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Abstract

In this paper, we propose a cross-modal deep variation-

al hashing (CMDVH) method for cross-modality multime-

dia retrieval. Unlike existing cross-modal hashing methods

which learn a single pair of projections to map each exam-

ple as a binary vector, we design a couple of deep neural

network to learn non-linear transformations from image-

text input pairs, so that unified binary codes can be ob-

tained. We then design the modality-specific neural net-

works in a probabilistic manner where we model a latent

variable as close as possible from the inferred binary codes,

which is approximated by a posterior distribution regular-

ized by a known prior. Experimental results on three bench-

mark datasets show the efficacy of the proposed approach.

1. Introduction

Recent years have witnessed that learning-based hashing

is an active research topic for efficient large-scale multime-

dia search [8, 9, 16, 24, 29, 34]. The basic idea of learning-

based hashing methods aims to learn a series of hash func-

tions from the training set to map each visual sample into a

compact binary feature vector such that samples of the same

semantic content are mapped into same binary codes.

While recent works have achieved reasonably good per-

formance in large-scale multimedia search, most existing

hashing methods are developed for single-modal retrieval,

which means that the query example and the examples s-

tored in the database are from the same source of multi-

media data. In many real-applications, it is easy to access

multi-modal data for multimedia retrieval. For example, im-

ages uploaded into social networks such as the Flickr and

Facebook websites are usually tagged with some text de-

scriptions. Hence, it is desirable to retrieve semantically-
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similar texts/images by using a query image/text. Because

there are large-scale multi-modal data over the Internet, it is

only necessary to develop an effective cross-modal similar-

ity search methods for multimedia search. In this paper, we

propose a cross-modal deep variational hashing (CMDVH)

method for cross-modality retrieval. Figure 1 illustrates the

basic idea of the proposed approach. Unlike existing shal-

low cross-modal hashing methods which learn a single pair

of linear or nonlinear projections to map each example into

a binary vector, we employ an end-to-end hashing network

to learn multiple pairs of hierarchical non-linear transforma-

tions, under which the nonlinear relationship of samples can

be well exploited, the binarized neural codes having same

semantic are similar as possible, and neural codes having

different semantic are dissimilar as possible. Our model is

trained under two main steps: First, we perform binary code

inference to learn unified binary codes for each training pair

using a cross-modal fusion network such that we obtain

a common hamming space for the two modalities and the

modality gap can be implicitly reduced. We perform this in

a discrete and discriminative manner to avoid approximate

optimization loss caused by relaxing the binary constrain-

t and strengthen the semantic correlation between modali-

ties by using a classification-based hinge loss criterion, re-

spectively. Second, we model the modality-specific hashing

networks which have a probabilistic interpretation such that

the latent variable is modeled similar to the inferred binary

code from the fusion network through a log likelihood crite-

rion, which is also sampled based on an approximate poste-

rior distribution regularized by a prior through a Kullback-

Liebler Divergence (KLD) criterion. By doing so, the hash-

ing network can be in generative form, which is suitable for

out-of-sample extension. We perform learning in these t-

wo steps through a batch-wise gradient descent procedure.

Experimental results on three benchmark datasets show the

efficacy of the proposed approach.
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Figure 1. The basic idea of our proposed approach for cross-modality multimedia retrieval. Given a gallery set represented by two modali-

ties (image and text), we learn a fusion hashing network and a joint binary code matrix, simultaneously. We learn them using an alternative

optimization procedure. First, we infer the binary codes in discrete manner such that we exploit label information through a classification

based hinge-loss criterion. Second, we minimize the loss between neural code and binary code by performing end-to-end deep training via

backpropagation to learn the parameters of the each network. This is done iteratively until convergence. Once the inferred binary codes are

learned, we learn modality-specific hashing networks (one for each modality) such that a latent variable is modeled based on two criterions.

First, given the image-text pair, the latent variable is forced to be similar as possible to the inferred binary code from the fusion network

through a negative log likelihood criterion. Second, the latent variable is also modeled such that approximated posterior distribution in the

form of Multivariate Gaussian is close to prior regularized by the KL-divergence criterion. During retrieval, given a query, we extract the

query binary code using the learned modality-specific hashing network and obtain the most similar binary codes from the gallery (learned

B) which are indexed to retrieve the most relevant images.

2. Related Work

Cross-Modal Retrieval: Unlike single-modal retrieval

where both the query example and the database are from

the same modality, the key idea of cross-modal retrieval is

to retrieve samples from another modality which is differ-

ent from that of the query example but share similar seman-

tics. Typically, cross-modal multimedia retrieval perform

two main tasks: 1) retrieval of text documents by using a

given query image, and 2) retrieval of images by using a

given query text or tag. In recent years, several methods

have been proposed for cross-modal retrieval, where the ob-

jective is to learn a common subspace between images and

text [22, 31] to model the correlations. For example, Rasi-

wasia et al. [22] used canonical component analysis (CCA)

to map both text documents and images into a latent space.

Wang et al. [31] learned a coupled feature space method

to select the most relevant and discriminative features for

cross-modal matching. Gong et. al. [7] performed non-

linear kernel embedding followed by a linear dimensional-

ity reduction and CCA for content-based retrieval and tag-

image search. Kang et. al. [11] proposed a feature learning

approach for cross-media matching by jointly learning con-

sistent features for each modality in a supervised manner.

More recently, Wang et al. [30] employed a feature selec-

tion scheme using multimodal-graph to represent the simi-

larity between modalities. These retrieval methods usually

perform cross-modal matching with high-dimensional fea-

tures, hence are not suitable for large-scale search due to

the scalability issue. Therefore, hashing is a more desirable

choice for cross-modal retrieval.

Shallow Cross-Modal Hashing: In recent years, sever-

al cross-modal hashing methods have also been proposed

in the literature, and most studies are in shallow form in

which it only performs a single-layer of linear or nonlin-

ear transformation. These can be classified into two types:

unsupervised [5, 28, 37] and supervised [1, 17, 35, 36]. Un-

supervised methods utilize co-occurence information such

that only the image-text pairs which occured in the same

article are known to be of similar semantic. For example,

Kumar et al. [14] presented a cross-modal spectral hash-

ing method so that the cross-modality similarity is also p-

reserved in the learned hash functions. Zhu et al. [38]

learned a common latent space by preserving the similar-

ity between the example to the �-nearest centroids in each

modality and cross-modality. Zhou et al. [37] obtained a

unified binary from a latent space learning method by us-

ing sparse coding and matrix factorization in the common

space. Ding et.al. [5] learned a unified binary code in

the training stage by performing matrix factorization with

latent factor model. Supervised methods utilize seman-
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tic labels to enhance the correlation of cross-modal da-

ta. For example, Brostein et al. [1] presented a cross-

modal hashing method by preserving the intra-class simi-

larity through eigen-decomposition and boosting. Zhang et

al. [36] performed semantic correlation maximization using

label information to learn a modality-specific transforma-

tions which maximizes the correlation between modalities.

Lin et.al. [17] learned a unified binary code by modeling

them in a probability distribution in a supervised manner

and performed kernel-embedding to learn the hashing func-

tions. Xu et.al. [35] also learned a unified binary code and

used a linear classifier to exploit the label information.

Unlike these methods which learn a pair of lin-

ear/nonlinear projections for hash functions learning, we

employ hashing networks to learn multiple pairs of hierar-

chical non-linear transformations, so that the nonlinear re-

lationship of samples and the relationship of samples from

different modalities can be well exploited. Cross-modal

hashing methods can also be classified as learning a joint

binary code or separate binary codes during training. Sev-

eral recent works learned unified binary codes [5,17,35,37]

and these methods generally showed better performance be-

cause by learning a single discriminative and efficient bina-

ry code, the modality gap between the hashing functions are

implicitly reduced. Hence, we also perform a shared binary

code learning strategy in our hash function learning proce-

dure, then perform modality-specific hash function learning

to have a generative model.

Deep Cross-Modal Hashing: Over the past few years,

a variety of deep learning algorithms have been proposed

in machine learning, and some of them were successful-

ly applied to many computer vision applications such as

in object detection and recognition [13, 25]. While there

are now also studies that perform deep learning for cross-

modal retrieval [21,27,32,33] they are not suitable for large-

scale search due to its high dimension and large storage re-

quirement. Only few works have performed deep learning

for cross-modal hashing. For example, Masci et al. [19]

learned a similarity preserving network for cross-modalities

through a coupled siamese network with hinge loss. How-

ever this does not consider the binary constraints during

training, and simply performs binarization after training.

Cao et al. [3] designed a stacked auto-encoder architecture

to jointly maximize the feature and semantic correlation

across modalities. However, this work does not perform

end-to-end learning which may limit the discriminative rep-

resentation of data samples, particularly in images. Jiang et

al. [10] performed an end-to-end deep learning framework

with a negative log likelihood criterion to preserve the sim-

ilarity between real-value representations having the same

class. However, their training model performs similarity p-

reservation on real-value codes and not binary codes which

are used for the actual retrieval during testing. Another

work from Cao et al. [2] learned a visual semantic fusion

network with cosine hinge loss, to obtain the binary codes

and learned modality-specific deep networks to obtain the

hashing functions. However, a metric-based approach may

not fully utilize the label information during training.

3. Cross-Modal Deep Variational Hashing

We propose an end-to-end deep architecture for cross-

modal hashing such that we are able to implicitly maximize

the correlation between the two modalities given image-text

training data pairs and its corresponding label information.

Our implementation composes of a fusion network for bina-

ry code inference that learns binary codes from image and

text data discretely and discriminatively, and a generative

modality-specific network to encode the image/text sample

to representative binary codes. We now present these net-

works and how to perform optimization in the proceeding

subsections.

Cross-Modal Fusion Network: Let X� =
[x�1,x�2, ⋅ ⋅ ⋅ ,x�� ] ∈ ℝ

��×� and X� =
[x�1,x�2, ⋅ ⋅ ⋅ ,x�� ] ∈ ℝ

��×� be the training sets

from different modalities, where � and � represent two

different modalities, � is the number of training samples in

each modality, and ℝ
�� and ℝ

�� are the feature dimension

for each sample in modalities � and �, respectively. Our

fusion network aims to transform the cross-modal sample

pair into a compact binary feature vector as follows:

��,� : (ℝ�� ,ℝ�� ) → {−1, 1}� (1)

where � is the length of the binary feature vector. Specif-

ically, for image and text as the modality pairs, the fusion

network would comprise of convolution, pooling layers and

FC layers with parameters �� to process the images, and FC

layers with parameter �� to process the text data. To com-

bine the output of two networks, we create a latent network

which composes of FC layers with parameters ��. The in-

put and output of the latent layer would be as follows:

� = �(��(X�, ��) + ��(X�, ��)) (2)

h = ��(�, ��) (3)

where ��, �� and �� are the image, text and latent network

functions, respectively, and �(⋅) is the non-linear activation

function. The output of the fusion network would then be

h ∈ ℝ
1×� . We let the output for the whole training set of

the fusion network be H ∈ ℝ
�×� , the learned binary code

matrix be B = [b1,b2, ⋅ ⋅ ⋅ ,b� ] ∈ {−1, 1}�×� , the la-

bel data be defined as Y = [y1,y2, ⋅ ⋅ ⋅ ,y� ] ∈ {1, 0}�×�

where y�,� = 1 if the �-th sample belongs to class � and

0 otherwise, and a multi-class projection matrix be defined

as M = [m1,m2, ⋅ ⋅ ⋅ ,m� ] ∈ ℝ
�×� . We learn the binary

code and network parameters in a discrete manner such that
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we preserve the binary property and avoid the approxima-

tion loss caused by relaxation, but also learn discriminative

binary codes that are semantically correlated. This can be

done by the following optimization procedure:

min
B,M,��,��,��

� = �1 + ��2

= ∥M∥2� +
�∑

�

�� + �(∥B−H∥2� )

∀�, � y�,�(m
⊤

� b�) ≥ 1− ��

∀� b� = {−1, 1} (4)

where �1 minimizes the multi-classification loss formed

from the hinge loss between the label information and bi-

nary code so that samples that are semantically relevan-

t(irrelevant) have similar(dissimilar) binary codes as much

as possible. �2 minimizes quantization loss between the

real-value code and binary code such that the energy of

the samples can be well-preserved in the hashing network.

Here, �� ≥ 0 is the slack variable and � is a constant pa-

rameter to balance the effect of the two parameters.

The optimization problem in (4) is non-convex due to the

binary constraints, which makes it difficult to solve. How-

ever, it can be addressed using an iterative approach where

we keep other variables fixed and solve one alternatively

and iteratively. We learn the binary code, multi-class pro-

jection matrix and network parameters � = {��, ��, ��} as

follows:

Update M with fixed B and �: We are left with a support

vector machine (SVM) formulation which can be solved

through a standard solver1 to learn the classification matrix

M.

Update B with fixed M and �: We perform a discrete

optimization technique and simplify (4) as follows to learn

B:

min
b�

�(b�) = −
�∑

�=1

m⊤

��,�
b�

+ �∥b� − h�∥
2
�

subject to b� ∈ {−1, 1}1×� (5)

(5) is a binary quadratic problem that can be solved through

a linear gradient technique similar to [18]. We obtain a

closed-form solution as follows:

b� = sgn(y�M
⊤ + �h�) (6)

Update � with fixed M and B: We obtain the resulting for-

mulation:

min
�
�(�) = �∥B−H∥2� (7)

1we use LibSVM: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

Algorithm 1: CMDVH - cross-modal fusion network

Input: Training set X� and X� , network learning

parameters, iterative number ����, objective

function parameter � and convergence error �.

Output: unified binary code matrix B
Step 1 (Initialization):

1.1 Initialize image, text and latent network parameters (see

Implementation details)

1.2 Initialize binary code B, randomly and zero-centered.

Step 2 (Fusion Network and Binary Code Learning):

for � = 1, 2, ⋅ ⋅ ⋅ , ���� do
- Compute H using the initial fusion network.

2.1 (Classification Step):

- Obtain M by solving the SVM formulation in (4).

2.2 (Binary Code Learning Step):

- Obtain B according to (6).

2.3 (Hash Function Learning Step):

- Obtain the top-layer gradients according to (8).

- Perform back propagation for the image, text and

latent network.

- Calculate �� using (4).

If � > 1 and ∣�� − ��−1∣ < �.

end

Return: B.

We employ the batch-wise gradient descent method to learn

parameters for the latent network and image/text network-

s. The gradient of � in (7) with respect to the neural code

representation are as follows:

∂�

∂H
= −2�(B−H) (8)

For each layer of the network, the gradients can easily be

computed through the chain rule during backpropagation.

The parameters of the networks are updated using these

gradients based on a given learning rate, momentum and

weight decay. Algorithm 1 summarizes the detailed proce-

dure of our the cross-modal fusion network of our CMDVH.

Modality-Specific Networks: After learning a repre-

sentative binary code for the training cross-modal pairs

from a fusion network, we can now learn generative

modality-specific networks for encoding out-of-sample in-

put. The aim of modality-specific networks is to directly

map each cross-modal sample pair into similar binary code

inferred from the fusion network as follows :

�� : ℝ�� → {−1, 1}� , �� : ℝ�� → {−1, 1}� (9)

Inspired by the success of variational encoders [12], we em-

ploy a probabilistic interpretation for the modality-specific

network to make it more general and suitable for out-of-

sample extension. We assume that the output data is gen-

erated by a latent variable, z, sampled from a condition-

al distribution. Given data x∗�
2, we assume that the latent

2where ∗ = {�,�}.
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sample and binary code is generated as z∗� ∼ ��∗(z∗�) and

b� ∼ ��∗(b�∣z∗�), respectively. Similar to [12], we gener-

ate a proposal distribution ��∗
(z∗∣x∗�) to approximate the

posterior distribution ��∗(z∗�∣x∗�) where we sample z∗� as

follows:

z�∗� = �∗� + �∗� � ��

�� ∼ � (0, 1) (10)

where �� means the �-th sample of noise, � denotes element-

wise multiplication, �∗� and �∗� would be the output of the

non-linear projection from network �(x∗�, �∗) with input

x∗� and parameter �∗. From (9), we can have the proposal

distribution to be:

��∗
(z∗�∣x∗�) = � (z∗�∣�∗�, �

2
∗�I) (11)

We also assume that the prior over the latent variable is

centered by a multivariate gaussian ��∗(z∗) = � (z∗; 0, I).
From this assumption, we can derive the analytic form of

the Kullback-Liebler (KL) divergence as:

���(��∗
(z∗�∣x∗�)∣∣��∗(z∗�)) =

1

2

�∑

�=1

(1 + log((�
(�)
∗� )

2

− (�
(�)
∗� )

2 − (�
(�)
∗� )

2)(12)

where � is the �-th element of � and �. The KL divergence

would act as a regularizer to the approximate posterior dis-

tribution. Finally, In order to ensure that the latent variable

produces binary codes similar to the learned codes in the

fusion network, we employ a probabilistic loss function in

the form of a log-likelihood loss as follows:

log �(�
(�)
� ∣�

(�)
∗� ) = log(1 + ��

(�)
�

�
(�)
∗� ) (13)

where � is the �-th bit of the binary code. From these ap-

proximations, the network learning formulation can then be

written as follows:

min
�

ℒ =

�∑

�=1

�∑

�=1

ℒ��� +

�∑

�=1

�ℒ���

=
�∑

�=1

�∑

�=1

− log(1 + ��
(�)
�

�
(�)
∗� ) (14)

−
�

2

�∑

�=1

�∑

�=1

(1 + log((�
(�)
∗� )

2 − (�
(�)
∗� )

2 − (�
(�)
∗� )

2)

ℒ��� ensures that the binary data likelihood under the ap-

proximate posterior distribution is maximized. ℒ��� en-

sures that the KL divergence between the proposed distri-

bution and prior distribution for the latent variable is mini-

mized. Finally, � is a constant parameter to balance the two

Algorithm 2: CMDVH - modality-specific network

Input: Training set X� and X� with corresponding

binary code matrix B, network learning

parameters, iterative number ����, objective

function parameter �, and convergence error �.

Output: Network parameters �� and ��
Step 1 (Initialization):

1.1 Initialize modality-specific network parameters (see

Implementation details)

Step 2 (Modality-Specific Hashing Network Learning):

for ∗ = image (�), text (�) do

for � = 1, 2, ⋅ ⋅ ⋅ , ���� do
2.1 (Forward Propagation):

- Compute output of modality-specific network,

given input sample x∗.

- Split output to �∗ and �∗.

- Sample z∗ from (10).

2.2 (Backward Propagation):

- Compute gradient of loss function (14).

- Perform gradient descent to learn �∗
end

Calculate ℒ� using (14).

If � > 1 and ∣ℒ� − ℒ�−1∣ < �.

end

Return: {��, ��}.

loss terms. (14) can be easily optimized by taking the gra-

dient of the objective function and performing batch-wise

backpropagation. Algorithm 2 summarizes the detailed

procedure of the modality-specific networks of our CMD-

VH.

For new instances or query data, we simply use the

learned modality-specific networks to obtain the output

real-value codes and finally binarize them using the sign(⋅)
function. During retrieval, given a text query (can be im-

age), we extract the query binary code using the learned text

hashing network and obtain the most similar binary codes

from the gallery (learned B) which are indexed to retrieve

the most relevant images.

4. Experiments

We conducted experiments on three widely used datasets

to evaluate our CMDVH. The following describes the de-

tails of the experiments and results.

4.1. Datasets and Experimental Setup

Datasets: We employed three cross-modal datasets in

our experiments: Wiki, IAPRTC12 and NUS-WIDE. The

Wiki dataset3 contains 2866 Wikipedia documents, where

each document contains a single image and a corresponding

text of at least 70 words. These documents are categorized

3http://www.svcl.ucsd.edu/projects/crossmodal/.
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into 10 semantic classes, where each document is from one

class. Each text is represented by a 10-dimensional feature

vector which is computed from the latent Dirichlet Alloca-

tion (LDA) model. We randomly selected 75% documents

from this dataset as the database and the rest as query sam-

ples.

The IAPR TC-12 dataset4 contains 19627 images

with corresponding sentence descriptions. These image-

sentence pairs present various semantics such as landscape,

action and people categories. Similar to [2], we use the top

22 frequent labels from the 275 concepts obtained generat-

ed from the segmentation task5. For the text features, we

pre-process the sentence data removing the stop words and

extract a bag-of-words (BoW) representation with a dimen-

sion of 500. We randomly select 100 pairs per class as the

query set and the remaining data as the gallery set. Unlike

the Wiki where each image was associated with one catego-

ry class, the images in IAPRTC12 may have more than one

label information.

The NUS-Wide dataset6 contains 269648 images which

were annotated by 81 concept tags. Following the same set-

tings in previous works [14, 23], we selected the 10 most

frequent concepts and constructed a subset which contains

186577 images-tag pairs. Similar to the IAPRTC12, each

image in the NUS-WIDE dataset is associated with multi-

ple tags. In our experiments, each text is represented by a

1000-dimensional feature vector which is computed by the

bag-of-words model. We randomly selected 99% samples

to form the database and the rest as query samples.

Evaluation Metrics: For each dataset, we performed t-

wo cross-modal retrieval tasks: image-to-text retrieval and

text-to-image retrieval, which search texts by a query im-

age and search images by a query text, respectively. We use

the mean average precision (mAP) [1,14,23] to measure the

performance of different retrieval methods, which is defined

as the mean of all queries’ average precision, �� , defined

as follows:

�� =
1

�

�∑

�=1

����(�) � ���(�) (15)

where� is the number of relevant instances in the retrieved

set, ����(�) denotes the precision of the top � retrieved

set, and ���(�) is an indicator of relevance of a given rank

(which is set to 1 if relevant and 0 otherwise). Here, we

consider two samples similar as long as there is at least

one similar label. In our experiments, we use � = 100
for the NUS-WIDE and Wiki dataset, and � = 500 for the

IAPRTC12. Generally, mAP measures the discriminative

learning ability of different cross-modal retrieval methods,

where a higher mAP indicates better retrieval performance.

4http://imageclef/photodata.
5http://imageclef/SIAPRdata.
6http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

Because the IAPRTC12 and NUS-WIDE dataset have

multiple labels for each sample, it is important that a rank-

ing metric is also evaluated. Hence, we also evaluate the

Normalized Discounted Cumulative Gain (NDCG), and Av-

erage Cumulative Gain (ACG). For a given query sample

x� , these criterions are defined as follows:

����@� =
1

�

�∑

�=1

2�� − 1

log(1 + �)
(16)

���@� =
1

�

�∑

�=1

�� (17)

where � is the normalized constant, �� is the similarity level

of the �th sample, and � is the number of retrieved samples

in the ranking list. �� represents a ranking level valued � is

the query and �-th sample in gallery share � similar labels,

and valued zero if they do not share any label. The NDCG

evaluates the ranking by penalizing errors in higher ranked

items more strongly, while ACG takes the average of the

similarity levels of data within the retrieved samples.

Implementation Details: Our deep architecture and ex-

periments were implemented under the MatConvNet [26]

framework. For the fusion network, the image hashing

network used the pre-trained CNN-F from [4] as our ini-

tial convolution and pooling layers up to FC7, and stack

a number of new FC layers with dimensions of [4096 →
500 → 200] for all datasets, while the text hashing net-

work is designed with fully-connected networks and use

the pre-processed text features, given by each experimen-

t, as input. We set the FC layers as [10 → 100 → 200],

[1386 → 500 → 200], and [1000 → 500 → 200], for

the Wiki, IAPRTC12, and NUS-WIDE dataset, respective-

ly. For the latent network which fuses the output of image

and text network, we used FC layers with dimensions of

[200 → 500 → �]. For the modality-specific network-

s, we use the similar image and text networks except that

a the top FC layer would have a size of 2 × � because of

the splitting done during latent variable sampling. We per-

form end-to-end learning by having the learning rate at the

new fully connected layers to be 0.01. To avoid overfit-

ting and ruining the representative abstract features already

learned during the pre-training, we reduce the learning rate

of the remaining convolution and FC layers to be 0.0001.

For both image and text network, we used the ReLU activa-

tion7 as the nonlinear activation function for the new fully

connected layers except for the last layer. We use the hyper-

bolic tangent (tanh) function for the top layer of the latent

network because it is able to squeeze the representation to

a {-1,1} range which ensures that the quantization loss can

be reduced as much as possible. The parameters in the new

fully connected layers are initialized using the Xavier ini-

7ReLU is a nonlinear transformation f(x) = max(0, x) [20]
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Table 1. mAP performance of different cross-modal hashing methods on different datasets, where images were used as query samples and

texts/tags were employed as gallery samples, respectively.

Wiki IAPRTC12 NUS-WIDE

Method 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CVH [14] 0.2383 0.2038 0.1791 0.1580 0.5370 0.5409 0.5242 0.4962 0.5045 0.5484 0.5588 0.5583

CCA-ITQ [8] 0.3328 0.3216 0.3064 0.328 0.5587 0.5853 0.5895 0.5855 0.5400 0.5960 0.6194 0.6229

PDH [23] 0.3251 0.3258 0.3436 0.3438 0.5927 0.6085 0.6302 0.6450 0.5687 0.6148 0.6475 0.6793

LSSH [37] 0.3645 0.3713 0.3777 0.3580 0.5440 0.5769 0.5964 0.5985 0.5547 0.5734 0.5980 0.5968

CMFH [5] 0.2665 0.2755 0.2876 0.2950 0.5601 0.5829 0.6079 0.6179 0.4772 0.5301 0.5763 0.6258

SCM [36] 0.1387 0.1367 0.1413 0.1359 0.5665 0.5051 0.4548 0.4178 0.5190 0.4837 0.4495 0.4189

SePH - km [17] 0.4144 0.4354 0.4374 0.4472 0.6177 0.6447 0.6500 0.6781 0.6524 0.6526 0.6637 0.6696

DisCMH [35] 0.3754 0.3936 0.3901 0.3915 0.6174 0.6596 0.6503 0.6594 0.6826 0.7583 0.7752 0.7605

CMDVH 0.4242 0.4430 0.4519 0.4442 0.7196 0.7727 0.8004 0.7902 0.8503 0.8755 0.8801 0.8910

Table 2. mAP performance of different cross-modal hashing methods on different datasets, where texts/tags were used as query samples

and images were employed as gallery samples, respectively.

Wiki IAPRTC12 NUS-WIDE

Method 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CVH [14] 0.3882 0.3362 0.2567 0.2297 0.5677 0.5784 0.5610 0.5362 0.5280 0.5732 0.5864 0.5807

CCA-ITQ [8] 0.5463 0.5505 0.5593 0.5633 0.5863 0.6123 0.6143 0.6053 0.5753 0.6151 0.6405 0.6360

PDH [23] 0.5432 0.5592 0.57554 0.58474 0.5960 0.6133 0.6345 0.6488 0.5844 0.6402 0.6817 0.7087

LSSH [37] 0.6061 0.6256 0.6384 0.6376 0.4868 0.5264 0.5547 0.5724 0.5857 0.6242 0.6293 0.6464

CMFH [5] 0.3955 0.4105 0.4473 0.4807 0.5592 0.5834 0.6084 0.6187 0.4965 0.5432 0.5995 0.6405

SCM [36] 0.1322 0.1429 0.1556 0.1494 0.6521 0.5697 0.4776 0.4213 0.5485 0.5033 0.4481 0.3920

SePH - km [17] 0.7007 0.6999 0.7099 0.7153 0.6105 0.6340 0.6404 0.6730 0.6604 0.6766 0.7043 0.7024

DisCMH [35] 0.6772 0.6602 0.6632 0.6537 0.6532 0.6910 0.6921 0.6949 0.6519 0.7378 0.7535 0.7511

CMDVH 0.7270 0.7326 0.7383 0.7371 0.7348 0.7744 0.8038 0.8111 0.8270 0.8328 0.8403 0.8782

Table 3. mAP performance of different deep cross-modal hashing

methods on different datasets.

IAPRTC12

Method 16 bits 32 bits 64 bits 128 bits

� → �

DNH-C [15] 0.5250 0.5592 0.5902 0.6339

DVSH [2] 0.5696 0.6321 0.6964 0.7236

CMDVH 0.7196 0.7727 0.8004 0.7902

� → �

DNH-C [15] 0.4692 0.4838 0.4905 0.5053

DVSH [2] 0.6037 0.6395 0.6806 0.6751

CMDVH 0.7348 0.7744 0.8038 0.8111

NUSWIDE

Method 16 bits 32 bits 64 bits 128 bits

� → �

CAH [3] 0.4920 0.5084 0.5407 0.5628

DCMH [10] 0.6249 0.6355 0.6720 -

CMDVH 0.8503 0.8755 0.8801 0.8910

� → �

CAH [3] 0.5019 0.5135 0.5451 0.5800

DCMH [10] 0.6791 0.6829 0.6906 -

CMDVH 0.8270 0.8328 0.8403 0.8782

tialization [6]8. The momentum, and weight decay were set

to 0.9, and 0.0001, respectively. In our experiments, the

parameters �1 and � were set to 0.2 and 0.5, respectively,

which were obtained by cross-validation on the Wiki dataset

using 16 bits.

4.2. Experimental Results

Comparisons with State-of-the-art Cross-Modal

Hashing Methods: We compared our CMDVH with the

different state-of-the-art cross-modal hashing methods

which can be grouped to unsupervised (CVH, PDH,

8
W = �

[

−
√

6

���+����
,
√

6

���+����

]

where W ∈ ℝ
���×����

CCA-ITQ, LSSH, CMFH) and supervised (SCM, SePH,

DisCMH).9 To have a fair comparison because they are

shallow methods, we make use of CNN features extracted

at the FC7 layer for the images from the pre-trained model

initially used by our CMDH method. Also, to maximize

the learning potential of each dataset, we made use of

the gallery samples as training data to learn the hashing

functions. During retrieval, methods that employ unified

binary code learning (LSSH, CMFH, SePH, DisCMH)

similar to CMDH use the learned binary code as gallery

set, while other methods (CVH, PDH, CCA-ITQ, SCM)

use the learned hash function to obtain the binary codes for

the gallery set. Tables 1 and 2 show the mAP performance

by Hamming Ranking. It can be observed that our method

provided the best performance compared to the shallow

cross-modal hashing methods. This may be because our

DCNN model captured the nonlinearities of the raw data

due to several nonlinear transformations. Although SePH

also performed nonlinear transformations, it was done

explicitly through kernels which cannot really maximize

the information from raw data. The DisCMH method gave

competitive results with our CMHN method at lower bits,

but did not consistently improve as the bit size increased.

This may be because it performed linear projection which

may have limited the binary code mapping. In addition,

a larger performance gap can be seen in the IARPTC12

and NUSWIDE experiments most probably due to larger

9Authors provided their codes except for DisCMH in which we imple-

mented ourselves.
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Figure 2. NDCG performance of different cross-modal hashing methods for the IAPRTC12 and NUSWIDE database.
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Figure 3. ACG performance of different cross-modal hashing methods for the IAPRTC12 and NUSWIDE database.

training data which hashing network training fully utilized.

Figures 2- 3 show the NDCG and ACG performance.

Unlike other methods that gave the same weight if samples

have at least one similar label between them during train-

ing, it can be seen that our method shows the best results by

a large margin which shows that our method addressed the

ranking problem well by exploiting the label information

fully.

Comparisons with Current Deep Cross-Modal Hash-

ing Methods: We also compared our method with cur-

rent deep cross-modal hashing methods as shown in Ta-

ble 3.10 It can be seen, that our model gave best results,

using the shared binary code as gallery for the two bench-

mark datasets. This may be due to several reasons; First,

the CAH method still used handcrafted image features as

input for their deep networks while our method performed

a complete network learning from raw images. Second, the

DCMH method performed end-to-end learning but exploit-

ed the label information directly to the neural code out-

put of the hash networks, and not the binary code which

may have lead to some approximation loss. Finally, DVSH

and DNH-C both performed end-to-end supervised metric-

based network training in the form of cosine hinge loss and

triplet ranking loss, respectively, which may not fully obtain

discriminative binary codes compared to our classification-

based hinge loss learning.

Empirical Analysis: We also investigated variants of

our CMDVH method to see the importance of each aspect

of our architecture and learning method. CMDVH1 ignores

the latent network in the cross-modal fusion network which

assumes that simply combining the outputs of the image

10Results are obtained from the respective author’s papers. We used the

same experimental setup as mentioned in their papers.

Table 4. mAP performance of different variants of our CMDVH

method on the NUS-WIDE dataset.

Method 16 bits 32 bits 64 bits 128 bits

� → �

CMDVH1 0.7864 0.8615 0.8631 0.8666

CMDVH2 0.8234 0.8576 0.8762 0.8821

CMDVH 0.8503 0.8755 0.8801 0.8910

� → �

CMDVH1 0.7390 0.8206 0.8375 0.8504

CMDVH2 0.7992 0.8280 0.8282 0.8583

CMDVH 0.8270 0.8328 0.8403 0.8782

and text network would be representative enough for binary

code inference. CMDVH2 ignores the probabilistic inter-

pretation of the modality-specific network and simply learn

the binary codes from a negative log likelihood loss. Table 4

shows the performance of these variants on the NUS-WIDE

database. We see that a fusion network is still important to

perform the nonlinear transformation to make the learned

codes more representative.

5. Conclusion

In this paper, we have proposed a cross-modal deep

variational hashing (CMDVH) for scalable multimedia re-

trieval. Our method learns a fusion network to learn bi-

nary codes from cross-modal training pairs which exploits

class label information, which learn a generative modality-

specific hash network for the out-of-sample extension. Ex-

perimental results on three multimedia retrieval datasets

have shown the effectiveness of the proposed approach.
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