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Abstract

Semantic parsing of large-scale 3D point clouds is an im-

portant research topic in computer vision and remote sens-

ing fields. Most existing approaches utilize hand-crafted

features for each modality independently and combine them

in a heuristic manner. They often fail to consider the consis-

tency and complementary information among features ade-

quately, which makes them difficult to capture high-level se-

mantic structures. The features learned by most of the cur-

rent deep learning methods can obtain high-quality image

classification results. However, these methods are hard to

be applied to recognize 3D point clouds due to unorganized

distribution and various point density of data. In this paper,

we propose a 3DCNN-DQN-RNN method which fuses the

3D convolutional neural network (CNN), Deep Q-Network

(DQN) and Residual recurrent neural network (RNN) for an

efficient semantic parsing of large-scale 3D point clouds.

In our method, an eye window under control of the 3D CNN

and DQN can localize and segment the points of the object’s

class efficiently. The 3D CNN and Residual RNN further

extract robust and discriminative features of the points in

the eye window, and thus greatly enhance the parsing accu-

racy of large-scale point clouds. Our method provides an

automatic process that maps the raw data to the classifica-

tion results. It also integrates object localization, segmen-

tation and classification into one framework. Experimental

results demonstrate that the proposed method outperforms

the state-of-the-art point cloud classification methods.

1. Introduction

In recent years, deep learning techniques have had a great

success in image, speech and text recognition. However,
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Figure 1: The framework of the proposed approach.

(X,Y, Z) and (R,G,B) represent 3D coordinate and RGB

colors of each point Pi in the original point cloud.

few studies have focused on 3D large-scale point cloud clas-

sification. Different from images whose spatial relation-

ships among pixels can be caught by sliding windows, the

points in a point cloud are unorganized and the point density

is uneven. It is a challenge to accurately parse an unorga-

nized and unoriented 3D point cloud corrupted with noise,

outliers, and under-sampling.

In this paper, we propose a deep reinforcement learning

method, i.e. 3DCNN-DQN-RNN, to automatically parse

large-scale 3D point clouds. Through supervised learning,

the 3D convolutional neural network (CNN) has the abil-

ity to learn features about shape, spatial relationship, color

and context of the points in the point cloud from multiple

scales, and then encode them into a discriminative feature

representation called 3D CNN feature. To recognize a cer-

tain object from the point cloud, an eye window traverses

the whole data for localizing the points belonging to a cer-

tain class. The size and position of the eye window are con-

trolled by the Deep Q-Network (DQN). During the traver-

sal, the DQN gets the probability (computed through the

reward vector output by the 3D CNN) that the eye window

contains the class object. It next determines which region

is worth looking at, and then makes the eye window change
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its size and move towards the region. We re-apply the 3D

CNN to compute the reward vector of the points in the new

eye window. Repeat the process until the eye window accu-

rately envelops the points of the class object. Once the class

object is localized and enveloped, the 3D CNN feature, co-

ordinate and color of each point within the eye window are

combined into a vector which is input into the Residual re-

current neural network (RNN). The Residual RNN further

abstracts and merges feature representations of the points in

the eye window. The output of the residual RNN is the clas-

sification result. The eye window keeps moving until all the

points of the class objects are parsed. The main contribu-

tions of our work are as follows:

(i) We propose a novel deep reinforcement learning

model to precisely parse large-scale 3D point clouds.

Most of the parameters in the 3DCNN-DQN-RNN are

learned, and thus the intensive parameter tuning cost

is significantly reduced. Moreover, it integrates object

localization, detection, retrieval and classification into

one framework.

(ii) The Residual RNN abstracts and merges 3DCNN fea-

ture, coordinate and color of each point from multi-

scales into a more robust and discriminative fea-

ture representation. High-quality classification perfor-

mance is achieved.

(iii) The eye window under the control of the DQN is ap-

plied to localize and segment class objects. The local-

ization and segmentation are accurate, automatic and

less expensive.

2. Related Work

For parsing point clouds, many recent methods used

classifiers trained on hand-crafted features like Spin Im-

ages [9, 33], eigenvalues [27], contextual features [29] or

specific color, shape and geometry features [15]. Usually,

spectral-spatial features [32] or spectral features [31] are

difficult to be obtained due to lack of spectral information

in point clouds. For example, Chehata et al. [2] used

Random Forests trained on 21 features to classify 3D point

clouds into 5 classes. Kragh et al. utilized the SVM classi-

fier with 13 features to classify point clouds [11]. Lafarge

and Mallet distinguished 4 classes of interest, i.e. building,

vegetation, ground and clutter, from 3D point clouds of ur-

ban environments based on 4 different features [12]. Zhou

and Neumann classified points in the urban point cloud into

trees, buildings, and ground through the 2.5D characteristic

criterion [34]. Wang et al. clustered the point cloud into

multi-levels, and derived the point cluster features from the

point-based feature descriptors. The Adboost Classifier is

applied to classify the point cluster with the finest level into

semantic classes [27]. These approaches fail to adequately

utilize the consistency and complementary information be-

tween features, which are difficult-to-capture high-level se-

mantic structures.

Recently, deep learning techniques have been applied to

3D object recognition tasks on 3D data like RGBD images

and point clouds. The techniques can automatically learn

features from 3D data. Wu et al. presented a volumetric

CNN architecture on 3D voxel grids to represent a geo-

metric 3D shape for object classification and retrieval [28].

Zhu et al. used depth images with different perspectives

of 3D objects as the input, and utilized auto-encoder with

pre-training using DBN to extract features [10]. Only a few

studies have applied deep learning techniques in point cloud

classification. Guan et al. classified 10 species of trees

by using the DBN for the vertical profile of the tree point

clouds [6]. Based on a 2D convolutional neural network,

Maturana and Scherer proposed a 3D CNN for object bi-

nary classification task based on LiDAR data [16]. Later,

they further introduced 3D CNNs for landing zone detec-

tion from LiDAR data [17]. To tackle a more general ob-

ject recognition task with LiDAR and RGBD point clouds

from different modalities, different representations of oc-

cupancy were proposed in [17]. A volumetric occupancy

grid representation and a supervised 3D CNN are integrated

to improve the performance. To make 3D CNN architec-

tures fully exploit the power of 3D representations, Qi et al.

introduced two distinct network architectures of volumet-

ric CNNs for object classification on 3D data [21] . These

methods work well on object detection problems but they

are hard to parse large scale point clouds directly. There

are also detection-based semantic parsing methods for point

clouds or RGBD data. Song et al. presented a 3D ConvNet

pipeline for amodal 3D object detection including a region

proposal network and a joint 2D+3D object recognition net-

work [25]. Armeni et al. proposed a sliding window ap-

proach which combines the local and global features of the

object for semantic parsing of indoor point clouds [1]. Both

approaches require heavy hand-crafted work like designing

suitable sliding windows or searching boxes. In [20], a deep

neural network called PointNet was introduced to perform

3D shape classification, shape part segmentation and scene

semantic parsing tasks on point cloud.

For object segmentation, most works deal with 2D/2.5D

image-based segmentation. Long et al. introduced a fully

connected network (FCN)-based end-to-end framework in

which the trained CNN can perform pixel-wise prediction

of class of images [14]. Chen et al. presented the DeepLab

[3] which were later developed with the help of Atrous Spa-

tial Pyramid Pooling and a combination with CRFs. A sim-

ilar structure called dilated convolution was introduced by

Yu and Koltun to extend the receptive fields [30]. Studies

attempting to apply the FCN in high-dimensional data have

shown in recent publications. For example, Song et al. in-
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Figure 2: Structure of Network 1.

troduced SSCNet [26] which developed the work of [24] to

semantically segment RGBD images. However, these meth-

ods are hard to be applied to segment large-scale 3D point

clouds with significant data missing.

3. Proposed Approach

Humans usually solve vision problems through a har-

monious combination of reinforcement learning and hier-

archical sensory processing systems [4, 22]. Experts ex-

pect the progress in computer vision in future to come from

systems that are trained end-to-end and combine ConvNets

with RNNs using reinforcement learning to decide where to

look [13]. In this paper, we apply this idea to parse large-

scale point clouds. Like the vision behavior patterns, they

usually recognize an object from a complex scene as fol-

lows. As a first step, they roughly look at the whole scene

and find the approximate location of the target. Next, they

focus on the object and separate it from the background.

Imitating this behavior, we propose a deep reinforcement

learning framework for semantically parsing large-scale 3D

point clouds through recognizing every class object which

is illustrated in Figure 1.

3.1. Network 1: Recognition and Localization
through 3DCNN­DQN

The first part of Network 1 is a 3D CNN. It is trained to

determine different class objects. In the meantime, the fea-

ture representation of the points of each class are obtained

by the 3D CNN. These features are then encoded and are

applied in the following networks. The second part of Net-

work 1 is a DQN whose goal is to detect and localize the

objects. Based on the feedback from the 3D CNN, the DQN

automatically perceives the scene and adjusts its parameters

to localize the objects.

To parse the point cloud efficiently and effectively, we

first set an eye window with a certain size and make it move

in the scene, and then apply the 3D CNN to recognize the

data inside the eye window. The DQN gets the probabil-

ity (computed through the reward vector output by the 3D

CNN) that the eye window contains the target class object.

It next determines which region is worth looking at, and

then makes the eye window change its size and move to-

wards the region. We re-apply the 3D CNN to get the re-

ward vector of the points in the new eye window. Repeat the

process until the eye window accurately envelops the points

of the class objects. Finally, the 3D CNN features and all

the points within the eye window are taken as the input of

Network 2. Figure 2 shows the 3DCNN-DQN structure.

3.1.1 Learning Multi-Scale Features Using the 3D

CNN

Objects in large-scale scenes are various in size, shape

and position. However, the structure information and spa-

tial relationship of different objects can be represented from

different scales. To achieve a more purified classification re-

sult, we do not directly make use of the 3D CNN to parse

the point clouds. Instead, we compute the probability of a

certain class being contained inside the eye window after

the multi-scale convolution is performed. The probability

is indicated in the output reward vector [R1, R2] and calcu-

lated using the following formula:

f(E(p, q)) = θ⊤E(p, q) = 2R1 + 1−R2 = r (1)

where f is a confidence function; R1 is the first dimension

of the reward vector which is the output of the 3D CNN;

R2 is the second dimension of the reward vector; θ is the

parameter of the 3D CNN; E represents all the points within

the eye window whose size is q and position is p. Both

the reward vector and the points within the eye window are

taken as the input of the DQN. Every time the DQN receives

the input from the 3D CNN, it updates the size and position

of the eye window. This procedure does not stop until the

eye window localizes the target class object precisely, and

then every convolutional layer outputs a feature. All the

features are taken as the 3D CNN feature vector of all the

points within the eye window.

a. Converting the Point Cloud to Voxel Grid 3D Point

clouds are usually unorganized, which makes the CNNs dif-

ficult to extract features from them. We first convert the

point cloud to 3D voxel grids (occupancy grids), and then

segment the grids into o dense, regular and ordered small

units. Each unit is given a sole attribute (X;Y ;Z;R;G;B).
The coordinate X,Y, Z of each unit represents the position

of the unit in the voxel grids, and R,G,B represent the av-

erage color value of the points in the unit.
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b. 3D CNN Structure The 3D CNN contains three con-

volutional layers and multiple fully-connected layers. The

voxel grids inside the eye window are input to the 3D

CNN. If the side lengths of the eye window are N1, N2

and N3, respectively, there are N1 × N2 × N3 voxel grid

units within it. We use the filters to convolve the units,

and a 3D feature matrix is obtained after every convolu-

tion operation is performed. Every convolutional layer has

three parameters, i.e. the number, stride and size of the fil-

ter. The convolution in the n-th layer can be expressed as

Convn(f ; d; s), which indicates f filters of size d and at

stride s. The exact parameters of the three layers in our

model is Conv1(8; 5; 3);Conv2(16; 4; 2);Conv3(32; 3; 1).
After the three convolutions, multiple feature matrices

are obtained. Through average pooling, we get a fully-

connected layer, and the layer is input to two more fully-

connected layers. After an activation function softmax,

a 1 ∗ 2 vector [R1, R2] is obtained. We call it a reward

vector since it is used to calculate the reward value (or the

probability of the class object within the eye window) in the

following procedures. When the points of the class object

are located in the eye window, the value of the first dimen-

sion increases and the second decreases, e.g. [1, 0], and vice

versa. It indicates the probability of the eye window con-

taining the points which belong to the class object.

3.1.2 Object Class Detection by the DQN

The 3D CNN predicts the probability of the points in the

eye window belonging to a certain class rather than labels

every point. It would only produce a high probability when

the exact position and boundary of the class object are de-

termined. The process for searching the objects can be ex-

pressed as the following optimization problem:

E(pb, qb)
∗ = argmax(f(E(p, q))) (2)

Our goal is to estimate a position pb and size qb of the eye

window in the scene to maximize f(E(p, q)).
During the searching process, the eye window produces

a situation under every state. If the situation does not meet

the criterion, the eye window needs to readjust its position

and size to get a new state. An interaction happens between

the movement behavior of the eye window and the step-by-

step process of the sequential decision making on a discrete

time series.

Based on the analysis, we design a 3DCNN-DQN dy-

namic searching mechanism: the 3D CNN is employed

to evaluate the current state and the result, i.e. proba-

bility of eye window containing the points is then sent

to the DQN to instruct the next action of the eye win-

dow. Through the evaluation&feedback −→ action −→
evaluation&feedback −→ action pattern, the eye window

can localize the points of a certain class effectively. Figure

Figure 3: Two angles of eye window searching tables.

Locked as marked green.

3 shows an example of the searching process, and a video

recording the searching process can be found in our supple-

mentary materials.

To quantify this mechanism, in the following we define

Q to represent the value of a state. At the same time, we ex-

plain how to choose an action based on Q and how to update

the parameters of the DQN. Based on Prioritized Replay

and Dueling Network brought up by DeepMind in 2015 and

2016 respectively, we improve the architecture of the DQN

for enhancing the efficiency of the point cloud parsing.

a. Q - Define Value and Advantage The 3D CNN is

a hierarchical perceptive system whose parameters do not

change after the training process. When the DQN is applied

to localize the data in the eye window, the current state (i.e.

points within eye window) is input to the DQN. If the DQN

uses the same convolutional layers as the 3D CNN, it cannot

back propagate parameters to the convolutional layers. To

make the parameters adjustable, we use the same structure

of the convolutional layers as the 3D CNN, but the param-

eters are independent from the convolutional layers. The

3D CNN acts as the input channel of the current state for

the DQN. Using convolutional networks to provide state of

the environment for Reinforcement Learning Network has

been proved to be very efficient [19, 18]. After three con-

volutions, the vector obtained by the fully connected layers

is copied into two independent streams. The first stream

outputs a scalar V (s; θ, β) through several fully-connected

layers. The second stream outputs ‖A‖-dimensional vector

or A(s, a; θ, α) through the fully-connected layers whose

number is the same as the first stream, where s represents

the state of the eye window, θ represents the parameters of

the convolutional layers, α and β represent parameters of

each stream, respectively. So, Q is defined as the action a

value under the status s.

Q(s, a; θ, α, β) = V (s; θ, β)+A(s, a′; θ, α)−

∑
a′ A(s, a; θ, α)

‖A‖
(3)
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b. Policy - How to Act An agent chooses an ac-

tion from a discrete set that can be presented as a =
[p1, p2, p3, p4, p5, p6] where pk ∈ {−1, 0, 1}, k =
1, 2, ..., 6, which means the eye window has six sides

and each side can choose three actions: expand one unit,

contract one unit and static, thus it has 18 variances at

a time. The actions are given in the formula a∗ =
argmaxQ(s, a; θt). That is, the action which can obtain

the largest Q will be selected. The eye window can directly

obtain a Q under any state or action. In a traditional DQN,

a considerable amount of time and space are needed to store

the state-action pairs for later use [18]. In our method, we

only store the size and position of a state, which makes the

network have a higher computation efficiency.

The purpose of the eye window is to get the largest ex-

pected return. A multiple following-step policy is a better

choice for getting the return. Therefore, the DQN will sim-

ulate N following steps, that is, N times actions are con-

ducted based on the largest Q, and an accumulated Q value

Qtg would be our optimization goal, which is obtained by

the following equation:

Qtg = tanh(

N−1∑

t=0

λtrt + λNQ′) (4)

where [R1, R2] is the reward vector; r = 2R1 + 1 − R2.

λ is the decay coefficient satisfying λ ∈ [0, 1]; Q′ is the

final Q after N times simulation. The goal of Q′ is to ap-

proach the limitation situation, which should be presented

as
∑

∞

t=0
λtrt. The network parameters are updated when

the current Q has a gradient descent to Qtg:

θT+1 = θT + λ(Qtg −Q(s, a; θT ))∇θTQ(s, a; θ) (5)

The DQN parameters are refreshed after a complete N -step-

simulation, i.e. the DQN has a preliminary probe into the

possible approaches within N steps, and save this probe re-

sult as new parameters in the network for later decisions.

We perform the simulations k times to get k times probe

simulations and parameter update. An action is determined

based on the largest Q when the last parameter is updated.

d. Random Walk and Winner Replay Actions cause

the movement and scaling of the eye window because of

the above-mentioned steps. Meanwhile, Q and the network

parameters are also updated. However, pitfalls may hap-

pen when the eye window refuses to move as a failure in Q

value increases after 36 dimensional actions. This situation

happens occasionally in the local space. The eye window

may get stuck in loops because of a combination of several

spaces. We design a random walk mechanism to avoid this

kind of pitfall. The eye window selects an action randomly

in such a situation. As the eye window returns back to a

position it ever reached, we present a mechanism named

Algorithm 1 3DCNN-DQN Algorithm

Input:

max iterate step mis, max reside step mrs, max simu-

late step mss, decay rate λ, mark threshold mth, state-

reward dictionary rd, replay memory rm, Q value net-

work Qnet, reward network Rnet

Is← 0 , Rs← 0, Ss← 0 ,cS ← initial state

while Is < mis do

action (a,Q)← Qnet(cS, a;W )
cS ← environment(cS, a) , Rs← 0
while Rs < mrs do

Ss← 0, simulate state set S ← []
reward set R← [], S[Ss]← cs

while Ss < mss do

action (a,Q)← Qnet(S[Ss], a;W ) or rm

S[Ss+ 1]← environment(S[Ss], a)
Ss← Ss+ 1
if S[Ss] not in rd′s key set then

r′ ← Rnet(S[Ss])
rd[S[Ss]]← r′

end if

R[Ss− 1]← rd[S[Ss]]
end while

Qtg ← tanh(
∑N−1

t=0
λtrt + λNQ)

Update Q’s W using Qtg

Rs← Rs+ 1
end while

Is← Is+ 1
end while

winner replay to recall its previous state. Q and Qtg are si-

multaneously obtained when the eye window does N -steps

simulations. k numbers of Qtg are produced after k-times

N -th step simulations. The smallest Qtg which is the re-

sult of ‖Q−Qtg‖ will be the winner of this particular state.

Every time the eye window is under the same state, half

of the probability is given for action selection based on the

winner action, and half of the probability is given for action

selection based on the normal N -step simulation. Experi-

ments show that efficiency of the DQN is much improved

by the winner replay mechanism, and the searching time is

reduced by 73% on average.

e. Lock the Target As mentioned above, the 3D CNN

can be regarded as a confidence function deciding whether

the eye window envelops the class objects. If the threshold

value of the reward is not less than 0.9, we conclude that the

eye window has localized the points belonging to the class

object. The points in the eye window are labelled.

Then, we compute the feature of the points within the eye

window from every layer of the 3D CNN. The feature ma-

trix of every layer is fully connected and concatenated, e.g.
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Input LSTM Output

Figure 4: The inner structure of Network 2. Blue rectangle

means fully-connected layers, white means drop layer.

the output of the first convolutional layer is fully-connected

to get a feature vector f1. Similarly, we get f2 and f3 from

the second layer and third layer. The concatenated vector

[f1, f2, f3] is the encoded feature for all the points within

the eye window and is called the 3D CNN feature.

Due to the point cloud rasterization, lots of valuable in-

formation about the shape and geometric layout of objects

is lost. To make up the deficiency of the 3D CNN, the 3D

CNN feature combined with the points in each eye window,

i.e. [x, y, z, r, g, b, f1, f2, f3], is taken as the input of Net-

work 2.

3.2. Network 2: Residual RNN for Meticulous Pars­
ing

The RNN further learns the features of the points in the

eye window. The sequence of the points which is input to

the RNN can be taken as a hidden Markov chain. When

the points are input according to its spatial arrangement,

the RNN can recognize the connection and difference be-

tween the features of multiple scales. These features are

fused or abstracted. However, point cloud data is unordered

and the spatial information it carries can be extremely com-

plicated to unscramble. In order to fully simulate the hid-

den Markov chain, the RNN should be deep enough and

contain enough number of parameters to fit the correspond-

ing nonlinear transition function. We build a multiple layer

Residual RNN to meet the requirement. LSTM cell is used

to prevent gradient vanishing and enables the network to

have a long-term memory. Residual Block is used to pre-

vent degradation of the deep network.

3.2.1 Residual RNN Structure

Every point Pk in the eye window corresponds to a re-

constructed vector Vk = [xk, yk, zk, rk, gk, bk, f1, f2, f3],
where xk, yk, zk are the coordinate of Pk; rk, gk, bk are the

color of Pk; f1, f2, f3 are the 3D CNN feature vector of ev-

ery point in the eye window. After all reconstructed vectors

within the eye window are obtained, we input them into the

Residual RNN following the original spatial arrangement

for training. The used Residual RNN has 7 fully-connected

layers, 3 dropout layers, 2 residual blocks and a LSTM cell

as shown in Figure 4.

3.2.2 LSTM Cell

The points in each eye window are still large. Thus the

point sequence that is input to the Residual RNN is long.

Network 2 is required to have the ability to understand the

context among points on a large scale. The LSTM cell en-

ables the network to learn long-term dependency of a se-

quence [8], i.e. the connections and differences of the fea-

tures of points.

3.2.3 Residual Block

A too deep network has a degradation problem, and per-

formance of the network decreases as the layers become

deeper. In the point cloud parsing, a deep network is nec-

essary, but its too deep depth can easily cause a high train-

ing error which is called degradation [7]. Inspired by the

Deep Residual Network [7], we utilize the structures of the

residual block to make some overlap joints among cells for

solving the degradation.

3.2.4 Deep RNN - A Multi-Layer Classifier

Due to the fact that the feature vectors obtained by Net-

work 1 derive from different types and scales of objects,

the features should be efficiently fused in a high dimen-

sional space. If the feature vectors are fed into a classifier

like SVM or Random Forest, the self-adjustment of the fea-

ture representations may be restricted. That is to say, these

classifiers are relatively shallow models and may not suit

our problem. Our proposed multi-layer neural network can

learn discriminative feature representations about locations,

spatial relationship and color of the points, and fuse the fea-

tures well to achieve high-quality classification results.

4. Experiments

We train the 3D CNN and RNN on two NVIDIA K40

GPUs. The proposed method is implemented with Python

and TensorFlow which can fully consume the calculating

power in two GPUs.

The first used dataset is the Stanford 3D semantic parsing

data set [1]. This dataset contains 3D scans from Matterport

scanners in 6 areas including 271 rooms with a total of 6020

square meters. It has been fully annotated for 12 semantic

classes which are structural elements (ceiling, floor, wall,

beam, column, window and door) and commonly found

items and furniture (table, chair, sofa, bookcase and board).

We randomly choose 70% rooms in every area as the train-

ing set, and the rest are taken as the testing set. When the

proposed method is applied on the training set, we find that

some fixed and relatively plain structures like ceiling, wall

and floor can be easily parsed without using Network 1, so

we feed them directly into Network 2. After a supervised

learning process of the Residual RNN (Network 2), we feed
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ceiling floor wall beam column window door table chair sofa bookcase board mean

N1+N2 89.64 95.02 60.08 78.55 89.36 75.29 33.41 70.48 58.14 76.98 84.97 37.21 70.76

S1 71.61 88.70 72.86 66.67 91.77 25.92 54.11 46.02 16.15 6.78 54.71 3.91 49.93

N1 96.97 100.00 24.10 12.74 27.40 32.88 91.48 77.41 50.53 87.17 53.84 32.83 57.28

N2 87.51 97.66 27.45 32.96 3.90 67.27 15.16 10.77 68.17 68.47 12.91 43.56 36.63

FCN-12 20.32 11.61 8.34 12.69 33.36 20.41 10.01 9.68 11.27 2.24 1.89 13.86 12.97

FCN-6 - 46.58 12.97 - - 29.55 11.65 50.96 - - 20.32 - 28.64

FCN-1 - 87.62 - 55.34 - 63.46 30.68 - 60.27 - 80.37 - 62.96

S2 - - - - - - - 46.67 33.80 4.76 - 11.72 24.24

Table 1: N1+N2 is our method. S1, S2 correspondingly refer to the method of Armeni et al. [1] and Qi et al. [20]

(a) ground truth (b) prediction (c) result

Figure 5: Parsing result of a room. Green part in (c) means

predicted right and red means wrong.

all points of the scene into it. The Residual RNN parses the

points of three classes: ceiling, wall, floor from the whole

point cloud. We then apply our method on the rest points to

label the points of other classes. A part of parsing result is

shown in Figure 5.

To validate the performance of our method in terms of

point cloud parsing accuracy, we individually use Network

1 and Network 2 to classify the above dataset. We also com-

pare the classification results with those obtained by using

the methods of Armeni et al.[1] and Qi et al. [20]. The clas-

sification results are listed in Table 1.

The second used 3D point cloud data comes from the

SUNCG dataset [26]. The SUNCG dataset contains 45,622

house models, 2,549 object files with corresponding mate-

rial files and many texture files. It has been annotated for

84 classes. We convert the data into 3D cloud points. Each

point in the point cloud of each house model has an attribute

(X;Y ;Z;R;G;B). X,Y and Z are the coordinate of the

point, and R,G and B are the color of the point. The classi-

fication results can bee seen in our supplementary materials.

4.1. Comparison of Our Method with the FCN

The FCN used in image processing may seem to func-

tion similarly with our framework since the FCN also does

an end-to-end translation that gives each pixel an individual

label. However, for large-scale 3D scenes, the spatial infor-

mation can be extremely complex. We expand the classic

VGG-16 model [23] into a 3D FCN, and compare it with

our method based on the same training set and testing set.

The classification results are listed in Table 1. From this

table, it is noted that the 3D version of the FCN achieves

poor performance compared with our method. Point cloud

data is quite different from image-based 2.5D data like

RGBD images. Its large volume, noise, point density in-

homogeneity and disorder make it hard to draw the connec-

tions among points. For achieving high-quality classifica-

tion results of large-scale point clouds using the 3D FCN,

a deeper network is required, which consumes much more

computational cost and time. In our method, the eye win-

dow under the control of the DQN can lock the objects more

accurately and efficiently.

FCN-1, FCN-6 and FCN-12 mean to classify just one

class, six classes and twelve classes at a time, respectively.

FCN-1 fails to recognize the border, and the overall accu-

racy is not satisfactory. In FCN-6 and FCN-12, the accu-

racy reduces to a very low level. Furthermore, in FCN-12,

the loss function doesn’t converge.

4.2. RNN Helps to Raise Precision

As listed in Table 1, if only Network 1 is applied to parse

the point cloud, the classification accuracy of the wall class

is much lower than that obtained by using our method. The

reason lies in that, in our experiment, the wall class is parsed

later than most of other classes, which makes many of the

wall points mis-classified by the eye window before they

are segmented for other classes. For the classes like win-

dow, table, board, their classification accuracies obtained

by Network 1 are little influenced. Accuracies of some

classes are even higher, but there are relatively low pre-

cisions which decrease the classification accuracies of the

classes that are parsed later. Usually, when the objects of

two different classes are extremely close, like a table and a

bookcase that are both closely leaned on a wall, and a chair

that is under a table, the eye window is very likely to contain

points of irrelevant classes. Network 2 helps to increase the

precision of the two classes and also enhance classification

accuracy of the classes that are parsed later through putting

the wrong-included points back into the scene as shown in

Figure 6.
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Figure 6: Accuracy and Precesion of our method. N1, N2 represent Network 1 and Network 2.

4.3. Influences of the DQN on Point Cloud Parsing

We find that the classification accuracy heavily depends

on how long we run the DQN. We set 5000 iterations for

every class in a room. The DQN takes 13 hours to local-

ize all 12 classes on average in the first dataset. If the lo-

calization process goes longer, the accuracy usually raises

since the eye window has more time to observe more states

of the room. According to the activity thermodynamic dia-

gram (Figure 7) of an eye window, most of the time the eye

window moves around the objects, but there are also areas

which are not worth looking at. During the training of the

DQN, it takes a long time for the eye window to eventually

localize the class objects. In future work, we plan to design

a new reinforcement learning strategy to make the localiza-

tion process more efficient.

4.4. 3D CNN is Not Well Trained

The main limitation of our method is that the 3D CNN

is not trained well enough. For the applications of the

DQN like playing games [19, 18], the feedback of an action

is structurally fixed and always accurate since it’s directly

given by the environment. For object detection from im-

ages, CNNs can be very efficient since it is trained on large-

scale datasets [5]. The 3D CNN is hard to learn discrimina-

tive features from small point clouds. In this situation, the

eye window often gets confused when it encounters a small

bookcase that resembles a table or it often mis-classifies

a part of a door made of glass into a window. If the 3D

CNN cannot give an accurate enough reward, the eye win-

dow may be rude as it locks an object. In the experiment,

the boundary of the eye window is not always accurate. For

instance, when it locks a window it would mistakenly take

part of the wall around it. Based on the facts, we believe that

training the 3D CNN on a large dataset can help to enhance

the classification performance.

(a) table (b) bookcase

Figure 7: Activity thermodynamic diagram of an eye win-

dow.

5. Conclusion

In this paper, we propose the 3DCNN-DQN-RNN frame-

work for automatically parsing large-scale 3D point clouds.

The 3D CNN has the ability to learn the features about spa-

tial distribution shapes, colors and contexts of the points in

each voxel grid unit from multi-scales, and fuse the features

into a 3D CNN feature representation. The eye window un-

der the control of the DQN can efficiently localize the class

objects according to the reward. For further achieving high-

quality classification results, the 3D CNN feature and the

point coordinate and color of each point in the eye window

are concatenate into one vector which is taken as the input

of the Residual RNN. The output of the Residual RNN is

the parsing result of the points in each eye window. Our

framework also supports object localization, detection and

retrieval.

In future work, we will introduce the asynchronous ad-

vantage actor critic (A3C) to coordinate multiple eye win-

dows for deriving the class objects more efficiently.
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