the LSTM2 directly, we first employ a CNN

model (CNN3 in Figure 1) to extract feature vectors from

captions. The reason is threefold: 1. The lengths of gener-

ated captions vary while the input size of all cells in LSTM2

is the same. 2. A CNN model can generate vectors with the

same dimension even if the lengths of input captions vary.

3. Kim et al. [24] show that a simple CNN model achieves

excellent results in the task of sentence classification.
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Figure 3 shows the details of our Activity Prediction

Model. In this paper, we use a similar network as in [24]

which originally consists of 4 layers. We remove the last

layer of the network in [24] and concatenate its first three

layers with a LSTM Model (LSTM2) by taking the output

of Layer 3 as the input of the LSTM2. Using a LSTM model

to analyze a sequence of captions makes intuitive sense,

considering how such a model resembles the way we pro-

cess language: reading sequentially. The first three layers

of the network in [24] are:

Layer 1: In this layer, we employ word2vec model [23]

to convert an input caption into a matrix. Each row of the

matrix corresponds to one word. In Figure 3, we show two

input captions. One caption consisting of 8 words and an-

other consisting of 4 words. The dimension of word2vec

is set to 5, thus these two input captions are represented by

two matrices (8*5 and 4*5 correspondingly).

Layer 2: The second layer performs convolutions over

the word matrix using multiple filter sizes. In vision, the

filters slide over local patches of an image, while in the field

of National Language Processing (NLP), we typically slide

the filters over the full rows of the word matrix considering

each row represents a word. Thus, we set the dimension

of the filters equals to the dimension of the word matrix. In

Figure 3, we only show 2 filter sizes (2*5 and 3*5). The 2*5

filter will slide over 2 words each time, while the 3*5 filter

will slide over 3 words each time. We perform convolution

operation on both word matrices using two filters and end

up with two feature maps for each word matrix.

Layer 3: In this layer, max-pooling is performed on each

feature map. As shown in Figure 3, after max-pooling, both

input captions (different lengths) are represented as two di-

mensional features.
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Figure 3: Activity prediction model.

In our SBGAR scheme, one caption is generated for

each video frame and a sliding window of size time steps

frames is used to feed time steps captions to LSTM2. For

example, the window size shown in Figure 3 is 2 which

means LSTM2 predicts an activity result based on 2 contin-

uous input captions. By sliding the window, our model can

analyze videos with varying number of frames.

During the training process: The inputs of our model

consist of (i) a sequence of captions, more precisely

time steps captions, and (ii) their corresponding activ-

ity labels (Ground Truth). Given time steps captions,

our model first extracts CNN features from these captions

and then feed the CNN features into the prediction layer

(LSTM2) to generate a probability distribution for all po-

tential labels. We then compute the mean value of the cross-

entropy loss, as shown in Equation (1). The purpose of

the training process is to minimize such a loss function L,

where N is the size of the training set, y are the ground

truth labels, and p are the predicted probabilities. During

each training iteration, we tune the parameters of our model

based on the value of this loss function L. We repeat feed-

ing training captions and their corresponding labels to train

our model until the value of L becomes smaller than a pre-

determined threshold or the number of iterations is larger

than another pre-determined threshold.

L(y, p) = −
1

N

N∑

i=1

yi log pi (1)

During the testing process: The inputs of our model

will only consist of time steps captions. After the model

generated a probability for all activity labels, we choose the

one with the highest probability as the final result.

4.4. Implementation Details

We implement our scheme using Python Programming

Language and Tensorflow [25]. Tensorflow is an open

source software library for machine learning released by

Google. We report the implementation details of our

scheme and the settings of important parameters as follows.

CNN1 and CNN2: To extract CNN features from im-

ages, we use an Inception-v3 model [26] pre-trained on Im-

ageNet [27] as a feature extractor. Specifically, we use the

output of the final pooling layer (pool 3) in Inception-v3

model as the CNN feature of an image. Thus, the dimension

of the extracted CNN feature is 2048 and the dimension of

concatenated CNN1 and CNN2 features is 4096.

LSTM1: The LSTM1 is a 2-layer LSTM Model hav-

ing 1024 hidden units. Before feeding the captions into the

LSTM1, we use word2vec model [23] to convert each cap-

tion into a dense representation with a low dimension. We

set the embedding size to 1024, thus the size of embedded

captions is nw ∗ 1024, where nw is a length of a caption.

Because the size of all cells in a LSTM model are the same,

so we use a transformation matrix (4096 ∗ 1024) and a bias

vector (1 ∗ 1024) to transform a 1 ∗ 4096 CNN feature into

1 ∗ 1024 (1024 is the dimension of embedded captions). To

do so, we only need to multiply the CNN feature (1 ∗ 4096)

with the transformation matrix (4096 ∗ 1024) and add the

bias vector (1 ∗ 1024). Then, we concatenate the trans-

formed CNN feature with the embedded caption and feed

them((nw + 1) ∗ 1024) into LSTM1. During the train-

ing process: We set the learning rate to 1e−4 initially and

reduce the learning rate every epoch until it reaches 1e−6.

In order to reduce overfitting, we use the dropout technique

2879



[28] and set the input & output keep probabilities to 0.75.

During the testing process: The input caption is initial-

ized with a starting symbol (<SOS>). We set the maxi-

mum length of the generated caption to be 20. The input

and output keep probabilities are set to 1 to disable dropout.

CNN3: We first embed the generated captions into a

dense representation using word2vec model before feeding

them into the CNN model (CNN3). We set the embedding

size to 5, so the size of the embedded caption is nw ∗ 5,

where nw is the length of a caption. Instead of using a pre-

trained CNN model, we implement a simple CNN model

which only performs convolution and max-pooling opera-

tions with a generated caption as its input. Four filter sizes

[3*5, 4*5, 5*5, 6*5] are used with 5 filters for each size.

Thus, there is a total 20 filters in this CNN model. Each fil-

ter slides over the whole embedded caption using a VALID

Padding Method (VALID padding means there will be no

zero padding outside the edges when we do max pool).

Once we have all the max-pooled outputs from each filter

size, we combine them into one long feature. Thus, the

length the feature generated by CNN3 is 20.

LSTM2: The LSTM2 is a 2-layer LSTM model. The

sequence length of LSTM2 is set to 10, which means the

LSTM2 will analyze 10 captions each time. During the

training process: The learning rate is set to 1e−4 initially

and reduced each epoch until 1e−6. We use the Adam algo-

rithm [29] to minimize the cost function. To avoid overfit-

ting, we employ the dropout method [28] and set the input

and out keep probabilities to 0.75. During the testing pro-

cess: The input and output keep probabilities are set to 1.

5. Experiments

We run our scheme on a desktop running Ubuntu 14.04

with 4.0GHz Intel Core i7 CPU, 16GB Memory, and

NVIDIA Geforce GTX 1080 Graphics Card.

5.1. Datasets

We evaluate our scheme using two datasets: Collective

Activity Dataset [9] and Volleyball Dataset [11].

Collective Activity Dataset: The Collective Activity

Dataset has been widely used to evaluate the performance

of group activity recognition schemes. It consists of 44

videos clips acquired using a low resolution hand-held cam-

era. The location, action, and pose of each person in the

videos is labeled. The five action categories include: cross-

ing, waiting, queuing, walking, and talking while the pose

categories include: right, front-right, front, front-left, left,

back-left, back, and back-right. Thus, we trained the classi-

fier to predict these five group activity categories depending

on what the majority of the people included in the videos

are doing: crossing, waiting, queuing, walking, and talking.

Pose information is not used in our scheme.

Volleyball Dataset: The Volleyball Dataset was released

by Ibrahim et al. [11] to evaluate the performance of group

activity recognition schemes on sport footage. All videos

related to volleyball games are collected from YouTube. In

total, there are 1525 frames labeled with seven player ac-

tion labels (waiting, setting, digging, falling, spiking, block-

ing, and others) and six group activity labels (right set, right

spike, right pass, left pass, left spike, and left set). The lo-

cation of each player is also labeled and that information is

not used in our scheme.

5.2. Metrics

In order to compare our scheme with Ibrahim et al. [11],

we use the same metrics used in [11].

Classification Accuracy: The accuracy is the percent-

age of the correct predictions.

Confusion Matrix: A confusion matrix [30] contains

information about actual and predicted classifications gen-

erated by a classification system. In a confusion matrix,

each column represents the instances of an actual class,

while each row represents the predicted classes.

5.3. Baselines & SGBAR

In this paper, we want to compare the following baselines

and SGBAR with some existing schemes proposed by other

researchers.

B1. Single Frame Classification: B1 fine-tunes the

Inception-v3 model for group activity recognition based on

a single frame.

B2. Temporal Model with Image Features: B2 is the

solution proposed by Donahue et al. in [18] where the im-

age feature is extracted from the final pooling layer (pool

3:0) of Inception-v3 model and fed directly to a 2-layer

LSTM model to recognize group activities.

B3. SBGAR (RGB Frame Only): B3 is a variant of our

SBGAR scheme which only considers the RGB frames as

the input ignoring any extracted optical flow information.

B4. SBGAR (Optical Flow Image Only): B4 is an-

other variant of our SBGAR scheme which only considers

the optical flow information while ignoring the information

extracted from the RGB frames.

SBGAR (RGB Frame & Optical Flow Image): SB-

BAR considers information from both the RGB frame and

optical flow image.

Comparing B1 & B2 allows us to see how much im-

provement can be obtained using a group of frames for

group activity recognition. Similarly, comparing B3, B4

& SBGAR allows us to evaluate the improvement that can

be achieved by combining both the scene and the motion

related information.

5.4. Experiments on the Collective Activity Dataset

In this subsection, we report our experimental results us-

ing the Collective Activity Dataset. In order to train the

caption generation model (LSTM1), we manually labeled a
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caption for each training frame. Instead of generating com-

plete sentences, we generate captions only using important

keywords. The reasons are twofold : (1). Our purpose is

to recognize group activities based on captions rather than

generating complete sentences. Thus, our scheme will work

as long as LSTM1 can generate several useful words. (2).

Training a language model which can generate complete

sentences incurs longer time, because it needs to learn the

grammar which is not useful for activity recognition. Con-

sidering that this dataset contains the location and individ-

ual action of every person in each video frame, we can eas-

ily label captions for the actions of all players in the training

frames as follows:

“<SOS> Walking Crossing Crossing Crossing <EOS>”

“<SOS> Waiting Waiting Waiting Crossing Walking <EOS>”

In Table 1, we report our experimental results (accu-

racy) using the Collective Activity Dataset and compare

our SBGAR related and baseline methods with other ex-

isting methods. In [11], the authors compare their scheme

with Contextual Model [8], Deep Structured Model [31],

and Cardinality kernel [32] using the Collective Activity

Dataset. Thus, we include the results they reported in Table

1. We follow the same experimental settings as used in [11],

i.e., 1/3rd of the video clips were selected for testing and the

rest for training. During the SBGAR related training pro-

cess, we use 500 epochs to train the LSTM1 model and 300

epochs to train the LSTM2 model. For the LSTM2 model,

we predict the final activity result based on a window size

of 10 framse (5 before, current and 4 after frames)(the same

setting as [11]).

Methods Accuracy (%)

B1 - Single Frame Classification 67.2

B2 - Temporal Model with Image Features 68.5

B3 - SBGAR (RGB Frame Only) 83.7

B4 - SBGAR (Optical Flow Image Only) 70.1

Contextual Model [8] * 79.1

Deep Structured Model [31] * 80.6

Two-stage Hierarchical Model [11] * 81.5

Cardinality kernel [32] * 83.4

SBGAR (RGB & Optical Flow) 86.1

Table 1: Comparison of our scheme with baseline methods and

previously published works on the Collective Activity Dataset.

The results for “*” were extracted from [11].

The experimental results in Table 1 show that our pro-

posed scheme outperforms the baseline methods as well as

other existing schemes. It is worth pointing out that even

when we only use a single feature (baseline B3), our pro-

posed scheme can still achieve a higher accuracy than the

state-of-the-art method in [32].

The baseline method B3 achieves a higher accuracy than

B4 because most people in the videos in this dataset hardly

move while they are talking, waiting, or queuing, which

means not much useful information can be extracted from

the optical flow analysis of these videos for activity recog-

nition. B3 uses the information extracted from RGB frames

and hence performs better.
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Figure 4: Comparison between [11] (left) and SBGAR (right) on

the Collective Activity Dataset.
Figure 4 shows the comparison of the confusion matrices

between the scheme in [11] and SBGAR using the Collec-

tive Activity Dataset. From this figure, one can see that

[11] predicts some instances belonging to “crossing” and

“waiting” as “walking”, while SBGAR reduces this error.

However, both [11] and SBGAR can not easily distinguish

between “crossing” and “waiting”. There are two reasons:

1. “crossing” and “waiting” often happen in the same scene,

e.g. “at a cross road”. 2. These two activities often happen

sequentially, e.g. one waits at a cross road first, and then

crosses. We notice that, comparing to [11], SBGAR pre-

dicts some “talking” instances as “walking”. We discover

that some video clips contain both activities and SBGAR

believes that “walking” activity is more obvious than “talk-

ing” in these video clips.

5.5. Experiments on the Volleyball Dataset

In this subsection, we report our experimental results

on the Volleyball Dataset. Based on the target activity la-

bels (Left pass, Left set, Left spike, Right pass, Right set,

Right spike), we notice that the labels contain information

regarding whether the players are in the left or right side of

the court, which means that we need to divide players into

two groups. To handle this application scenario, we adjust

the captions. We manually labeled captions for all training

frames as follows:

“<SOS> Left: waiting moving blocking Right: standing spiking <EOS>”

“<SOS> Left: standing blocking Right: standing spiking <EOS>”

The order of the words describing the actions of each in-

dividual team is arbitrary. To make the training phase more

efficient, we keep the order of the actions taken by both

sides static (i.e. actions from the left are listed first). In Ta-

ble 2, we report our experimental results (accuracy) using

the Volleyball Dataset and compare the baseline and SB-

GAR related methods with existing methods. Two third of

the video frames are used for training, and the remaining

1/3rd for testing (the same setting as Ibrahim et al. [11]).

For SBGAR related methos, we use 500 epochs to train the

LSTM1 model and 300 epochs to train the LSTM2 model.

For the LSTM2 model, we predict the final activity result

based on an observation window of 10 frames(5 before, cur-

rent, and 4 after frames) (the same setting as in [11]).
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Methods Accuracy (%)

B1 - Single Frame Classification 41.9

B2 - Temporal Model with Image Features 44.3

B3 - SBGAR (RGB Frame Only) 38.7

B4 - SBGAR (Optical Flow Image Only) 54.3

Two-stage Hierarchical Model [11] 51.1

SBGAR (RGB & Optical Flow) 66.9

Table 2: Comparison of our scheme with baseline methods and

previously published works on the Volleyball Dataset.

The experimental results show that our proposed SB-

GAR scheme outperforms the baseline methods and the

state-of-the-art methods [11] on this dataset. It is worth

pointing out that B4 (only a single feature is used) achieves

a better result than [11].

For this dataset, B4 performs better than B3 by 15.6% in

terms of achieved accuracy because the videos in the Vol-

leyball dataset have the same scene (same viewpoint, sim-

ilar background, similar color, etc) and hence fewer dis-

tinguishing features can be extracted in B3. However, B4

can extract more meaningful features (motion information)

from the optical flow images.
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56.94 16.67 4.17 2.78 12.50 6.94
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67.26 1.19 5.36 6.55 13.69 5.95

Figure 5: Comparison between [11] (left) and SBGAR (right) on

the Volleyball Dataset.

Figure 5 shows the comparison of the confusion matrices

between [11] and SBGAR on the Volleyball Dataset. It is

clear that SBGAR achieves a better result in distinguishing

activities which take place at the left and right side of the

court, especially “lspike” versus “rspike”. This improve-

ment comes from the fact that our proposed model can gen-

erate captions for both the left and right parts. To a certain

extent, the experimental results prove that our Caption Gen-

eration Model has the ability to consider the spatial informa-

tion and represents such information in the generated cap-

tions correctly. However, we notice that both [11] and SB-

GAR predict some “lset” and “rset” samples as “lpass” and

“rpass” correspondingly. This is because those “set” and

“pass” activities are similar and often appear in the same

region within a court from the view of the camera.

5.6. Impact of Key Parameters

The settings of parameter values have an impact on the

predicted results of a Machine Learning model. Thus, we

evaluated the impact of two key parameters:

Epochs: Each epoch is defined as the process of feeding

the whole training set to a model. In SBGAR, we use two

models, Caption Generation Model (LSTM1) and Activity

Recognition Model (LSTM2). Thus, we will evaluate the

impact of the number of epochs on their accuracy during

the training of both models.

Observation Window Size of LSTM2: The observation

window size is defined as the number of video frames that

are used to generate a prediction. If the window size is 5,

it means that LSTM2 will generate a prediction based on 5

consecutive frames.

We discuss the details as follows:

1. Epochs for LSTM1: In Figure 6, we report the ac-

curacy of SBGAR on both datasets as we fix the number of

training epochs of LSTM2 to 300 while varying the number

of training epochs of LSTM1. The solid curve in blue color

is the result using the Collective Activity Dataset, while the

dashed curve in green color is the result using the Volleyball

dataset. One can observe that larger epochs lead to higher

accuracy. The accuracy becomes stable when the number

of epochs exceeds 500 for both datasets. Figure 7 shows the

training loss as we varies the number of epochs during the

training process of LSTM1. The blue line with “*” marker

shows the training loss, while the solid red line shows the

testing loss. The training and testing losses decrease as the

number of epochs increases and approach a stable value af-

ter 400 epochs.
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Figure 6: Activity recognition

accuracy as the number of train-

ing epochs of LSTM1 is varied.

0 100 200 300 400 500 600 700 800

Number of Epochs

0

5

10

15

20

25

L
o
s
s

Training Loss

Testing Loss

Figure 7: LSTM1 training loss

as the number of training epochs

is varied using the Collective

Activity Dataset.

Based on both observations, we choose 500 as the num-

ber of epochs for training LSTM1.

2. Training epochs of LSTM2: In Figure 8, we re-

port the testing accuracy of SBGAR on both datasets as we

fix the number of training epochs for LSTM1 to 500 while

varying the number of training epochs for LSTM2. The

solid curve in blue color is the result using the Collective

Activity Dataset, while the dashed curve in green color is

the result using the Volleyball dataset. One can see the ac-

curacy increases as the number of epochs increases and be-

comes stable after 200 epochs. Figure 9 shows the training

loss on the Collective Activity dataset as we increase the

number of epochs during the training process of LSTM2.

The training and testing losses decrease as the number of

epochs increases and become stable after 300 epochs.

Based on both above observations, we choose 300 as the

default number of epochs for training LSTM2.

3. Observation Window Size of LSTM2: For video

based activity recognition, only using frames before the
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Figure 8: Activity recognition

accuracy as the number of train-

ing epochs of LSTM2 is varied

using both datasets.
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Figure 9: LSTM2 training loss

as the number of training epochs

is varied using the Collective

Activity datasets.

current frame seems to make more sense in real life, con-

sidering that one can not access the frames after the cur-

rent frame. A model which predicts a correct result only

based on the previous frames may have the capability of

early detection. Such a model is more useful for early-

warning systems. However, adding some frames after the

current frame may improve the prediction performance be-

cause more frames means more useful information can be

used in the prediction process. Taking the volleyball sport

as an example, assuming that a player is jumping, it is hard

to say whether the player is ”blocking” or “spiking” only

based on this observation. By observing more frames, one

can predict a more accurate result. Even though a model

using “future” frames incurs additional delay, such a model

may be more useful in some application scenarios.

In order to evaluate the performance of SBGAR with

varying length of input frame sequence, we consider the fol-

lowing types of input frame sequences:

Before(x): x frames before the current frame are used as

the input sequence.

After(x): x frames after the current frame are used as

the input sequence.

Before(x)After(y): x frames before and y frames after

the current frame are used as the input sequence.

Frame Sequences
Accuracy (%)

Collective Activity Dataset Volleyball Dataset

Before(10) 85.7 64.7

Before(5) 84.1 64.7

After(5) 83.6 65.1

After(10) 84.7 65.1

Before(5)After(5) 86.1 66.9

Before(5)After(10) 85.9 67.4

Before(10)After(5) 86.3 67.1

Before(10)After(10) 86.4 67.7

Table 3: Accuracy on both datasets by taking variant input frames.

We report the experimental results in Table 3. One can

easily notice that using a larger window size helps to im-

prove the accuracy. In addition, comparing to only using

frames before or after the current one (top 4 rows), us-

ing frames before and after the current frame (tail 4 rows)

achieves a higher accuracy on both datasets. If we focus on

the results of “Before(10)” and “After(10)”, we can discover

that “Before(10)” produces a better result on the Collective

Activity Dataset, while “After(10)” performs better on the

Volleyball Dataset. The same observation can be made be-

tween “Before(5)After(10)” and ‘Before(10)After(5)”. The

reason of this is threefold: 1. The activities in the Collective

Activity Dataset are more constant, which means there is no

big differences between two continuous frames if they share

the same activity, e.g. walking or queuing. 2. A video clip

in the Collect Activity Dataset contains several activities,

e.g. crossing and walking may happen alternately. 3. Activ-

ities in the Volleyball Dataset may involve the same action

in their beginning frames, e.g. both blocking and spiking in-

volve jumping. Thus, adding some frames after the current

frame may cause a wrong prediction result in the Collective

Activity Dataset, while it helps in the Volleyball Dataset.

5.7. Computation Time

For some application scenarios, e.g. sport analytics, it

is highly important to be able to predict a group activ-

ity label in real time. Thus, we are interested in compar-

ing the computation time of our scheme and the scheme

in [11]. In Table 4, we report details of the compu-

tation time of our scheme. All data are averaged over

5 runs on the Volleyball dataset. With a sliding win-

dow of 10 frames, our scheme can predict on the aver-

age a group activity label within 108.5ms. If we use

non-overlapping window of 10 frames, our scheme only

takes about (22.19+27.78*2+28.63)*10+2.15=1065.95 ms

(1.066sec). Running the code released by the authors in

[11] using the same machine, the prediction time takes 4.22

seconds without including the time it takes to detect indi-

vidual players. Thus, our scheme will be more useful for

real-time prediction of group activity.

Process (Based on Single Frame) Computation Time (ms)

Optical Flow Image 22.19

Extract CNN1 Feature (Inception-v3) 27.78

Extract CNN2 Feature (Inception-v3) 27.78

Caption Generation 28.63

Activity Recognition (Based on 10 Frames) 2.15

In Total 108.53

Table 4: Computation time of SBGAR.

6. Conclusion

In this paper, we propose a novel scheme (SBGAR) to

recognize group activities in videos. The proposed method

generates a caption for each video frame first, and then

predicts the final activity categories based on these gener-

ated captions. The experimental results on two well-known

datasets demonstrate the effectiveness and accuracy of our

proposed method. Compared to the existing state-of-the-art

methods, our scheme achieves a higher recognition accu-

racy with a shorter computation time.
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