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Abstract

Person re-identification is best known as the problem of

associating a single person that is observed from one or

more disjoint cameras. The existing literature has mainly

addressed such an issue, neglecting the fact that people

usually move in groups, like in crowded scenarios. We be-

lieve that the additional information carried by neighboring

individuals provides a relevant visual context that can be

exploited to obtain a more robust match of single persons

within the group. Despite this, re-identifying groups of peo-

ple compound the common single person re-identification

problems by introducing changes in the relative position of

persons within the group and severe self-occlusions. In this

paper, we propose a solution for group re-identification that

grounds on transferring knowledge from single person re-

identification to group re-identification by exploiting sparse

dictionary learning. First, a dictionary of sparse atoms

is learned using patches extracted from single person im-

ages. Then, the learned dictionary is exploited to obtain a

sparsity-driven residual group representation, which is fi-

nally matched to perform the re-identification. Extensive

experiments on the i-LIDS groups and two newly collected

datasets show that the proposed solution outperforms state-

of-the-art approaches.

1. Introduction

Person re-identification is the problem of associating a

single person that moves across disjoint camera views. The

open challenges like changes in viewing angle, background
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Figure 1. Major group re-identification issues. Examples of: (a)

position swap between person in a group; (b) different background

between group images; (c) group images with partial occlusion.

clutter, and occlusions have recently yield to a surge of ef-

fort by the community [49]. In particular, existing works

have focused on seeking either the best feature representa-

tions (e.g., [31, 39, 29]) or propose to learn optimal match-

ing metrics (e.g., [26, 30, 53]). Despite obtaining interesting

results on benchmark datasets (e.g., [13, 40, 61], such works

have generally neglected the fact that in crowded public en-

vironments people often walk in groups.

We believe that being able to associate the same group

of people can be a powerful tool to improve classic single-

person re-identification. Indeed, the appearance of the

whole group provides a rich visual context that can be ex-

tremely useful to reduce the ambiguity in retrieving those

persons that are partially occluded or to understand the be-

havior of the group over time if a person in the group is

missed for a certain period of time.

Group re-identification introduce some additional dif-

ficulties with respect to classic person re-identification

(see Figure 1). First of all, the focus is no longer on a sin-

gle subject, hence the visual appearance of all the persons

in the group should be considered. The relative displace-

ment of the subjects in a group can be different from cam-

era to camera. Self-occlusions or occlusions generated by

other people near by, as well as the fact that an individual

in a group may be missing because he/she left the group,

bring in additional challenges. Such challenges deny the

direct application of existing representation descriptors and
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matching methods for single-person re-identification to the

group association problem. In this work, we investigate the

problem of associating groups of people.

Contribution: The contribution of this work is twofold: i)

To handle the spatial displacement configuration of persons

in a group, we introduce a visual descriptor that is invari-

ant both to the number of subjects and to their displacement

within the image. Such a task is accomplished by ii) intro-

ducing a sparse feature encoding solution that leverages on

the knowledge that can be acquired from the large quantity

of data that is available in the single-person re-identification

domain and transfer it to the group re-identification domain

in an unsupervised fashion.

To validate the proposed solution, we compare with ex-

isting methods on the i-LIDS group benchmark dataset. In

addition, to study the behavior of the approach under dif-

ferent conditions, we have collected two new group re-

identification datasets. Extensive evaluations demonstrate

that better performances than current solutions are obtained

on all datasets.

2. Related Work

While being a young field of research, the community

has recently produced several works to address the re-

identification problem [49]. In the following we provide a

brief overview of the most relevant works to our approach.

Single Person Re-Identification: The literature on single

person re-identification can be clustered into two main cat-

egories: i) direct matching and ii) metric learning-based

methods. Works belonging to the first group aim to address

the re-identification problem by designing –or learning– the

most discriminative appearance feature descriptors. Multi-

ple local and global feature [5, 4, 33] were combined with

reference sets [2], patch matching strategies [57], saliency

learning [56, 50, 37], joint attributes [43, 24, 27] and cam-

era network-oriented schemes [36]. Among all the methods

in this category, to date, the most widely used appearance

descriptors are the Gaussian of Gaussian (GOG) [39], the

Local Maximal Occurrence (LOMO) [29] and the Weighted

Histogram of Overlapping Stripes (WHOS) [31, 22].

Approaches grouped in the second family represent the

trend in person re-identification. In particular, metric learn-

ing approaches have been proposed by relaxing [19] or

enforcing [30] positive semi-definite (PSD) conditions, by

considering equivalence constraints [26, 47, 46] or by ex-

ploiting the null-space [53]. While most of the existing

methods capture the global structure of the dissimilarity

space, local solutions [28, 41, 13] have been proposed too.

Sample-specific metrics were also investigated in [54]. Fol-

lowing the success of both approaches, methods combin-

ing them in ensembles [40, 51, 38] have been introduced.

Different solutions yielding similarity measures have also

been investigated by proposing to learn listwise [8] and pair-

wise [60] similarities.

To deal with the re-identification of a single person all

such works assume that the provided images represent good

detections of a single person only. This limits their applica-

tion when more than a person appears in the given image.

Group Person Re-Identification: The first work con-

cerning group association over space and time was pro-

posed in [59]. The authors introduced a group represen-

tation and matching algorithm based on a learned dictio-

nary. Since then, the literature on this task is limited to two

works [6, 48]. Specifically, in [6], independence of persons

locations within the group was captured by the covariance

descriptor, while in [48], spatio-temporal group features

were explored to improve single person re-identification.

Differently from our work, such approaches either as-

sume that background/foreground segmentation masks are

available or exploit training data coming from the same do-

main (i.e., dataset) of the evaluation data.

Other works have addressed the problem of group-based

verification [61] and group membership prediction [55], but

both tasks still assume that the input datum represents a sin-

gle person only. Group information was also explored to

address visual tracking [52, 20, 3] and behavior analysis [1]

among other tasks.

Object Displacement Invariant Descriptors: The most

relevant problem in group re-identification is determined by

the fact that people often change their positions while walk-

ing in a group. A standard approach to deal with a similar

problem in image retrieval is to extract a set of local de-

scriptors, encode them and pool them into an image-level

signature which is independent from the spatial location.

Research in this area is quite vast, but almost all ap-

proaches inherit or extend the Bag-of-Words (BoW) [9], the

Vector of Locally Aggregated Descriptors (VLAD) [21] or

the Fisher Vector (FV) [44]. In person re-identification such

solutions have been explored to encode first and second-

order derivatives for each pixel [32] and to address large-

scale applications [58]. Similar solutions exploiting an en-

coding scheme based on dictionary learning have also been

proposed in [25, 42].

These works did not address the group re-identification

problem and mainly adopted the encoding schemes to deal

with extremely high dimensional image descriptors.

The closest work to our approach [59] exploited a clas-

sical BoW scheme on densely extracted features and com-

bined them with a proposed global descriptor. In addition,

authors assumed that foreground/background segmentation

masks were available such that only features extracted for

foreground pixels were used to construct visual words for

group image representation. Our approach has three key

differences with such a work: i) we propose a novel en-

coding scheme based on dictionary learning; ii) there is no

requirement of foreground/background segmentation masks
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Figure 2. Proposed group re-identification pipeline. Top row shows the unsupervised single-person dictionary learning. Bottom row depicts

the re-identification process with feature extraction and subsequent sparse residual encoding obtained with the transferred dictionary atoms.

which demands a substantial hand-work; iii) knowledge ob-

tained from single person re-identification domain is trans-

ferred to tackle the group re-identification problem.

3. Proposed Approach

In the following we first define how group appearance

is modeled. Then we introduce a transfer learning so-

lution that allows us to exploit knowledge available in

single-person re-identification to better tackle the group re-

identification. Finally, we describe how groups matching is

performed. The whole process is depicted in Figure 2.

3.1. Group Appearance Modeling

In our representation, the image of a group is resized to

128 ⇥ 128 pixels. Two set of patches with fixed dimension

16 ⇥ 16 are then extracted. The first set is obtained from

the whole image, whereas the second one is chosen so as to

collect information that overlaps with the first layer, see fig-

ure 2. For each patch, we compute three histograms consid-

ering the same image projected onto different color spaces,

namely: HS, RGB and Lab. For the HS images we consider

8 bins for each channel, while for the RGB and Lab we use

4 bins for each channel. This results in a 64 dimensional

histogram for each patch and color space (e.g., 8⇥8 for HS

or 4⇥ 4⇥ 4 for RGB and Lab).

To obtain a representation that does not preserve location

information and is more robust to changes in the group con-

figuration, we separately consider each histogram extracted

from each patch (i.e., we do not concatenate them).

Due to the unconstrained patch image subdivision, noisy

background information is captured by the feature represen-

tation. To circumvent such an issue, we first run three differ-

ent person detectors, namely Deformable Part Models [12],

Aggregated Channel Feature [10] and R-CNN [14]. Then,

the filtering mask obtained as the combination of the re-

sponses of these three detectors is used to weight the contri-

bution of each pixel in the histogram computation (i.e., pix-

els belonging to the background have zero contribution).

3.2. Unsupervised Learning of Person Appearance

We propose to exploit a sparse dictionary learning frame-

work that allows us to represent a group of persons as a

combination of few human body parts (i.e., patches/atoms).

Since these atoms does not necessarily need to be struc-

tured accordingly to the relative person displacements, we

obtain a flexible group representation. Such a solution re-

sembles visual encoding schemes (e.g., BoW [9], FV [44],

VLAD [21]) that are widely adopted for image classifica-

tion with local descriptors.

We first exploit the dictionary learning solution in [34]

to find the basis set of patches that yields to the optimal

reconstruction accuracy for single person re-identification.

Then, we leverage on such a basis set to introduce a sparse

residual group representation.

Problem Definition: Let Itr = {I1, . . . , IN} be a training

set composed of N images belonging to a single person re-

identification domain (i.e., images in Itr may come from

the ETHZ [45], CAVIAR [7], or VIPeR [15] dataset). Also

let P denote the number of patches into which each image

is divided such that X tr = {x1, . . . ,xNP } is a training set

containing NP d-dimensional vectors x, each representing

the visual features extracted from a single patch1.

With this, we define our optimization objective as

L(D) =
1

NP

NP
X

i=1

l(xi,D) (1)

where D = [dT
1 , . . . ,d

T
k ], with d 2 R

d is the dictionary of

k atoms to be learned and l(·, ·) is a suitable loss function

1In our current solution, x represents a 64-D histogram extracted ei-

ther from the HS, RGB or Lab color space. These are obtained with a

similar approach to the one described in Sec. 3.1 but with input images not

processed by the detectors and resized to 128× 64.
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Figure 3. Proposed sparse residual encoding. Colored circles represent the learned dictionary atoms. Black crosses denote the visual

features extracted from each of the P̂ patches into which the group image is divided. Blue dashed arrows show the residual computed via

d(·, ·), which are then weighted by the corresponding sparse reconstruction coefficients α̂.

such that its output should be “small” if D is able to provide

a good representation for any training input datum xi.

It has been demonstrated in many fields, ranging from

image compression to person re-identification itself [23],

that obtaining a representation of a signal x using only a

few elements of a dictionary D performs better than con-

sidering all the atoms. We let our loss function l be the

optimal value of the `1-sparse coding problem, i.e.

l(x,D) = min
ααα

1

2
kx−D↵↵↵k22 + λk↵↵↵k1 (2)

where ↵↵↵ 2 R
k is the sparse vector of coefficients and λ is a

regularization parameter that balances the trade-off between

a perfect reconstruction and the sparsity of ↵↵↵.

By solving the minimization problem in eq. (2), we find

the set of atoms in D that yields the best reconstruction for

the signal x. Despite this being compliant to our objective,

it does not answer the problem of finding the set of all k

atoms that minimize eq. (1).

To address such a problem the `1-sparse coding prob-

lem can be rewritten as a joint optimization whose solution

should result in the best combination of dictionary atoms

and sparse coefficients. Thus, eq. (2) can be rewritten as

l(xi,D) = min
D∈C,ΘΘΘ

1

NP

NP
X

i=1

✓

1

2
kxi −DΘΘΘik

2

2 + λkΘΘΘik1

◆

.

(3)

where Θ = [↵↵↵1, . . . ,↵↵↵NP ] contains the sparse coefficients

to be found for each patch and C = {D 2 R
d×k|dT

j dj 
1, 8j = 1, . . . , k} is a convex set introducing an `2 norm

constraint on the single atoms.

Optimization Solution: The problem in eq. (3) is not

jointly convex, but convex with respect to each of the two

variables when the other one is fixed. To solve the optimiza-

tion problem, the solution proposed in [34] is exploited. It

alternatively solves the classical sparse coding first, then it

updates the learned dictionary using the so computed opti-

mal sparse coefficient.

Specifically, let t denote the optimization iteration

counter. Also let Dt be a randomly initialized dictionary,

and At 2 R
k×k = 0 and Bt 2 R

k×k = 0 (with t = 0)

be two matrices which will carry the information of all the

sparse coefficients ↵↵↵’s. Then, we start the optimization by

randomly drawing an image training sample from the train-

ing set and computing the visual representation of a ran-

domly chosen patch xt. Such a datum is then considered by

the least angle regression (LARS) [11] to solve the sparse

coding problem in eq. (2), hence to obtain the vector of

sparse coefficients for the t-th iteration ↵↵↵t.

The computed sparse coefficient vector is then exploited

to revise At and Bt such that these can be used in a block-

coordinate descent solution to update the learned dictionary.

More precisely, the two matrices carry all the information

brought in by all the sparse coefficients computed so far as

At = At−1 +↵↵↵t↵↵↵
T
t (4)

Bt = Bt−1 + xt↵↵↵
T
t . (5)

Exploiting the block coordinate descent to update the

dictionary Dt yields to the following solution for each dic-

tionary atom, i.e. for each column dj with j = 1, . . . , k

v =
1

Tr(At)j
(bj −Dtaj) + dj (6)

dj =
1

max(kvk2, 1)
v (7)

where Tr(At)j is the j-th element on the diagonal of At,

while aj and bj are the j-th columns of At and Bt, respec-

tively.

The optimization is run for T iterations. Once such a

limit is reached, we let D∗ = DT be the solution for eq. (1).

3.3. Transfer Single-to-Group Appearance

Inspired by the recent success of residual learning both

for visual encoding [21] and for deep learning [16, 17], we

propose to exploit the single-person learned dictionary and

introduce a sparsity-driven residual representation for an

unseen group image Î. The process is shown in Figure 3.

We start by extracting the visual features from each of

the P̂ patches as computed in Sec. 3.1. Then, for each x̂i
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with i = 1, . . . , P̂ we compute its residual d(x̂i,dj) with

every j = 1, · · · , k atom in the learned dictionary D
∗. No-

tice that the residual d(·, ·) can be any suitable function that

describes how much “dissimilar” the two inputs are (e.g.,

the euclidean distance, etc.).

Then, we solve the `1-sparse coding problem in eq. (2) to

obtain the sparse vector of coefficients ↵̂̂↵̂↵i for each x̂i. Since

each patch is considered separately, every element in ↵̂̂↵̂↵i =
[↵̂1

i , . . . , ↵̂
k
i ] specifies how important a particular atom is in

the reconstruction of x̂i.

Armed with the aforementioned results, we want to as-

sign more importance to the residuals computed with re-

spect to those dictionary atoms that are relevant for the

sparse reconstruction of the considered sample x̂i. A rea-

sonable approach to meet this objective is to weight the

residuals through the corresponding sparse dictionary co-

efficients. This results in:

x̂
∗
i = [↵̂1d(x̂i,d1), . . . , ↵̂kd(x̂i,dk)]. (8)

3.3.1 Sparse Residual Pooling

The proposed residual representation is obtained for each

of the P̂ patches of a group. To compute the final repre-

sentation that can be used to match two groups of persons

we should introduce a suitable combination of all the x̂
∗
i ’s.

A classical approach would be to concatenate all such ele-

ments. However, in doing so we may lose one of the rele-

vant features of visual encoding schemes, i.e., represent any

number of feature vectors as a sample in a feature space of

fixed dimensionality. In addition, such a solution is likely

to bring in the problem of the curse of dimensionality since

the final dimension is linear with respect to both k and NP̂ .

To overcome these issues, we propose to use differ-

ent pooling schemes that produce a compact represen-

tation, denoted f̂ , that depends only on the number of

atoms k. Specifically, we exploited the average pool-

ing (i.e., f̂j = 1

P̂

PP̂

i x̂
∗
i,j) and max pooling (i.e., f̂j =

max(x̂∗
1,j , · · · , x̂

∗

P̂ ,j
)), where j = 1, . . . , k indicates the j-

th element of the corresponding vectors.

3.3.2 Group Representation and Matching

The final group representation is computed as ŝ = Φ(f̂)
where Φ(·) is the Principal Component Analysis (PCA)

mapping function R
k 7! R

u with u ⌧ k. With such a

representation, the dissimilarity between two group images

ÎA and ÎB is computed as δ(̂IA, ÎB) =
Q

f Ψ(̂sfA, ŝ
f
B) with

Ψ denoting the cosine distance and f 2 {HS,RGB,Lab}.

4. Experimental Results

In this section we report on a series of experiments to as-

sess the performance of the proposed method. From now on

we refer to our solution as: Pooling Residuals of Encoded

Features (PREF).

Plenty of single-person re-identification datasets

have been publicly released –each one with different

characteristics– but just one of them is for group re-

identification, namely the i-LIDS groups dataset [59]. In

order to evaluate the proposed solution under different

scenarios, we collected two additional group datasets.

i-LIDS Groups Dataset: This dataset has been obtained

from the i-LIDS MCTS dataset which was captured at an

airport arrival hall in the busy times under a multi-camera

CCTV network. The authors of [59] extracted 274 images

of 64 groups. Most of the groups have 4 images, either

from different camera views or from the same camera but

captured at different locations at different times. Sample

images for this dataset are shown in Figure 4(a).

Museum Groups Dataset2: This dataset has been acquired

in the hall of a national museum through four cameras, with

small or no overlap. The cameras are installed so as to ob-

serve the artworks present in the hall and capture groups

during their visits. The dataset contains 524 manually an-

notated images of 18 groups, composed by a variable num-

ber of persons. Each group has about 30 images distributed

between each one of the four cameras. Some samples are

shown in Figure 4(b).

Outdoor Groups Re-Identification Dataset (OGRE)3:

This dataset contains images of 39 groups acquired by three

disjoint cameras pointing at a parking lot. This results in

approximatively 2,500 images acquired at different time in-

stants and with different weather conditions. The dataset

has been acquired through a weakly supervised approach in

which, given a manually selected group region, subsequent

detections are obtained by running the KCF tracker [18].

This results in a set of coarsely segmented group images

that better resemble a real world scenario. Moreover, the

dataset has severe viewpoint changes and a large number of

self-occlusions (see Figure 4(c) for few samples).

4.1. Evaluation Protocol and Settings

Protocol: Tests are conducted following a single-vs-single

shot scheme: for each group, one randomly selected image

is included in the gallery, all the remaining images form the

probe set. As commonly performed [5, 62, 29], such a pro-

cess is repeated 10 times, then average results are computed.

Performance Measure: All the results are reported in

terms of Cumulative Matching Characteristic (CMC) curves

and normalized Area Under Curve (nAUC) values. The

CMC curve represents the expectation of finding the cor-

rect match in the first r matches, whereas the nAUC gives

a comprehensive measure on how well a method performs

independently from the considered dataset.

2https://github.com/glisanti
3https://github.com/iN1k1
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(a) i-LIDS Groups (b) Museum Groups (c) OGRE

Figure 4. Image samples from the (a) i-LIDS groups, (b) Museum groups, and (c) OGRE datasets. Each column represents a same group,

while each row depicts the image acquired by a different camera.

Source Datasets: Three of the most commonly used sin-

gle person re-identification datasets are employed as source

domain from which to learn the dictionary of visual words.

Among all the possible ones, we selected the i) ETHZ [45]

dataset since it contains multiple images of a same person

from a similar viewpoint, ii) CAVIAR [7] dataset because of

the low-resolution and occluded multiple images of a same

person, and iii) VIPeR [15] dataset due to its challenging

pose and illumination variations.

Dictionary Learning: We set λ = 0.1 because we did

not notice significant changes in the performance with other

values, while for the number of atoms, we run different ex-

periments with k 2 {300, 500, 1000} when comparing with

state-of-the-art in Sec. 4.3.

4.2. Ablation Study

In this section, we thoroughly show how the performance

of the proposed approach vary depending on the source

dataset(s) considered for training, the distances used for

residuals computation, the pooling method and the number

of PCA components. The analysis is carried out consid-

ering the i-LIDS groups dataset. To run all the following

experiments, we considered k = 500.

Source Datasets and Residuals: To evaluate the perfor-

mance of our solution considering different combinations

of single person datasets, and different distances and pool-

ing functions, we have computed the results in Table 1.

Results demonstrate that by considering more source

datasets the overall performances tend to improve. This

might indicate that more discriminative atoms can be

learned by considering heterogeneous visual patches to-

gether with a robust sparse reconstruction.

As regards distances and pooling, the best results are ob-

tained if average pooling is considered along with the cosine

distance. Such an outcome should be attributed to the fact

that average pooling is able to better handle noisy assign-

ments. Similarly, the cosine distance is suitable because of

the nature of the learned dictionary atoms [11].

PCA Components: In Table 2 the performance of our so-

lution are evaluated with varying number of PCA compo-
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Figure 5. CMC curves for the i-LIDS groups (a) obtained using the

encoded features for each color histogram and their fusion; and (b)

in comparison with state-of-the-art.

nents. Results show that the overall performances improve

little when increasing the value of such an hyperparameter

(i.e., there is an nAUC improvement of 0.5 only). Simi-

lar results are shown if the rank-1 indicator is considered.

This demonstrates that our solution does not hinge on the

selection of such a value and is robust to the many group

re-identification challenges even if only 20 principal com-

ponents are considered.

Features: In Figure 5(a), we show the contribution of each

encoded color histogram feature and their combination. It

is possible to appreciate that considering features projected

onto the HS color space yields to the best results both in

terms of rank-1 as well as nAUC. However, as demonstrated

by the literature [51, 40], considering all the color spaces

helps in improving the overall performance.

Qualitative Performance: Qualitative samples, showing

the ranked gallery groups for critical probe images are re-

ported in figures 6 for the i-LIDS groups, Museum groups

and OGRE datasets, respectively. Results show that our so-

lution is able to handle situations in which subjects are ex-

changing their relative displacement as well as cases with

severe occlusions. However, drastic illumination variations

challenge our approach since direct feature matching is not

strong enough to tackle the feature transformation between
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Table 1. Rank-1 accuracy for different training datasets (E = ETHZ, V = VIPeR, C = CAVIAR), encoding distances and pooling of the

residuals. Results are obtained on the i-LIDS groups dataset using PREF with 500 atoms and 50 PCA components. In parenthesis the

nAUC. Best performances are marked with bold, whereas the second bests are marked with underline. Values are in percentage.

L1 Cosine Chi Square Euclidean

Dataset Max Average Max Average Max Average Max Average

E 18.1 (73.3) 28.4 (77.9) 24.7 (75.8) 31.2 (77.8) 17.2 (72.7) 28.1 (77.9) 14.5 (72.1) 28.5 (77.8)

V 18.4 (72.8) 29.7 (78.3) 21.6 (75.7) 29.5 (78.2) 17.1 (71.6) 28.5 (77.7) 13.7 (70.6) 27.2 (77.9)

C 14.5 (71.7) 27.6 (77.2) 19.7 (76.8) 29.6 (77.8) 13.8 (69.9) 25.5 (77.4) 12.2 (68.8) 26.5 (77.1)

E + V 18.4 (72.5) 28.5 (77.8) 23.7 (75.7) 30.5 (78.0) 16.6 (71.0) 29.5 (78.0) 13.9 (70.8) 27.2 (77.3)

E + C 15.4 (72.5) 29.1 (78.3) 22.3 (75.5) 30.6 (78.1) 15.7 (71.6) 28.8 (77.4) 14.3 (68.9) 27.8 (77.4)

V + C 17.3 (71.9) 28.1 (78.7) 25.4 (77.0) 31.4 (78.1) 15.0 (71.5) 28.9 (78.5) 13.8 (71.2) 27.4 (78.6)

E + V + C 18.2 (72.9) 30.1 (78.4) 24.6 (77.1) 31.1 (78.7) 18.3 (73.2) 29.5 (77.9) 17.1 (71.3) 28.5 (78.1)

Figure 6. Qualitative samples from the i-LIDS groups (top rows), Museum groups (middle rows) and OGRE datasets (bottom rows). The

correct match is highlighted in green and ranked galleries are sorted from left (Rank-1) to right (Rank-10).

Table 2. Re-Identification using different number of PCA compo-

nents. Results are obtained on i-LIDS groups using PREF with

500 atoms, ETHZ, VIPeR and CAVIAR for training and aver-

age pooling of cosine residuals. Best performance is marked with

bold, the second best is underlined. Values are in percentage.

Components Rank-1 Rank-10 Rank-25 nAUC

20 29.4 58.5 75.1 78.2

30 30.1 59.9 76.3 78.8

40 30.2 59.6 75.6 78.6

50 31.1 60.3 75.5 78.7

60 30.7 60.3 76.0 78.7

cameras. Such an issue could be addressed by exploiting

metric learning solutions [26, 29, 61, 35].

4.3. Comparison with State-of-the-Art

In the following, we report on the comparison with state-

of-the-art in group re-identification and feature encoding.

Re-Identification: In Figure 5(b), we report on the compar-

ison with the state-of-the-art on the i-LIDS groups dataset.

Results show that the proposed solution outperforms exist-

ing approaches by about 8% at rank-1, whereas at higher

ranks similar performance is achieved. It is worth notic-

ing that the two group descriptors proposed in [59], i.e.,

the Center Rectangular Ring Ratio-Occurrence Descriptor

(CRRRO) and the Block based Ratio-Occurrence Descrip-

tor (BRO), exploit shape features in addition to color ones.

More importantly, they proposed to learn a visual represen-
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Table 3. Re-Identification results on i-LIDS groups, Museum groups and OGRE datasets. Results are obtained using ETHZ, VIPeR and

CAVIAR for training, average pooling of cosine residuals and 50 components for PCA. C = number of clusters used for the encoding; A =

number of atoms used for the dictionary learning. Best performance in bold, the second best is underlined. Values are in percentage.

i-LIDS groups Museum groups OGRE

Method C/A Rank-1 Rank-10 Rank-25 nAUC Rank-1 Rank-5 Rank-15 nAUC Rank-1 Rank-10 Rank-25 nAUC

IFV [44] 64 26.3 58.6 74.4 77.2 24.1 50.0 87.6 62.7 14.6 43.3 76.8 62.4

IFV [44] 128 26.1 60.2 75.8 77.8 23.6 49.0 88.4 62.8 14.4 42.7 75.6 61.8

IFV [44] 256 26.7 57.4 75.7 76.8 24.8 49.2 88.3 62.6 14.1 42.4 75.9 61.8

VLAD [21] 300 23.8 55.4 74.2 76.0 22.2 47.4 87.2 61.6 13.0 41.1 74.3 60.5

VLAD [21] 500 24.6 54.0 75.6 76.5 23.0 47.6 88.2 61.8 12.6 40.4 73.8 59.9

VLAD [21] 1000 26.0 57.0 75.0 76.7 22.9 48.4 88.7 62.4 12.3 39.6 73.2 59.6

PREF 300 29.3 58.2 73.0 77.5 25.6 49.8 87.3 62.6 14.3 41.0 74.9 61.0

PREF 500 31.1 60.3 75.5 78.7 25.8 50.2 87.6 62.7 15.1 41.6 75.8 61.6

PREF 1000 30.1 57.8 74.5 76.9 24.5 49.7 88.0 62.3 12.9 40.3 74.8 60.4

tation considering images that are from the same i-LIDS

dataset. This might indicate that our approach is able to

learn a robust visual representation from a source domain

that is different from the target one.

In Figure 5(b), we also report the CMC curve obtained

with the unsupervised solution proposed in [25] based on

dictionary learning (DL-u). This experiment has been con-

ducted using the same features as in our solution, so as to

have a fair comparison. Lower performance for [25] can be

motivated by the fact that it considers all the patches as a

unique descriptor, thus it hinges on the spatial displacement

of persons within the image.

Feature Encoding: To have a more thorough with re-

spect to the state-of-the-art, we performed experiments con-

sidering two encoding techniques, namely IFV [44] and

VLAD [21], and our group representation. Experiments

are conducted on the i-LIDS groups dataset and on the two

newly introduced datasets. For IFV and VLAD, we consid-

ered {64, 128, 256} and {300, 500, 1000} number of clus-

ters, respectively. For these two methods and the proposed

solution we obtained the encoding model using ETHZ,

VIPeR and CAVIAR datasets.

Results in Table 3 demonstrate that the proposed encod-

ing scheme has better rank-1 performance than existing ap-

proaches on all datasets. We hypothesize that this result

is due to the fact that the clustering solutions exploited to

obtain the encoding models for IFV and VLAD are more

sensitive to outliers (i.e., noise), whereas dictionary learn-

ing with sparse coding helps in reducing this effect [34].

Spatial Encoding: To verify whether the proposed solu-

tion is robust to the spatial appearance ambiguities of group

images (e.g., distinguishing two groups of people with op-

posite appearance), we have conducted the following ex-

periment: to each 64-D feature extracted from each patch

(Sec. 3.1) we have concatenated its (x, y) position, thus

producing a 66-D vector. The considered (x, y) position

of the patch is calculated with respect to the detected per-

son image size. This avoids the problem of having an ab-

solute (x, y) information that depends on the person loca-

tion within the group image. Results in Table 4, show that

Table 4. Results on i-LIDS groups dataset obtained using the same

configuration adopted for Table 3 and spatial information. C =

number of clusters used for the encoding; A = number of atoms

used for the dictionary learning. Best performance in bold, the

second best is underlined. Values are in percentage.

Method C/A Rank-1 Rank-10 Rank-25 nAUC

IFV [44] 64 22.6 51.2 71.1 73.6

IFV [44] 128 24.5 53.4 73.4 75.5

IFV [44] 256 23.3 52.1 72.0 74.2

VLAD [21] 300 18.2 48.8 72.4 73.2

VLAD [21] 500 17.2 46.1 70.2 72.3

VLAD [21] 1000 17.1 49.2 70.3 72.1

PREF 300 20.1 48.5 66.9 71.6

PREF 500 21.7 49.6 67.5 71.9

PREF 1000 21.1 48.5 66.9 71.4

IFV/VLAD/PREF performances degrade by about 7% if

such spatial information is included in the feature vector.

This might indicate that, spatially constraining the patches

of a person may limit re-identification performance due to

appearance variations caused by pose changes and the dif-

ferent viewpoints from which a person can be observed.

5. Conclusion

In this paper we have proposed a solution for associating

group of persons across different cameras. The proposed

solution grounds on the idea of transferring knowledge

from single person re-identification to groups, in an unsu-

pervised way, exploiting sparse dictionary learning. The

sparse dictionary is learned from classical single person re-

identification images. Then a sparsity-driven residual along

with a pooling strategy have been introduced to encode fea-

tures coming from the group and to obtain the final repre-

sentation. An extensive evaluation shows that the proposed

solution achieves state-of-the-art performance on the three

datasets for group re-identification. Moreover, results show

that it is worth investigating the introduction of a learning

scheme to better handle cross-view re-identification issues.
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