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Abstract

Annotating human poses in realistic scenes is very time

consuming, yet necessary for training human pose estima-

tors. We propose to address this problem in an active learn-

ing framework, which alternates between requesting the

most useful annotations among a large set of unlabelled

images, and re-training the pose estimator. To this end,

(1) we propose an uncertainty estimator specific for body

joint predictions, which takes into account the spatial dis-

tribution of the responses of the current pose estimator on

the unlabelled images; (2) we propose a dynamic combina-

tion of influence and uncertainty cues, where their weights

vary during the active learning process according to the re-

liability of the current pose estimator; (3) we introduce a

computer assisted annotation interface, which reduces the

time necessary for a human annotator to click on a joint

by discretizing the image into regions generated by the cur-

rent pose estimator. Experiments using the MPII and LSP

datasets with both simulated and real annotators show that

(1) the proposed active selection scheme outperforms sev-

eral baselines; (2) our computer-assisted interface can fur-

ther reduce annotation effort; and (3) our technique can

further improve the performance of a pose estimator even

when starting from an already strong one.

1. Introduction

Human pose estimation, the localization of human body

joints, has enjoyed substantial attention. Starting from clas-

sical pictorial structures [2, 12, 14], recent state-of-the-art

approaches employ convolutional networks [36, 55, 47, 6].

These methods aim to learn discriminative patterns that en-

able to distinguish patches around body joints from the rest

of the image. This requires good training data, but data col-

lection is particularly time-intensive for human pose estima-

tion, as annotators are typically asked to click on 14 joints

per person [1]. The reference analysis paper [1] suggests a

reasonable annotation rate of one pose per minute.

Weakly supervised learning [9] and active learning [38,

8] have been proposed to address data collection problem

for several tasks, such as image classification [22, 20, 35],

object detection [51, 57] , object recognition [21, 13] and se-

mantic segmentation [49, 27, 44, 16]. However, the problem

remains largely unaddressed for human pose estimation.

In this paper, we propose the first active learning ap-

proach for human pose estimation (Fig. 1). We follow the

general scheme of active learning: an active learner auto-

matically selects a subset of unlabelled data. After that, hu-

man annotators label the selected data. Finally, the learner

updates the pose estimator with the labelled data, and the

process iterates. Since the goal of active learning is to max-

imize performance while minimizing annotation effort, we

focus on two main elements in the scheme: active selection

and human annotation procedures.

For active selection, we first explore various individual

cues to measure the informativeness of as-yet unlabelled

images. We first adapt classical active learning cues to the

human pose estimation task, such as highest model prob-

ability [25, 26], best v.s second best [37, 20], and influ-

ence [17, 42]. In addition, we propose an uncertainty mea-

sure which takes into account the spatial distribution of the

model’s response on an image, coined multiple peak en-

tropy. This cue provides a better estimation of the images

where the model is uncertain on. Moreover, we propose a

dynamic way to combine the influence and uncertainty cues,

where their weights vary during the active learning process.

During the early selection iterations when the pose estima-

tor only sees little annotated data, the influence cues play

a more important role. Later, as the model gets better, our

scheme gradually switches to rely more on uncertainty. Our

weighting term approximates the expected reliability of the

current pose estimator on unlabelled images, and its value

increases as the estimator gets better.

To further reduce annotation effort, we propose a com-

puter assisted interface to help the annotator to rapidly click

on a body joint (Fig. 5). The main idea is to discretize the

image space into large regions, each associated with a sin-

gle candidate point for the true location of the joint. Thanks

to this, the annotator no longer needs to click exactly on

the joint, but just anywhere inside the associated region. To

find the set of candidate points, we use the full 2D distribu-
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Figure 1. Overview of our approach. We begin with CPM estimator pre-trained on a small set of labelled images; then search the large

unlabelled pool for informative components/images to annotate. Our novel active learning strategy dynamically combines influence and

uncertainty cues, where the uncertainty is measured with our proposed multiple peak entropy that favours images with multiple weak local

peaks in their predicted heat maps. Then our proposed annotation system requests human annotations. Our computer assisted annotation

interface further saves the annotation time of clicking on joint locations by reducing localisation space for human labeller.

tion of responses of the current pose estimator on an image

(heat maps): each local maxima of the heat map becomes a

candidate. We then divide the image into non-overlapping

regions consisting of all pixels closer to a candidate than to

any other. Users then right click anywhere in a region to se-

lect the corresponding candidate point as the true joint loca-

tion. If the true location is not among the candidates, users

can left click on any other point (which takes the same time

as the standard annotation interface).

We perform extensive active learning experiments using

the challenging MPII [1] and LSP datasets [19]. A first

series of experiments using simulated annotators demon-

strates that: (1) our proposed multiple peak entropy cue out-

performs previous uncertainty-based cues; (2) our proposed

dynamic combination of influence and uncertainty cues fur-

ther improves active selection over individual cues and out-

performs a static combination strategy. (3) our method can

further improve the performance of a pose estimator even

when starting from an already strong one, initialized from

a large training set. Moreover, we carry out experiments

with real human annotators. These lead to comparable re-

sults to what achieved by the simulations, showing that (4)

our method is robust to the noise naturally introduced by

real annotators. Finally, we validate our proposed computer

assisted interface to reduce the time to click on a joint. We

found that (5) it saves about 33% annotation time on aver-

age, without reduction in performance. Overall, combing

all elements we propose produces 80% of the performance

of a model trained from the full MPII training set, in just

23% of the total annotation time (i.e. using multiple peak

entropy, dynamic combination, and assisted interface).

2. Related Work

Human Pose Estimation. Pictorial structures are one of

the classical approaches to articulated pose estimation [2,

12, 14, 40, 33]. In these methods, spatial correlations be-

tween parts of the body are expressed as a tree-structured

graphical model with kinematic priors that couple con-

nected limbs. To extend the model representation power,

more flexible methods, such as non-tree models [54, 45, 24],

propose to investigate different structures to model the spa-

tial constraints among body joints on score maps. Recently,

CNN-based methods [36, 55, 47, 48, 7, 29] have enjoyed

considerable success. DeepPose [48] takes the first step

towards adopting CNN [23] for human pose estimation,

where CNN is used to directly regress joint locations in

Cartesian coordinates repeatedly. Subsequently, graphical

models have been introduced to incorporate spatial rela-

tionships between joints either as a post-processing [6] or

in an end-to-end manner [47]. More recent work [5, 55]

proposed to build up dependency among input and output

spaces, where predictions at previous steps are concatenated

with the image as input of the current step to iteratively re-

fine predictions. Our work is built on the state-of-the-art

method [55].
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Active Learning The core problem of active learning is

to quantify the informativeness of an as-yet unlabelled ex-

ample [38, 8, 22]. Selection strategies include uncertainty

sampling [25, 41], reducing the classifier’s expected er-

ror [52, 38], maximizing the diversity among the selected

images [15, 17], or maximizing the expected labelling

change [49, 13]. In computer vision, active learning has

been used for scene classification [20, 35] and annotating

large image and video datasets [56]. In addition to these un-

structured prediction tasks, researchers also explored active

learning for structured prediction, e.g. semantic/geometric

segmentation [44, 27, 49, 16]. These methods either an-

notate the most marginally uncertain single variable/pixel

by estimating the local entropy of the marginal distribu-

tion [27] or request labels of the most uncertain image by

estimating the entropy of the joint distribution [44]. In con-

trast, Maji et al. [28] propose a novel uncertainty measure-

ment for structured models, which estimates upper-bounds

of the true entropy of the Gibbs distribution via MAP per-

turbations [31]. In this paper, we tackle active learning for

human pose estimation for the first time. We propose an un-

certainty measure specific to this task, and a dynamic com-

bination strategy that outperforms several active selection

alternatives proposed in other domains.

User Interaction. Interactive techniques provide another

way to minimise manual effort, e.g. tools for efficient video

annotation [53] and object labelling [34]. Methods that in-

telligently design the query space [39, 32, 30] also share

the spirit of reducing annotation effort. Other works have

looked into active learning schemes that query for multiple

types of annotator feedback [50, 4, 43]. In this paper, we

propose a new computer assisted annotation interface for

human pose estimation. It leverages the predictions of the

current pose estimator to guide the annotator while it clicks

on a joint, reducing annotation time by one third without

damaging accuracy.

3. Approach

We are given a small set of images with full human pose

annotations Fs, which we use to train an initial human pose

estimator, and a large set of unlabelled images F . The goal

is to obtain body joint locations in the unlabelled set and

to train a strong human pose estimator while minimizing

human annotation effort.

Our framework iteratively alternates between (A) re-

training the pose estimator using all currently available an-

notations; (B) actively select a subset of the unlabelled im-

ages; (C) human annotators label the selected images. We

focus on steps (B) and (C) since they are the two main fac-

tors for reducing annotation effort. For step (B), we propose

a new uncertainty measurement and a strategy to combine

multiple cues in a dynamical manner. For step (C), we fur-

ther reduce the annotation effort by introducing a computer

Figure 2. (a) shows input image (with ground-truth heat maps).

(b) illustrates pixel-level ground-truth annotations for all 14 joints.

(c) shows heat map prediction for L.elb (left elbow for short). (d)

visualizes local peak predictions of L.elb.

assisted interface, which reduces human localisation space

by leveraging the current estimator predictions. We discuss

the three steps in detail in the following sections.

Notation. We denote by Ut the set of unlabelled image

and joint pairs at training iteration t and denote by Lt the

set of labelled pairs. We denote the dataset that our active

learner works on as F , where F = Ut∪Lt and Ut∩Lt = ∅.

Fs denotes a separate, small set of fully labelled images that

we use to initialize our pose estimator. Each image Ii has

a person with p = {1, . . . , P} body joints (Fig. 2(b)). We

associate a binary variable I
p
i ∈ {0, 1} with p-th joint in

image Ii. I
p
i = 1 if and only if this joint is labelled. U0 is F .

The goal of pose estimation is to predict the joint locations

Y = {Yp}, where Yp = z defines the location of the p-th

joint and z = (u, v) ∈ Z ⊂ R
2 is the 2D coordinate.

3.1. Step (A): Model Training

In this step, we re-train the human pose estimator. We

use Convolutional Pose Machine (CPM) [55], but other ap-

proaches [29, 7, 5] that predict 2D heat maps could be used.

CPM is a CNN-based sequential prediction framework.

It consists of several stages n ∈ {1, . . . , N}, each of which

encodes both appearance cues and context information as its

features. Specifically, the contextual cues are incorporated

in the form of predictions from previous stage. Each stage

of the pose machine is trained to produce the belief maps for

the locations of the joints. A typical 2D heat map generated

by the CPM model is shown in Fig. 2(c). The CPM model

encourages the network to iteratively approach the correct

location by defining a loss function at the output of each

stage that minimizes the L2 distance between the predicted

and ground-truth heat maps for each joint.

At iteration t of active learning, we obtain a set of la-

belled pairs Lt. For each non-zero I
p
i , the annotated ground-

truth location of joint p is denoted as Ŷp. Following [55, 47],

we can generate a ground-truth belief map btp(Ŷp = z) for

Ŷp by putting Gaussian peaks at location z of each body

joint p (Fig. 2(a) for example). Then the loss function of the

n-th stage of CPM that we aim to minimise is defined by:

f t
n =

∑

Ii,p

∑

z∈Z

I
p
i ‖b

t
p(Ŷp = z)− btp(Yp = z)‖2 (1)
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Figure 3. (a∗), (b∗) and (c∗) shows an example image, heat map

prediction of L.ank or R.wri, and our MPE measurement, re-

spectively. In (b1) and (b2), ‘Prob’ indicates the highest probabil-

ity point in each heat map, while ‘GT’ indicates the ground-truth

position of the joint. In (c1), (c2) red crosses shows all local max-

ima of the heap map, which we use to compute MPE.

The overall loss function of CPM is obtained by adding the

losses at each stage and defined as follows:

F t =

N∑

n=1

f t
n (2)

where N is the number of stages in CPM.

Applying CPM to any image Ii would generate a set

of heat maps. We denote bt
p ∈ Rw×h as all the beliefs

of joint p evaluated at every location z in the image with

CPM trained at t-th active learning iteration, where w and

h are the width and height of the Ii, respectively. Then the

generated set of belief maps is denoted as bt = {bt
p}p ∈

Rw×h×(P+1) (P joints plus one for background).

3.2. Step (B): Active Selection

We now describe how we actively select the most infor-

mative images for annotation. In each active learning itera-

tion t ∈ {0, . . . , T}, we solicit annotations for the actively

chosen batch St, and augment Lt with the newly labelled

data: Lt = St ∪ Lt−1. Our active selection algorithm con-

siders both influence and uncertainty cues. The influence

accounts for influential property among images, where im-

ages that are similar to other unlabelled images are more

valuable as they are likely to propagate information [17].

Conversely, the uncertainty is measured on individual body

joints inside each image. Our contributions lie in a new un-

certainty measurement, that we call multiple peak entropy,

and a dynamic combination of multiple cues.
Uncertainty Uncertainty aims to find unlabelled images

where the current pose estimator is not confident to have

localized the joints correctly. In those images, it is more

likely to have made mistakes. For each image Ii ∈ Ut,

we can obtain the heat maps bt at the t-th active learning

iteration. Typically, uncertainty is measured by the Highest

Probability (HP) [25, 26] among all possible outputs for a

variable. In our case, a variable is a joint and the possible

outputs are all pixels in an image. So the HP criterion for

selecting the p-th joint in image Ii can be written as:

CHP (Ii, p) = (1−max
z

btp(Yp = z|Ii)) ∗ (1− I
p
i ) (3)

However, this criterion considers only the highest probabil-

ity in the heat map, ignoring the information about the re-

maining distribution. To address this, [37] proposes margin

sampling (aka. Best vs Second Best (BSB)), and [42] uses

entropy-based methods.

None of these methods is ideal for human pose estima-

tion. Fig. 3(b1) and (b2) show example heat maps for L.ank

or R.wri, respectively. Note how there are typically multiple

modes in a heat map. Hence, despite the presence of a high

probability peak (Prob), the location predictions are actually

wrong (i.e. not on the GT position), and the Highest Proba-

bility criterion is not able to identify these examples as un-

certain. Moreover, the modes are widely spread and these

heat maps are spatially diffuse. The BSB criteria would re-

turn scores near 0 in these cases, as the second best pixel in

the heat map is just next to the top scoring pixel, with nearly

identical value. Similarly, plain entropy would not be able

to differentiate between a single wide mode (likely to be a

correct case) and multiple tighter modes (an uncertain case).

To improve on this, we propose a Multiple Peak En-

tropy (MPE) criterion. MPE considers the above men-

tioned properties and accounts for inherent spatial relations

between pixels in the heat map. These are not independent

possible output values, but they form a spatial structure in-

stead. Specifically, we find all locally-optimal predictions

for the p-th joint by applying a local maximum filter on bt
p.

We denote this set of peaks by M, where each peak m ∈ M
has coordinates zm = (um, vm), and prediction confidence

btp(Yp = zm|Ii). We define the normalised prediction as:

Prob(Ii,m, p) =
exp btp(Yp = zm|Ii)∑
m exp btp(Yp = zm|Ii)

(4)

Finally, the MPE uncertainty of joint p in image Ii is quan-

tified as:

CMPE(Ii, p) =
∑

m

−Prob(Ii,m, p) log Prob(Ii,m, p) (5)

CMPE favours joints that have multiple weak peaks in their

heat maps. The reason why MPE works in human pose es-

timation task is that it provides a compact but multi-mode

aware representation for heat map predictions. On the one

hand, MPE ignores the information around the local peaks,
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Figure 4. The top and bottom column shows typical high and low

influence images, respectively. High influence images are typi-

cally uncluttered and more prototypical. This kind of images oc-

curs more frequently in the dataset we consider.

which enables us to tackle the over-smooth property in heat

maps. On the other hand, it handles the multi-mode prop-

erty by collecting predictions of these local peaks and mea-

suring their entropy. As illustrated in Fig. 3(c1) and (c2),

our MPE handles both cases quite well.

Influence. Unlabelled images that are similar to many

others are good candidates for annotation, because they

would then effectively propagate their labels to others. We

denote the influential property [17] of an unlabelled image

Ii at iteration t as:

CINF (Ii) =
1

|Ut| − 1

∑

Ij∈Ut\Ii

d(Ii, Ij) (6)

where |Ut| denotes the number of unlabelled images.

d(∗, ∗) is an appearance distance function. We denote

Ij ∈ Ut when
∑

p I
p
j < P . Examples of high and low

influence images can be seen in Fig. 4. We see that high

influence images are typically uncluttered and more proto-

typical. This kind of images occurs more frequently in the

dataset we consider.

Dynamic Combination. A good active learning scheme

should considers both uncertainty and influence cues simul-

taneously. To this end, we further introduce W (Ut) to dy-

namically combines these two cues. W (Ut) measures how

reliable our pose estimator is on unlabelled images. Ide-

ally, the reliability would be defined as the estimator’s ex-

pected error. However, exact estimation of CPM’s reliabil-

ity is computationally intractable. Thus we approximate the

expected error with the following:

W (Ut) =
1

|Ut|

∑

Ii∈Ut

Prob(Ii,m
∗, p∗) (7)

where for the p-th joint in image Ii, m
∗, p∗ is defined as:

(m∗, p∗) = argmin
m,p

Prob(Ii,m, p) (8)

we define the value of selecting image Ii ∈ Ut at t-th

iteration as:

CDC(Ii) = (1−W (Ut)) ∗ CINF (Ii)+

W (Ut) ∗
1

P

∑

p

CMPE(Ii, p) ∗ (1− I
p
i )

(9)

Figure 5. Three examples for VD-based annotation. The top row

are the ground-truth annotation. The second row are the VD fig-

ures for left knee. The green lines define the boundaries of VD re-

gions while red cross are the local peaks obtained from predicted

heat maps.

Given a selection criterion, an active learner would rank

components and select top kt joints at t-th iteration. These

joints are then fed to human annotation interface (Sec. 3.3).

Note that our proposed active learning scheme differs

from previous methods [17, 38, 8] in several ways. Firstly,

none of the existing methods focus on human pose estima-

tion task. Secondly, we propose a novel MPE uncertainty

measurement. Finally, our scheme dynamically combines

both uncertainty and influence cues. Both the MPE and dy-

namic fusion prove to be effective for human pose estima-

tion (see Fig. 6 for results).

3.3. Step (C): Human Annotation

The conventional way to annotate body joints is to ask

the annotators to click on the exact pixel where the required

joint is located. However, such annotation is very time con-

suming, as annotators are required to label 14-16 [1, 19]

joints per person. The annotation time of labeling a joint

is shown in Fig. 8(a). These timings are obtain from one

annotator in our university.

To further reduce the annotation effort, we propose a

computer assisted interface. Given an image Ii and the re-

quired joint p, instead of providing the raw image to users,

we generate candidates for where joint p may be located. To

achieve this, we first compute the predicted heat map for the

joint with the current pose estimator. Then we take the local

peaks of this heat map as the candidates for the joint loca-

tion. Given these location candidates, we divide the image

into non-overlapping regions consisting of all pixels closer

to that candidate than to any other. Specifically, we generate

a Voronoi Diagram (VD) based on the candidates. If the true

joint location is included in the candidate pool, the annota-

tor can right-click anywhere on the corresponding region.

4367



This takes less time than clicking on the exact location. If

the true joint location is not among the candidates, the anno-

tator can left-click on the true location. This takes the same

time as the unassisted annotation setting. We refer to our in-

terface as VD-based annotation and show some examples

in Fig. 5.

4. Experiments

4.1. Experimental Settings

We report extensive experiments to evaluate various as-

pects of our work. Sec. 4.2 compares several active selec-

tion cues, including cues previously used for other tasks,

and our proposed multiple peak entropy. Sec. 4.3 combines

multiple cues and compares our proposed dynamic combi-

nation to a simpler static combination baseline. Sec. 4.4

studies the effect of using real human annotators, instead of

simulations. In sec. 4.5 we carry out active learning starting

from an already strong pose estimator. Finally, in sec. 4.6

we explore the benefits brought by our proposed computer-

assisted annotation interface.

Datasets. We use two datasets: MPII Human Pose [1] and

the Extended Leeds Sports Pose [19] (LSP). For MPII, we

use the training set (25K person samples) and the validation

set (3K samples). For LSP, we use the training set (11K

person samples) and the test set (1K samples). In both MPII

and LSP a person is represented by P = 14 body joints.

Protocol. All experiments in Sec. 4.2-4.4 and 4.6 follow

the same protocol: (1) we train an initial pose estimator on

100 fully labelled images randomly sampled from the LSP

training set; (2) we perform active learning on the MPII

training set, iteratively adding samples and re-training the

pose estimator with all samples labelled so far; (3) at each

iteration, we evaluate the current pose estimator on the MPII

validation set and report its performance on it.

The experiments in Sec 4.5 differ in that we use a much

larger initial training set in step (1) and evaluate on a differ-

ent set in step (3) (see Sec. 4.5 for details).

As common in the active learning literature [50, 27, 44],

we simulate annotations in step (2) by using the ground-

truth annotations provided in the MPII training set in

Sec. 4.2, 4.3 and 4.5. In Sec. 4.4 instead, we use real hu-

man annotators.

Implementation Details. We use the publicly available

Caffe [18] framework as well as the CPM code provided

by [55] to train our model. We set the number of CPM

stages N (Eq. (2)) to 6. We define our d(Ii, Ij) as the co-

sine similarity between the appearance features on Ii and Ij
(Eq. (6)), computed by applying AlexNet [23] pre-trained

on ImageNet [11] on the target image and extracting the

fc6 layer output. We also tried the diversity cues as sug-

gested in [17] but they led to slightly worse results. To

obtain local peaks, we apply a 5 × 5 local maximum fil-

ter on the heat maps. The number of active learning itera-

tions T is set to 5 and the number of joints P is 14. The

number of joints selected at each active learning iteration t

is referred to as kt, and progresses as follows during itera-

tions: [5%, 5%, 20%, 20%, 20%, 20%]∗JF and JF denotes

the number of joints on MPII training set F . Definitions

of T and kt can be found in Sec. 3.2. Note that we select

fewer joints at early iterations because we especially care

about the active learning performance with a small amount

of training data.

Evaluation Metric. To compare with published results,

we use the widely accepted PCK-h [47, 1] metric, where

a joint is considered correctly localized if the distance be-

tween the predicted and the true location is within a certain

fraction of the head diameter.

4.2. Individual Active Selection Cues

Since no prior work does active learning for human pose

estimation, we explore several informative individual cues

and adapt these cues proposed in other active learning do-

mains [37, 27] to our task. The following section describes

how various cues measure the informativeness of images

and joints at the t-th active learning iteration. After this, we

can rank all components and select kt

P
images or kt joints

from unlabelled set Ut.

• Random (RM): We randomly select images or joints.

• Highest Probability (HP): See Eq. (3) for joint-

level measurement. We use the averaged score
1
P

∑
p CHP (Ii, p) for image-level measurement.

• Best v.s Second Best (BSB): Due to the spatially

smooth nature of predicted heat maps, directly com-

paring the highest and the second-highest value is

meaningless (Fig. 3). Instead, we compute the differ-

ence between the highest and the second-highest peak

in each joint’s heat-map as the BSB score. We aver-

age joint-level BSB over all joints and take it as the

image-level BSB score.

• Influence (Inf): We estimate the influential property of

unlabelled images by Eq. (6). Note that Inf can only

be applied at the image-level.

• Multiple Peak Entropy (MPE): See Eq. (5) for joint-

level measurement. The image-level MPE measure-

ment on Ii is defined as 1
P

∑
p CMPE(Ii, p).

Fig. 6 shows the percentage of full accuracy as a func-

tion of percentage of annotation data, where ∗-im denotes

the image-level active learning with ∗ cues. The full ac-

curacy on the MPII validation set is obtained by applying

CPM trained with all labelled images in MPII training set.

We achieve 87.8% average accuracy on MPII validation set,

which is comparable to 86.3% reported in [3]. Fig. 6(a)

compares the performances of all individual cues. We can
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(a) (b)

Figure 6. (a) shows the effectiveness of various individual cues.

We can see that the proposed MPE is almost always the best

among all uncertainty measurements. (b) compares the perfor-

mances static and dynamic combination of top two individual cues

on MPII validation set.

see that our MPE is almost always above other existing un-

certainty measurements in this figure, which demonstrates

the effectiveness of our proposed method. In compari-

son, HP performs better than BSB and can gradually achieve

comparable performance to our MPE when labelling larger

fractions of the data. RM is almost always the worst cue. In-

terestingly, Inf seems to be the best option at the early stage

of active learning and becomes less competitive than uncer-

tainty cues later on. Such phenomenon confirms our hy-

pothesis that uncertainty and influence play different roles

at different times in the active learning process.

4.3. Active Selection with Multiple Cues

We also explore multiple cues in active learning for pose

estimation task. In addition to our Dynamic Combination

(DC) method, we also compare to a simpler Static Combi-

nation (SC). In SC, we simply fuse multiple cues by fixing

W (Ut) to 0.5 in Eq. (9) for all t. In these experiments, we

combine Inf and MPE as these are the two best individual

cues, and they are intuitively complementary.

We compare the performance of DC and SC on the MPII

validation set and show the results on Fig. 6(b). This figure

shows that SC is only as good as MPE, whereas DC is better

than either of the two cues alone. This demonstrates the ef-

fectiveness of our proposed dynamic combination DC (with

time-varying W (Ut)). DC effectively embeds the observa-

tion that influence cues (Inf ) are more effective at early ac-

tive learning iterations, where little data has been labelled,

whereas uncertainty cues (MPE) become more reliable later

on, when a good amount of labelled data is available.

Image-level v.s Joint-level Active Selection. Here we

compare the results of labelling kt joints and kt

P
images in

the active learning process. ∗-jt denotes the joint-level ac-

tive learning with ∗ cues. We define the value of selecting

the p-th joint in Ii as:

CDCJ(Ii, p) = ((1−W (Ut)) ∗ CINF (Ii)

+W (Ut) ∗ CMPE(Ii, p)) ∗ (1− I
p
i )

(10)

(a) (b)

Figure 7. (a) compares the performances of joint-level and image-

level active learning. The proposed DC is always more effective

than other baselines in both image and joint level. (b) illustrates

the full performance on MPII validation set.

The results are illustrated in Fig. 7(a). We see that the pro-

posed DC is always more effective than the baselines in

both image and joint level. DC-jt saves half of the anno-

tation effort in comparison to RM-im while achieving 40%
of overall performance. More interestingly, DC-jt seems

to perform better than DC-im when the labelling budget is

low.

Using up to 90% of all training data. We show the full

results of the active learning process in Fig. 7(b). Here we

continue the curves until 90% of all initially unlabelled data

has been labelled. We compare our proposed DC to HP

and RM and show that it always outperforms these two ac-

tive learning criteria. With 30% annotation budget, the per-

formance of DC is 8% and 19% better than that of HP

and RM, respectively. Our DC is still marginally better

than HP and RM with 90% annotation data.

4.4. Using Real Annotators

We investigate here how robust our method is to noise

introduced by using real human annotators. To this end, we

use the active learning criterion that performed best in our

image-level simulations (DC-im, Fig. 6 and 7) and run it

for two iterations (5% and 10% of MPII training images).

We ask 7 real human annotators to click on joint locations

in images selected by our active learning process and use

their responses to re-train the pose estimator. This leads to

25.4% and 46.2% of the full PCK-h accuracy with 5% and

10% annotations, respectively. This is comparable to what

achieved by the simulations.

4.5. Starting from a Strong Initialization

To explore the model performance when initialized with

a strong pose estimator, we conduct here an experiment

starting from a CPM model trained on the full LSP [19]

training set (11000 images, step (1) of the protocol in

Sec. 4.1). We then apply our proposed DC-im active learn-

ing method on the MPII training set to gradually add more

annotations (step (2) of the protocol). We evaluate pose es-
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(a) (b)

Figure 8. (a) average time consumption with standard and VD-

based annotation interface, for each joint and their average; (b)

percentage of joints whose local peaks include the correct joint

location, at each active learning iteration.

timator performance on the LSP test set (step (3) of the pro-

tocol).

The initial model trained on 100% LSP training images

gives 84.3% accuracy. Our active learner achieves 86.7%
and 88.9% accuracy, when adding 10% and 30% of the

MPII training set, respectively. This shows that our method

can further improve the performance of a pose estimator

even starting from a strong one. Moreover, using 100%
LSP and 100% MPII training images would yield an upper

bound of 90.5% accuracy [55]. This shows that our active

learning criterion is cost-efficient: 74% of the performance

improvement that could be gained by adding the full MPII

training set is recovered by annotating only 30% of it.

4.6. Computer Assisted Annotation Interface

We compare here the annotation time between standard

annotation and our proposed VD-based annotation inter-

face. In both cases, we ask one annotator to label 400 im-

ages with the standard interface, and 400 images with the

VD-based interface. In the standard interface, the annota-

tor is asked to click on the exact pixel where the joint is

located. Instead, our VD-based interface enables the anno-

tator to click anywhere in a large region containing the joint

(Sec. 3.3). Note how all experiments in this subsection use

done with the standard protocol of Sec. 4.1, i.e. initializ-

ing the pose estimator with 100 LSP images (step (1)) and

evaluating on the MPII validation set (step (3)).

Annotation Times. Annotation is performed by one stu-

dent from our university. For both standard and VD-based

interface, we created a full-screen interface. Fig. 8(a) re-

ports the average time for annotating each joint with the

two interfaces. We see that our VD-based interface can

save about 33% annotation time compared with the stan-

dard method.

Candidates Quality Analysis. We measure the quality of

VD-based annotation interface by measuring the percentage

of requested joints whose ground-truth locations are among

the candidates (Sec. 3.3). For each location candidate, we

(a) (b)

Figure 9. (a) simulated results with VD-based annotation. (b)

compares the performance of various active learning schemes as

a function of percentage of annotation time. Here we show that

combining our best scheme DC-jt with VD-based annotation can

further reduce the annotation time.

use the PCK-h(0.5) metric to determine whether it is suffi-

ciently close to the ground-truth location to count. Fig. 8(b)

shows that the percentage of joints whose ground-truth are

included among the candidates grows with the active learn-

ing iteration. Hence, the more training data the pose es-

timator sees, the more our VD-based annotation interface

can reduce the labelling time.

Quality of Models Trained from VD-based Annotations.

We also explore the performance of model trained with our

VD-based annotation interface. We use DC-im as our ac-

tive learning criterion and refer to the corresponding VD-

based annotation interface as VD-DC-im. In this setting, we

simulate the full VD-based annotation by replacing ground-

truth annotation of requested joints with peak locations se-

lected by users (Sec. 3.3). Our VD-trained model can

achieve comparable performance (within 3% gap) to the

original model trained from exact ground-truth joint loca-

tions, when using DC-im as our active criterion (Fig. 9(a)).

Overall Performance. We report the percentage of accu-

racy as a function of annotation time on Fig. 9(b). Combin-

ing our dynamic active selection scheme and VD-based an-

notation interface further improves efficiency, e.g., we can

get 80% performance with 23% annotation time.

4.7. Conclusions

We took the first steps towards active learning for hu-

man pose estimation. Our method reduces the human an-

notation time both through an active selection scheme and

through improvements in the annotation interface. We pro-

posed an uncertainty measurement, Multiple Peak Entropy,

which outperforms standard uncertainty baselines used in

other active learning tasks. Moreover, we proposed an ef-

fective dynamic combination of influence and uncertainty

cues. Finally, we introduced an efficient computer assisted

annotation interface which reduces labelling time by one

third without significant loss in accuracy.
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