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Abstract

The deployment of deep convolutional neural networks

(CNNs) in many real world applications is largely hindered

by their high computational cost. In this paper, we propose

a novel learning scheme for CNNs to simultaneously 1) re-

duce the model size; 2) decrease the run-time memory foot-

print; and 3) lower the number of computing operations,

without compromising accuracy. This is achieved by en-

forcing channel-level sparsity in the network in a simple but

effective way. Different from many existing approaches, the

proposed method directly applies to modern CNN architec-

tures, introduces minimum overhead to the training process,

and requires no special software/hardware accelerators for

the resulting models. We call our approach network slim-

ming, which takes wide and large networks as input mod-

els, but during training insignificant channels are automat-

ically identified and pruned afterwards, yielding thin and

compact models with comparable accuracy. We empirically

demonstrate the effectiveness of our approach with several

state-of-the-art CNN models, including VGGNet, ResNet

and DenseNet, on various image classification datasets. For

VGGNet, a multi-pass version of network slimming gives a

20× reduction in model size and a 5× reduction in comput-

ing operations.

1. Introduction

In recent years, convolutional neural networks (CNNs)

have become the dominant approach for a variety of com-

puter vision tasks, e.g., image classification [22], object

detection [8], semantic segmentation [26]. Large-scale

datasets, high-end modern GPUs and new network architec-

tures allow the development of unprecedented large CNN

models. For instance, from AlexNet [22], VGGNet [31] and

GoogleNet [34] to ResNets [14], the ImageNet Classifica-

tion Challenge winner models have evolved from 8 layers

to more than 100 layers.

∗This work was done when Zhuang Liu and Zhiqiang Shen were interns

at Intel Labs China. Jianguo Li is the corresponding author.

However, larger CNNs, although with stronger represen-

tation power, are more resource-hungry. For instance, a

152-layer ResNet [14] has more than 60 million parame-

ters and requires more than 20 Giga float-point-operations

(FLOPs) when inferencing an image with resolution 224×
224. This is unlikely to be affordable on resource con-

strained platforms such as mobile devices, wearables or In-

ternet of Things (IoT) devices.

The deployment of CNNs in real world applications are

mostly constrained by 1) Model size: CNNs’ strong repre-

sentation power comes from their millions of trainable pa-

rameters. Those parameters, along with network structure

information, need to be stored on disk and loaded into mem-

ory during inference time. As an example, storing a typi-

cal CNN trained on ImageNet consumes more than 300MB

space, which is a big resource burden to embedded devices.

2) Run-time memory: During inference time, the interme-

diate activations/responses of CNNs could even take more

memory space than storing the model parameters, even with

batch size 1. This is not a problem for high-end GPUs, but

unaffordable for many applications with low computational

power. 3) Number of computing operations: The convolu-

tion operations are computationally intensive on high reso-

lution images. A large CNN may take several minutes to

process one single image on a mobile device, making it un-

realistic to be adopted for real applications.

Many works have been proposed to compress large

CNNs or directly learn more efficient CNN models for fast

inference. These include low-rank approximation [7], net-

work quantization [3, 12] and binarization [28, 6], weight

pruning [12], dynamic inference [16], etc. However, most

of these methods can only address one or two challenges

mentioned above. Moreover, some of the techniques require

specially designed software/hardware accelerators for exe-

cution speedup [28, 6, 12].

Another direction to reduce the resource consumption of

large CNNs is to sparsify the network. Sparsity can be im-

posed on different level of structures [2, 37, 35, 29, 25],

which yields considerable model-size compression and in-

ference speedup. However, these approaches generally re-
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Figure 1: We associate a scaling factor (reused from a batch normalization layer) with each channel in convolutional layers. Sparsity

regularization is imposed on these scaling factors during training to automatically identify unimportant channels. The channels with small

scaling factor values (in orange color) will be pruned (left side). After pruning, we obtain compact models (right side), which are then

fine-tuned to achieve comparable (or even higher) accuracy as normally trained full network.

quire special software/hardware accelerators to harvest the

gain in memory or time savings, though it is easier than

non-structured sparse weight matrix as in [12].

In this paper, we propose network slimming, a simple

yet effective network training scheme, which addresses all

the aforementioned challenges when deploying large CNNs

under limited resources. Our approach imposes L1 regular-

ization on the scaling factors in batch normalization (BN)

layers, thus it is easy to implement without introducing any

change to existing CNN architectures. Pushing the val-

ues of BN scaling factors towards zero with L1 regulariza-

tion enables us to identify insignificant channels (or neu-

rons), as each scaling factor corresponds to a specific con-

volutional channel (or a neuron in a fully-connected layer).

This facilitates the channel-level pruning at the followed

step. The additional regularization term rarely hurt the per-

formance. In fact, in some cases it leads to higher gen-

eralization accuracy. Pruning unimportant channels may

sometimes temporarily degrade the performance, but this

effect can be compensated by the followed fine-tuning of

the pruned network. After pruning, the resulting narrower

network is much more compact in terms of model size, run-

time memory, and computing operations compared to the

initial wide network. The above process can be repeated

for several times, yielding a multi-pass network slimming

scheme which leads to even more compact network.

Experiments on several benchmark datasets and different

network architectures show that we can obtain CNN models

with up to 20x mode-size compression and 5x reduction in

computing operations of the original ones, while achieving

the same or even higher accuracy. Moreover, our method

achieves model compression and inference speedup with

conventional hardware and deep learning software pack-

ages, since the resulting narrower model is free of any

sparse storing format or computing operations.

2. Related Work

In this section, we discuss related work from five aspects.

Low-rank Decomposition approximates weight matrix in

neural networks with low-rank matrix using techniques like

Singular Value Decomposition (SVD) [7]. This method

works especially well on fully-connected layers, yield-

ing ∼3x model-size compression however without notable

speed acceleration, since computing operations in CNN

mainly come from convolutional layers.

Weight Quantization. HashNet [3] proposes to quantize

the network weights. Before training, network weights are

hashed to different groups and within each group weight

the value is shared. In this way only the shared weights and

hash indices need to be stored, thus a large amount of stor-

age space could be saved. [12] uses a improved quantization

technique in a deep compression pipeline and achieves 35x

to 49x compression rates on AlexNet and VGGNet. How-

ever, these techniques can neither save run-time memory

nor inference time, since during inference shared weights

need to be restored to their original positions.

[28, 6] quantize real-valued weights into binary/ternary

weights (weight values restricted to {−1, 1} or {−1, 0, 1}).

This yields a large amount of model-size saving, and signifi-

cant speedup could also be obtained given bitwise operation

libraries. However, this aggressive low-bit approximation

method usually comes with a moderate accuracy loss.

Weight Pruning / Sparsifying. [12] proposes to prune the

unimportant connections with small weights in trained neu-

ral networks. The resulting network’s weights are mostly

zeros thus the storage space can be reduced by storing the

model in a sparse format. However, these methods can only

achieve speedup with dedicated sparse matrix operation li-

braries and/or hardware. The run-time memory saving is

also very limited since most memory space is consumed by

the activation maps (still dense) instead of the weights.

In [12], there is no guidance for sparsity during training.

[32] overcomes this limitation by explicitly imposing sparse

constraint over each weight with additional gate variables,

and achieve high compression rates by pruning connections

with zero gate values. This method achieves better com-
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pression rate than [12], but suffers from the same drawback.

Structured Pruning / Sparsifying. Recently, [23] pro-

poses to prune channels with small incoming weights in

trained CNNs, and then fine-tune the network to regain

accuracy. [2] introduces sparsity by random deactivat-

ing input-output channel-wise connections in convolutional

layers before training, which also yields smaller networks

with moderate accuracy loss. Compared with these works,

we explicitly impose channel-wise sparsity in the optimiza-

tion objective during training, leading to smoother channel

pruning process and little accuracy loss.

[37] imposes neuron-level sparsity during training thus

some neurons could be pruned to obtain compact networks.

[35] proposes a Structured Sparsity Learning (SSL) method

to sparsify different level of structures (e.g. filters, channels

or layers) in CNNs. Both methods utilize group sparsity

regualarization during training to obtain structured spar-

sity. Instead of resorting to group sparsity on convolu-

tional weights, our approach imposes simple L1 sparsity on

channel-wise scaling factors, thus the optimization objec-

tive is much simpler.

Since these methods prune or sparsify part of the net-

work structures (e.g., neurons, channels) instead of individ-

ual weights, they usually require less specialized libraries

(e.g. for sparse computing operation) to achieve inference

speedup and run-time memory saving. Our network slim-

ming also falls into this category, with absolutely no special

libraries needed to obtain the benefits.

Neural Architecture Learning. While state-of-the-art

CNNs are typically designed by experts [22, 31, 14], there

are also some explorations on automatically learning net-

work architectures. [20] introduces sub-modular/super-

modular optimization for network architecture search with

a given resource budget. Some recent works [38, 1] propose

to learn neural architecture automatically with reinforce-

ment learning. The searching space of these methods are

extremely large, thus one needs to train hundreds of mod-

els to distinguish good from bad ones. Network slimming

can also be treated as an approach for architecture learning,

despite the choices are limited to the width of each layer.

However, in contrast to the aforementioned methods, net-

work slimming learns network architecture through only a

single training process, which is in line with our goal of

efficiency.

3. Network slimming

We aim to provide a simple scheme to achieve channel-

level sparsity in deep CNNs. In this section, we first dis-

cuss the advantages and challenges of channel-level spar-

sity, and introduce how we leverage the scaling layers in

batch normalization to effectively identify and prune unim-

portant channels in the network.

Advantages of Channel-level Sparsity. As discussed in

prior works [35, 23, 11], sparsity can be realized at differ-

ent levels, e.g., weight-level, kernel-level, channel-level or

layer-level. Fine-grained level (e.g., weight-level) sparsity

gives the highest flexibility and generality leads to higher

compression rate, but it usually requires special software or

hardware accelerators to do fast inference on the sparsified

model [11]. On the contrary, the coarsest layer-level spar-

sity does not require special packages to harvest the infer-

ence speedup, while it is less flexible as some whole layers

need to be pruned. In fact, removing layers is only effec-

tive when the depth is sufficiently large, e.g., more than 50

layers [35, 18]. In comparison, channel-level sparsity pro-

vides a nice tradeoff between flexibility and ease of imple-

mentation. It can be applied to any typical CNNs or fully-

connected networks (treat each neuron as a channel), and

the resulting network is essentially a “thinned” version of

the unpruned network, which can be efficiently inferenced

on conventional CNN platforms.

Challenges. Achieving channel-level sparsity requires

pruning all the incoming and outgoing connections asso-

ciated with a channel. This renders the method of directly

pruning weights on a pre-trained model ineffective, as it is

unlikely that all the weights at the input or output end of

a channel happen to have near zero values. As reported in

[23], pruning channels on pre-trained ResNets can only lead

to a reduction of ∼10% in the number of parameters without

suffering from accuracy loss. [35] addresses this problem

by enforcing sparsity regularization into the training objec-

tive. Specifically, they adopt group LASSO to push all the

filter weights corresponds to the same channel towards zero

simultaneously during training. However, this approach re-

quires computing the gradients of the additional regulariza-

tion term with respect to all the filter weights, which is non-

trivial. We introduce a simple idea to address the above

challenges, and the details are presented below.

Scaling Factors and Sparsity-induced Penalty. Our idea

is introducing a scaling factor γ for each channel, which is

multiplied to the output of that channel. Then we jointly

train the network weights and these scaling factors, with

sparsity regularization imposed on the latter. Finally we

prune those channels with small factors, and fine-tune the

pruned network. Specifically, the training objective of our

approach is given by

L =
∑

(x,y)

l(f(x,W ), y) + λ
∑

γ∈Γ

g(γ) (1)

where (x, y) denote the train input and target, W denotes

the trainable weights, the first sum-term corresponds to the

normal training loss of a CNN, g(·) is a sparsity-induced

penalty on the scaling factors, and λ balances the two terms.

In our experiment, we choose g(s) = |s|, which is known as
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Figure 2: Flow-chart of network slimming procedure. The dotted-

line is for the multi-pass/iterative scheme.

L1-norm and widely used to achieve sparsity. Subgradient

descent is adopted as the optimization method for the non-

smooth L1 penalty term. An alternative option is to replace

the L1 penalty with the smooth-L1 penalty [30] to avoid

using sub-gradient at non-smooth point.

As pruning a channel essentially corresponds to remov-

ing all the incoming and outgoing connections of that chan-

nel, we can directly obtain a narrow network (see Figure 1)

without resorting to any special sparse computation pack-

ages. The scaling factors act as the agents for channel se-

lection. As they are jointly optimized with the network

weights, the network can automatically identity insignifi-

cant channels, which can be safely removed without greatly

affecting the generalization performance.

Leveraging the Scaling Factors in BN Layers. Batch nor-

malization [19] has been adopted by most modern CNNs

as a standard approach to achieve fast convergence and bet-

ter generalization performance. The way BN normalizes

the activations motivates us to design a simple and effi-

cient method to incorporates the channel-wise scaling fac-

tors. Particularly, BN layer normalizes the internal activa-

tions using mini-batch statistics. Let zin and zout be the

input and output of a BN layer, B denotes the current mini-

batch, BN layer performs the following transformation:

ẑ =
zin − µB
√

σ2
B
+ ǫ

; zout = γẑ + β (2)

where µB and σB are the mean and standard deviation val-

ues of input activations over B, γ and β are trainable affine

transformation parameters (scale and shift) which provides

the possibility of linearly transforming normalized activa-

tions back to any scales.

It is common practice to insert a BN layer after a convo-

lutional layer, with channel-wise scaling/shifting parame-

ters. Therefore, we can directly leverage the γ parameters in

BN layers as the scaling factors we need for network slim-

ming. It has the great advantage of introducing no overhead

to the network. In fact, this is perhaps also the most effec-

tive way we can learn meaningful scaling factors for chan-

nel pruning. 1), if we add scaling layers to a CNN without

BN layer, the value of the scaling factors are not meaning-

ful for evaluating the importance of a channel, because both

convolution layers and scaling layers are linear transforma-

tions. One can obtain the same results by decreasing the

scaling factor values while amplifying the weights in the

convolution layers. 2), if we insert a scaling layer before

a BN layer, the scaling effect of the scaling layer will be

completely canceled by the normalization process in BN.

3), if we insert scaling layer after BN layer, there are two

consecutive scaling factors for each channel.

Channel Pruning and Fine-tuning. After training under

channel-level sparsity-induced regularization, we obtain a

model in which many scaling factors are near zero (see Fig-

ure 1). Then we can prune channels with near-zero scaling

factors, by removing all their incoming and outgoing con-

nections and corresponding weights. We prune channels

with a global threshold across all layers, which is defined

as a certain percentile of all the scaling factor values. For

instance, we prune 70% channels with lower scaling factors

by choosing the percentile threshold as 70%. By doing so,

we obtain a more compact network with less parameters and

run-time memory, as well as less computing operations.

Pruning may temporarily lead to some accuracy loss,

when the pruning ratio is high. But this can be largely com-

pensated by the followed fine-tuning process on the pruned

network. In our experiments, the fine-tuned narrow network

can even achieve higher accuracy than the original unpruned

network in many cases.

Multi-pass Scheme. We can also extend the proposed

method from single-pass learning scheme (training with

sparsity regularization, pruning, and fine-tuning) to a multi-

pass scheme. Specifically, a network slimming procedure

results in a narrow network, on which we could again apply

the whole training procedure to learn an even more compact

model. This is illustrated by the dotted-line in Figure 2. Ex-

perimental results show that this multi-pass scheme can lead

to even better results in terms of compression rate.

Handling Cross Layer Connections and Pre-activation

Structure. The network slimming process introduced

above can be directly applied to most plain CNN architec-

tures such as AlexNet [22] and VGGNet [31]. While some

adaptations are required when it is applied to modern net-

works with cross layer connections and the pre-activation

design such as ResNet [15] and DenseNet [17]. For these

networks, the output of a layer may be treated as the input

of multiple subsequent layers, in which a BN layer is placed

before the convolutional layer. In this case, the sparsity is

achieved at the incoming end of a layer, i.e., the layer selec-

tively uses a subset of channels it received. To harvest the

parameter and computation savings at test time, we need

to place a channel selection layer to mask out insignificant

channels we have identified.

4. Experiments

We empirically demonstrate the effectiveness of network

slimming on several benchmark datasets. We implement
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(a) Test Errors on CIFAR-10

Model Test error (%) Parameters Pruned FLOPs Pruned

VGGNet (Baseline) 6.34 20.04M - 7.97×108 -

VGGNet (70% Pruned) 6.20 2.30M 88.5% 3.91×108 51.0%

DenseNet-40 (Baseline) 6.11 1.02M - 5.33×108 -

DenseNet-40 (40% Pruned) 5.19 0.66M 35.7% 3.81×108 28.4%

DenseNet-40 (70% Pruned) 5.65 0.35M 65.2% 2.40×108 55.0%

ResNet-164 (Baseline) 5.42 1.70M - 4.99×108 -

ResNet-164 (40% Pruned) 5.08 1.44M 14.9% 3.81×108 23.7%

ResNet-164 (60% Pruned) 5.27 1.10M 35.2% 2.75×108 44.9%

(b) Test Errors on CIFAR-100

Model Test error (%) Parameters Pruned FLOPs Pruned

VGGNet (Baseline) 26.74 20.08M - 7.97×108 -

VGGNet (50% Pruned) 26.52 5.00M 75.1% 5.01×108 37.1%

DenseNet-40 (Baseline) 25.36 1.06M - 5.33×108 -

DenseNet-40 (40% Pruned) 25.28 0.66M 37.5% 3.71×108 30.3%

DenseNet-40 (60% Pruned) 25.72 0.46M 54.6% 2.81×108 47.1%

ResNet-164 (Baseline) 23.37 1.73M - 5.00×108 -

ResNet-164 (40% Pruned) 22.87 1.46M 15.5% 3.33×108 33.3%

ResNet-164 (60% Pruned) 23.91 1.21M 29.7% 2.47×108 50.6%

(c) Test Errors on SVHN

Model Test Error (%) Parameters Pruned FLOPs Pruned

VGGNet (Baseline) 2.17 20.04M - 7.97×108 -

VGGNet (60% Pruned) 2.06 3.04M 84.8% 3.98×108 50.1%

DenseNet-40 (Baseline) 1.89 1.02M - 5.33×108 -

DenseNet-40 (40% Pruned) 1.79 0.65M 36.3% 3.69×108 30.8%

DenseNet-40 (60% Pruned) 1.81 0.44M 56.6% 2.67×108 49.8%

ResNet-164 (Baseline) 1.78 1.70M - 4.99×108 -

ResNet-164 (40% Pruned) 1.85 1.46M 14.5% 3.44×108 31.1%

ResNet-164 (60% Pruned) 1.81 1.12M 34.3% 2.25×108 54.9%

Table 1: Results on CIFAR and SVHN datasets. “Baseline” denotes normal training without sparsity regularization. In column-1, “60%

pruned” denotes the fine-tuned model with 60% channels pruned from the model trained with sparsity, etc. The pruned ratio of parameters

and FLOPs are also shown in column-4&6. Pruning a moderate amount (40%) of channels can mostly lower the test errors. The accuracy

could typically be maintained with ≥ 60% channels pruned.

our method based on the publicly available Torch [5] im-

plementation for ResNets by [10]. The code is available at

https://github.com/liuzhuang13/slimming.

4.1. Datasets

CIFAR. The two CIFAR datasets [21] consist of natural im-

ages with resolution 32×32. CIFAR-10 is drawn from 10

and CIFAR-100 from 100 classes. The train and test sets

contain 50,000 and 10,000 images respectively. On CIFAR-

10, a validation set of 5,000 images is split from the training

set for the search of λ (in Equation 1) on each model. We

report the final test errors after training or fine-tuning on

all training images. A standard data augmentation scheme

(shifting/mirroring) [14, 18, 24] is adopted. The input data

is normalized using channel means and standard deviations.

We also compare our method with [23] on CIFAR datasets.

SVHN. The Street View House Number (SVHN) dataset

[27] consists of 32x32 colored digit images. Following

common practice [9, 18, 24] we use all the 604,388 training

images, from which we split a validation set of 6,000 im-

ages for model selection during training. The test set con-

tains 26,032 images. During training, we select the model

with the lowest validation error as the model to be pruned

(or the baseline model). We also report the test errors of the

models with lowest validation errors during fine-tuning.

ImageNet. The ImageNet dataset contains 1.2 million

training images and 50,000 validation images of 1000

classes. We adopt the data augmentation scheme as in [10].

We report the single-center-crop validation error of the final

model.

MNIST. MNIST is a handwritten digit dataset containing

60,000 training images and 10,000 test images. To test the

effectiveness of our method on a fully-connected network

(treating each neuron as a channel with 1×1 spatial size),

we compare our method with [35] on this dataset.
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4.2. Network Models

On CIFAR and SVHN dataset, we evaluate our method

on three popular network architectures: VGGNet[31],

ResNet [14] and DenseNet [17]. The VGGNet is originally

designed for ImageNet classification. For our experiment a

variation of the original VGGNet for CIFAR dataset is taken

from [36]. For ResNet, a 164-layer pre-activation ResNet

with bottleneck structure (ResNet-164) [15] is used. For

DenseNet, we use a 40-layer DenseNet with growth rate 12

(DenseNet-40).

On ImageNet dataset, we adopt the 11-layer (8-conv +

3 FC) “VGG-A” network [31] model with batch normaliza-

tion from [4]. We remove the dropout layers since we use

relatively heavy data augmentation. To prune the neurons

in fully-connected layers, we treat them as convolutional

channels with 1×1 spatial size.

On MNIST dataset, we evaluate our method on the same

3-layer fully-connected network as in [35].

4.3. Training, Pruning and Fine­tuning

Normal Training. We train all the networks normally from

scratch as baselines. All the networks are trained using

SGD. On CIFAR and SVHN datasets we train using mini-

batch size 64 for 160 and 20 epochs, respectively. The ini-

tial learning rate is set to 0.1, and is divided by 10 at 50%

and 75% of the total number of training epochs. On Im-

ageNet and MNIST datasets, we train our models for 60

and 30 epochs respectively, with a batch size of 256, and an

initial learning rate of 0.1 which is divided by 10 after 1/3

and 2/3 fraction of training epochs. We use a weight de-

cay of 10−4 and a Nesterov momentum [33] of 0.9 without

dampening. The weight initialization introduced by [13] is

adopted. Our optimization settings closely follow the orig-

inal implementation at [10]. In all our experiments, we ini-

tialize all channel scaling factors to be 0.5, since this gives

higher accuracy for the baseline models compared with de-

fault setting (all initialized to be 1) from [10].

Training with Sparsity. For CIFAR and SVHN datasets,

when training with channel sparse regularization, the hyper-

parameteer λ, which controls the tradeoff between empiri-

cal loss and sparsity, is determined by a grid search over

10−3, 10−4, 10−5 on CIFAR-10 validation set. For VG-

GNet we choose λ=10−4 and for ResNet and DenseNet

λ=10−5. For VGG-A on ImageNet, we set λ=10−5. All

other settings are kept the same as in normal training.

Pruning. When we prune the channels of models trained

with sparsity, a pruning threshold on the scaling factors

needs to be determined. Unlike in [23] where different lay-

ers are pruned by different ratios, we use a global pruning

threshold for simplicity. The pruning threshold is deter-

mined by a percentile among all scaling factors , e.g., 40%

or 60% channels are pruned. The pruning process is imple-
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Figure 3: Comparison of pruned models with lower test errors on

CIFAR-10 than the original models. The blue and green bars are

parameter and FLOP ratios between pruned and original models.

mented by building a new narrower model and copying the

corresponding weights from the model trained with sparsity.

Fine-tuning. After the pruning we obtain a narrower and

more compact model, which is then fine-tuned. On CIFAR,

SVHN and MNIST datasets, the fine-tuning uses the same

optimization setting as in training. For ImageNet dataset,

due to time constraint, we fine-tune the pruned VGG-A with

a learning rate of 10−3 for only 5 epochs.

4.4. Results

CIFAR and SVHN The results on CIFAR and SVHN are

shown in Table 1. We mark all lowest test errors of a model

in boldface.

Parameter and FLOP reductions. The purpose of net-

work slimming is to reduce the amount of computing re-

sources needed. The last row of each model has ≥ 60%

channels pruned while still maintaining similar accuracy to

the baseline. The parameter saving can be up to 10×. The

FLOP reductions are typically around 50%. To highlight

network slimming’s efficiency, we plot the resource sav-

ings in Figure 3. It can be observed that VGGNet has a

large amount of redundant parameters that can be pruned.

On ResNet-164 the parameter and FLOP savings are rel-

atively insignificant, we conjecture this is due to its “bot-

tleneck” structure has already functioned as selecting chan-

nels. Also, on CIFAR-100 the reduction rate is typically

slightly lower than CIFAR-10 and SVHN, which is possi-

bly due to the fact that CIFAR-100 contains more classes.

Regularization Effect. From Table 1, we can observe that,

on ResNet and DenseNet, typically when 40% channels are

pruned, the fine-tuned network can achieve a lower test er-

ror than the original models. For example, DenseNet-40

with 40% channels pruned achieve a test error of 5.19%

on CIFAR-10, which is almost 1% lower than the original

model. We hypothesize this is due to the regularization ef-

fect of L1 sparsity on channels, which naturally provides

feature selection in intermediate layers of a network. We

will analyze this effect in the next section.
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VGG-A Baseline 50% Pruned

Params 132.9M 23.2M

Params Pruned - 82.5%

FLOPs 4.57×1010 3.18×1010

FLOPs Pruned - 30.4%

Validation Error (%) 36.69 36.66

Table 2: Results on ImageNet.

Model Test Error (%) Params Pruned #Neurons

Baseline 1.43 - 784-500-300-10

Pruned [35] 1.53 83.5% 434-174-78-10

Pruned (ours) 1.49 84.4% 784-100-60-10

Table 3: Results on MNIST.

ImageNet. The results for ImageNet dataset are summa-

rized in Table 2. When 50% channels are pruned, the pa-

rameter saving is more than 5×, while the FLOP saving

is only 30.4%. This is due to the fact that only 378 (out

of 2752) channels from all the computation-intensive con-

volutional layers are pruned, while 5094 neurons (out of

8192) from the parameter-intensive fully-connected layers

are pruned. It is worth noting that our method can achieve

the savings with no accuracy loss on the 1000-class Im-

ageNet dataset, where other methods for efficient CNNs

[2, 23, 35, 28] mostly report accuracy loss.

MNIST. On MNIST dataset, we compare our method with

the Structured Sparsity Learning (SSL) method [35] in Ta-

ble 3. Despite our method is mainly designed to prune

channels in convolutional layers, it also works well in prun-

ing neurons in fully-connected layers. In this experiment,

we observe that pruning with a global threshold sometimes

completely removes a layer, thus we prune 80% of the neu-

rons in each of the two intermediate layers. Our method

slightly outperforms [35], in that a slightly lower test error

is achieved while pruning more parameters.

We provide some additional experimental results in the

supplementary materials, including (1) detailed structure of

a compact VGGNet on CIFAR-10; (2) wall-clock time and

run-time memory savings in practice. (3) comparison with

a previous channel pruning method [23];

4.5. Results for Multi­pass Scheme

We employ the multi-pass scheme on CIFAR datasets

using VGGNet. Since there are no skip-connections, prun-

ing away a whole layer will completely destroy the mod-

els. Thus, besides setting the percentile threshold as 50%,

we also put a constraint that at each layer, at most 50% of

channels can be pruned.

The test errors of models in each iteration are shown in

Table 4. As the pruning process goes, we obtain more and

(a) Multi-pass Scheme on CIFAR-10

Iter Trained Fine-tuned Params Pruned FLOPs Pruned

1 6.38 6.51 66.7% 38.6%

2 6.23 6.11 84.7% 52.7%

3 5.87 6.10 91.4% 63.1%

4 6.19 6.59 95.6% 77.2%

5 5.96 7.73 98.3% 88.7%

6 7.79 9.70 99.4% 95.7%

(b) Multi-pass Scheme on CIFAR-100

Iter Trained Fine-tuned Params Pruned FLOPs Pruned

1 27.72 26.52 59.1% 30.9%

2 26.03 26.52 79.2% 46.1%

3 26.49 29.08 89.8% 67.3%

4 28.17 30.59 95.3% 83.0%

5 30.04 36.35 98.3% 93.5%

6 35.91 46.73 99.4% 97.7%

Table 4: Results for multi-pass scheme on CIFAR-10 and CIFAR-

100 datasets, using VGGNet. The baseline model has test errors of

6.34% and 26.74%. “Trained” and “Fine-tuned” columns denote

the test errors (%) of the model trained with sparsity, and the fine-

tuned model after channel pruning, respectively. The parameter

and FLOP pruned ratios correspond to the fine-tuned model in that

row and the trained model in the next row.

more compact models. On CIFAR-10, the trained model

achieves the lowest test error in iteration 5. This model

achieves 20× parameter reduction and 5× FLOP reduction,

while still achieving lower test error. On CIFAR-100, after

iteration 3, the test error begins to increase. This is pos-

sibly due to that it contains more classes than CIFAR-10,

so pruning channels too agressively will inevitably hurt the

performance. However, we can still prune near 90% param-

eters and near 70% FLOPs without notable accuracy loss.

5. Analysis

There are two crucial hyper-parameters in network slim-

ming, the pruned percentage t and the coefficient of the

sparsity regularization term λ (see Equation 1). In this sec-

tion, we analyze their effects in more detail.

Effect of Pruned Percentage. Once we obtain a model

trained with sparsity regularization, we need to decide what

percentage of channels to prune from the model. If we

prune too few channels, the resource saving can be very

limited. However, it could be destructive to the model if

we prune too many channels, and it may not be possible to

recover the accuracy by fine-tuning. We train a DenseNet-

40 model with λ=10−5 on CIFAR-10 to show the effect of

pruning a varying percentage of channels. The results are

summarized in Figure 5.

From Figure 5, it can be concluded that the classification

performance of the pruned or fine-tuned models degrade

only when the pruning ratio surpasses a threshold. The fine-
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Figure 4: Distributions of scaling factors in a trained VGGNet under various degree of sparsity regularization (controlled by the parameter

λ). With the increase of λ, scaling factors become sparser.
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Figure 5: The effect of pruning varying percentages of channels,

from DenseNet-40 trained on CIFAR-10 with λ=10−5.

tuning process can typically compensate the possible accu-

racy loss caused by pruning. Only when the threshold goes

beyond 80%, the test error of fine-tuned model falls behind

the baseline model. Notably, when trained with sparsity,

even without fine-tuning, the model performs better than the

original model. This is possibly due the the regularization

effect of L1 sparsity on channel scaling factors.

Channel Sparsity Regularization. The purpose of the L1

sparsity term is to force many of the scaling factors to be

near zero. The parameter λ in Equation 1 controls its signif-

icance compared with the normal training loss. In Figure 4

we plot the distributions of scaling factors in the whole net-

work with different λ values. For this experiment we use a

VGGNet trained on CIFAR-10 dataset.

It can be observed that with the increase of λ, the scaling

factors are more and more concentrated near zero. When

λ=0, i.e., there’s no sparsity regularization, the distribution

is relatively flat. When λ=10−4, almost all scaling factors

fall into a small region near zero. This process can be seen

as a feature selection happening in intermediate layers of

deep networks, where only channels with non-negligible

scaling factors are chosen. We further visualize this pro-

cess by a heatmap. Figure 6 shows the magnitude of scaling

factors from one layer in VGGNet, along the training pro-

cess. Each channel starts with equal weights; as the training
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Figure 6: Visulization of channel scaling factors’ change in scale

along the training process, taken from the 11th conv-layer in VG-

GNet trained on CIFAR-10. Brighter color corresponds to larger

value. The bright lines indicate the “selected” channels, the dark

lines indicate channels that can be pruned.

progresses, some channels’ scaling factors become larger

(brighter) while others become smaller (darker).

6. Conclusion

We proposed the network slimming technique to learn

more compact CNNs. It directly imposes sparsity-induced

regularization on the scaling factors in batch normalization

layers, and unimportant channels can thus be automatically

identified during training and then pruned. On multiple

datasets, we have shown that the proposed method is able to

significantly decrease the computational cost (up to 20×) of

state-of-the-art networks, with no accuracy loss. More im-

portantly, the proposed method simultaneously reduces the

model size, run-time memory, computing operations while

introducing minimum overhead to the training process, and

the resulting models require no special libraries/hardware

for efficient inference.
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