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Abstract

Video super-resolution (SR) aims to generate a high-

resolution (HR) frame from multiple low-resolution (LR)

frames in a local temporal window. The inter-frame tempo-

ral relation is as crucial as the intra-frame spatial relation

for tackling this problem. However, how to utilize temporal

information efficiently and effectively remains challenging

since complex motion is difficult to model and can intro-

duce adverse effects if not handled properly. We address

this problem from two aspects. First, we propose a temporal

adaptive neural network that can adaptively determine the

optimal scale of temporal dependency. Filters on various

temporal scales are applied to the input LR sequence before

their responses are adaptively aggregated. Second, we re-

duce the complexity of motion between neighboring frames

using a spatial alignment network which is much more ro-

bust and efficient than competing alignment methods and

can be jointly trained with the temporal adaptive network in

an end-to-end manner. Our proposed models with learned

temporal dynamics are systematically evaluated on public

video datasets and achieve state-of-the-art SR results com-

pared with other recent video SR approaches. Both of the

temporal adaptation and the spatial alignment modules are

demonstrated to considerably improve SR quality over their

plain counterparts.

1. Introduction

Video super-resolution (SR) is the task of inferring a

high-resolution (HR) video sequence from a low-resolution

(LR) one. This problem has drawn growing attention in

both the research community and industry recently. From

the research perspective, this problem is challenging be-

cause video signals vary in both temporal and spatial di-

mensions. In the meantime, with the prevalence of high-

definition (HD) display such as HDTV in the market, there

is an increasing need for converting low quality video se-

quences to high-definition ones so that they can be played

on the HD displays in a visually pleasant manner.

There are two types of relations that are utilized for

video SR: the intra-frame spatial relation and the inter-

frame temporal relation. In the past few years, neural

network based models have successfully demonstrated the

strong capability of modeling the spatial relation for im-

age SR [4, 30, 5, 14, 15, 26, 6]. Compared with the intra-

frame spatial relation, the inter-frame temporal relation is

more important for video SR, as researches in vision sys-

tem suggest that human vision system is more sensitive to

motion [7]. Thus it is essential for video SR algorithm to

capture and model the effect of motion information on vi-

sual perception. To meet this need, a number of video SR

algorithms are proposed [8, 28, 2, 20, 23, 17] to conduct

pixel-level motion and blur kernel estimation based on im-

age priors, e.g., sparsity and total variation. These meth-

ods usually formulate a sophisticated optimization problem

which requires heavy computational cost and thus is rather

time-consuming to solve. Recently, neural network based

models have also emerged in this domain [17, 9, 12]. Some

of them model the temporal relation on a fixed temporal

scale via explicitly conducting motion compensation to gen-

erate inputs to the network model [17, 12], while the rest de-

velops recurrent network architectures to use the long-term

temporal dependency [9].

As the key of temporal dependency modeling, motion

estimation can influence video SR drastically. Rigid and

smooth motion is usually easy to model among neighboring

frames, in which case it is beneficial to include neighboring

frames to super-resolve the center frame. In contrast, with

complex motion or parallax presented across neighboring

frames, motion estimation becomes challenging and erro-

neous motion compensation can undermine SR.

In this paper, we propose a temporal adaptive neural

network that is able to robustly handle various types of

motion and adaptively select the optimal range of tempo-

ral dependency to alleviate the detrimental effect of erro-

neous motion estimation between consecutive frames. Our

network takes as input a number of aligned LR frames after

motion compensation, and applies filters of different tem-

poral sizes to generate multiple HR frame estimates. The
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resultant HR estimates are adaptively aggregated according

to the confidence of motion compensation which is inferred

via another branch in our network. The proposed network

architecture extends the idea of the Inception module in

GoogLeNet [27] to the temporal domain. Our model gains

the robustness to imperfect motion compensation through

network learning, instead of simply boosting optical flow

quality by using computationally more expensive methods

as in [17], or extracting motion information only from a sin-

gle fixed temporal scale as in [12].

Besides modeling motion information in the temporal

domain, we can also compensate motion in the spatial do-

main to help the temporal modeling. We explore multiple

image alignment methods to enhance video SR. We find the

sophisticated optical flow based approach may not be opti-

mal, as the estimation error on complex motion adversely

affects the subsequent SR. Therefore, we reduce the com-

plexity of motion by estimating only a small number of pa-

rameters of spatial transform, and provide a more robust ap-

proach to aligning frames. Moreover, inspired by the spatial

transformer network [10], we propose a spatial alignment

network, which infers the spatial transform between con-

secutive frames and generates aligned frames for video SR.

It needs much less inference time and can be cascaded with

the temporal adaptive network and trained jointly.

We conduct a systematic evaluation of each module in

our network in the experiment section. The temporal adap-

tive design demonstrates a clear advantage in handling com-

plex motion over the counterpart using temporal filters with

fixed length. We observe that reducing the complexity of

motion increases robustness of image alignment to complex

motion and thus provides better SR performance. The spa-

tial alignment network is proven to benefit SR by providing

aligned input frames. Compared to other SR algorithms,

our method not only yields state-of-the-art quantitative re-

sults on various video sequences, but also better recovers

semantically faithful information benefiting high-level vi-

sion tasks.

2. Related Work

2.1. Deep Learning for Image SR

In the past few years, neural networks, especially convo-

lutional neural networks (CNNs), have shown impressive

performance for image SR. Dong et al. [4, 5] pioneer a

three layer fully CNN, termed SRCNN, to approximate the

complex non-linear mapping between the LR image and the

HR counterpart. A neural network that closely mimics the

sparse representation approach for image SR is designed by

Wang et al. [30, 22], demonstrating the benefit of domain

expertise from sparse coding in the task of image SR. A

very deep CNN with residual architecture is proposed by

Kim et al. [14] to attain impressive SR accuracy. Kim et al.

[15] design another network which has recursive architec-

tures with skip-connection for image SR to boost perfor-

mance while exploiting a small number of model parame-

ters. Liu et al. [21] propose to learn a mixture of networks

to further improve SR results. ESPCN proposed by Shi et

al. [26] applies convolutions on the LR space of images and

learns an array of upscaling filters in the last layer of their

network model, which considerably reduces the computa-

tion cost and achieves real-time SR. More recently, Dong et

al. [6] adopt a similar strategy to accelerate SRCNN with

smaller filter sizes and more convolution layers.

2.2. Deep Learning for Video SR

With the popularity of neural networks for image SR,

people have developed video SR methods of neural net-

works. Liao et al. [17] first generate an ensemble of SR

draft via motion compensation under different parameter

settings, and then use a CNN to reconstruct the HR frame

from all drafts. Huang et al. [9] avoid explicit motion esti-

mation by extending SRCNN for single image SR along the

temporal dimension forming a recurrent convolutional net-

work to capture the long-term temporal dependency. Kap-

peler et al. [12] expand SRCNN on a fixed temporal scale

and extract features on frames aligned from optical flow in-

formation.

3. Temporal Adaptive Neural Network

3.1. Overview

For an LR video sequence, our model aims to estimate

an HR frame from a set of local LR frames. The main chal-

lenge of video SR lies on the proper utilization of tempo-

ral information to handle various types of motion specifi-

cally. To address this problem, we design a neural network

to adaptively select the optimal temporal scale for video

SR. The network has a number of SR inference branches

{Bi}
N
i=1, each of which , Bi, works on a different tempo-

ral scale i, and uses its temporal dependency on its scale

to predict an HR estimate. We design an extra temporal

modulation branch, T , to determine the optimal tempo-

ral scale and adaptively combine all the HR estimates based

on motion information, at the pixel-level. All SR inference

branches and the temporal modulation branch are incorpo-

rated and jointly learned in a unified network. The final es-

timated HR frame is aggregated from the estimates from all

SR inference branches considering the motion information

on various temporal scales. The overview of the temporal

adaptive network is shown in Fig. 1.

3.2. Network Architecture

SR inference branch: We customize a recent neural net-

work based SR model, ESPCN [26], due to its high SR ac-

curacy and low computation cost, and use it in each SR in-
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Figure 1. The overview of the temporal adaptive neural network. It consists of a number of SR inference branches and a temporal

modulation branch. Each SR inference branch works on a different temporal scale and utilizes its temporal dependency to provide an

HR frame prediction. These predictions are adaptively combined using pixel-level aggregations from the temporal modulation branch to

generate the final HR frame.

ference branch. The SR inference branch Bi work on 2i−1
consecutive LR frames. c denotes the number of channels

for every input LR frame. The filters of SR inference branch

Bi in the first layer have the temporal length of 2i − 1,

and the convolutional filters in the first layer are customized

to have (2i − 1) × c channels. The Rectified Linear Unit

(ReLU) [24] is chosen as the activation function of the first

and second layer. The interested readers are referred to [26]

for the remaining details of ESPCN. Note that the design of

the SR inference branch is not limited to ESPCN, and all

other network based SR models, e.g. SRCNN, can work as

the SR inference branch as well. The output of Bi serves as

an estimate to the final HR frame.

Temporal modulation branch: The principle of this

branch is to learn the selectivity of our model on different

temporal scales according to motion information. We pro-

pose to assign pixel-level aggregation weights on each HR

estimate, and in practice this branch is applied on the largest

temporal scale. For a model of N SR inference branches,

the temporal modulation branch takes 2N − 1 consecutive

frames as input. Considering the computation cost and effi-

ciency, we adopt a similar architecture as the SR inference

branch for this branch. The temporal modulation branch

outputs the pixel-level weight maps on all N possible tem-

poral scales.

Aggregation: Each SR inference branch’s output is

pixel-wisely multiplied with its corresponding weight map

from the temporal modulation branch, and then these prod-

ucts are summed up to form the final estimated HR frame.

3.3. Training Objective

In training, we minimize the loss between the target HR

frame and the predicted output, as

min
Θ

∑

j

‖F (y(j);Θ)− x(j)‖22, (1)

where F (y;Θ) represents the output of the temporal adap-

tive network, x(j) is the j-th HR frame and y(j) are all the

associated LR frames; Θ is the set of parameters in the net-

work.

If we use an extra function W (y; θw) with parameter

θw to represent the behavior of the temporal modulation

branch, the cost function then can be expanded as:

min
θw,{θBi

}N
i=1

∑

j

‖
N∑

i=1

Wi(y
(j); θw)�FBi

(y(j); θBi
)−x(j)‖22.

(2)

Here � denotes the pointwise multiplication. FBi
(y; θBi

)
is the output of the SR inference branch Bi.

In practice, we first train each SR inference branch Bi

individually as in (1) using the same HR frame as the train-

ing target, and then use the resultant models to initialize the

SR inference branches when training the temporal adaptive

network following (2). This training strategy speeds up the

convergence dramatically without sacrificing the prediction

accuracy of SR.

4. Spatial Alignment Methods

For video SR, people usually spatially align neighboring

frames to increase the temporal coherence, and image align-

ment as a preprocessing step has proven beneficial to neu-

ral network based video SR methods [17, 12]. Therefore,

we investigate several image alignment methods in order to

provide better motion compensated frames for the temporal

adaptive network.

4.1. Rectified Optical Flow Alignment

It is well known that since the complex motion is difficult

to model, the conventional optical flow based image align-

ment using erroneous motion estimation may introduce ar-

tifacts, which can be propagated to the following SR step

and have a detrimental effect on it. We try simplifying the
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Figure 2. The architecture of the spatial alignment network and the cascade of it with the SR network. Each time one LR reference frame

and its neighboring LR frame (as the source frame) are first fed into a localization net to regress the alignment parameter θ̂ST . Then θ̂ST

is applied to the source frame in the spatial transform layer, to generate an LR aligned frame. The LR reference frame and all the aligned

neighboring frames are the input to the subsequent SR network. During the joint training, we minimize the weighted sum of the MSE loss

in the SR network and the MSE loss between θ̂ST and the ground truth θST in the spatial alignment network.

motion in the patch level to integer translations for avoid-

ing interpolation which may cause blur or aliasing. Given

a patch and its optical flow, we estimate the integer transla-

tion along the horizontal and vertical directions by rounding

the average horizontal and vertical displacement of all pix-

els in this patch, respectively. This scheme, termed rectified

optical flow alignment, proves more beneficial to the fol-

lowing SR than the conventional optical flow based image

alignment, which will be shown in Section 5.4.

4.2. Spatial Alignment Network

In order to align neighboring frames, we propose a spa-

tial alignment network which has the merits of efficient in-

ference and end-to-end training with the SR network. The

architecture of the spatial alignment network and the cas-

cade of it with the temporal adaptive network are shown in

Figure 2.

Each time the spatial alignment network takes as input

one LR reference frame and one LR neighboring frame (as

the source frame), and generates as output an aligned ver-

sion of this neighboring frame. Specifically, first these two

LR frames are fed into a localization network to predict the

spatial transform parameter θ̂ST , which is then applied to

the source frame in the spatial transform layer, to produce

the LR aligned frame. Given the success of the rectified op-

tical flow alignment, we design the localization network to

infer only two translation parameters. The LR source frame

and reference frame are stacked to form the input of 2 × c

channels. The localization network has two convolutional

layers of 32 kernels in the size of 9 × 9. Each convolu-

tional layer is followed by a max-pooling layer with stride

of 2 and kernel size of 2. Then there are two fully con-

nected layers which have 100 and 2 nodes, respectively, to

regress the 2 translation parameters. In practice, the spatial

alignment network works on the patch level for better mo-

tion modeling, and only the center region in each patch is

kept in order to avoid the empty area near the boundary after

translation. In training, the loss in the spatial alignment net-

work is defined as the mean squared error (MSE) between

θ̂ST and the ground truth θST , which can be acquired from

other image alignment methods, e.g. the rectified optical

flow alignment.

The LR reference frame and all the resultant aligned

neighboring frames from this network are used together as

input to the temporal adaptive network for SR.

We propose to train this network and the temporal adap-

tive network in an end-to-end fashion, since joint learning

is usually more advantageous than separate learning. Dur-

ing the joint training, we minimize the weighted sum of the

loss in the spatial alignment network and the loss from the

temporal adaptive network, as

min
{Θ,θL}

∑

j

‖F (y(j);Θ)−x(j)‖22+λ
∑

j

∑

k∈Nj

‖θ̂
(k)
ST−θ

(k)
ST ‖

2
2,

(3)

where Nj denotes the set of LR frames associated to the

j-th HR frame, and λ is the scaling factor for balancing

these two losses. θL represents the set of parameters in the

localization net.

5. Experiments

5.1. Datasets

Since the amount of training data plays an important

factor in training neural network, we combine three public

datasets of uncompressed videos: LIVE Video Quality As-

sessment Database [25], MCL-V Database [18] and TUM

1080p Data Set [13], so as to collect sufficient training data.

We prepare data in 3D volume from video clips that have

abundant textures and details and are separated by shots or

scenes. We choose six videos: calendar, city, foliage, pen-

guin, temple and walk as in [17], and a 4k video dataset,

Ultra Video Group Database [1], as the test sets. The orig-

inal HR frames are downsized by bicubic interpolation to

generate LR frames for training.

5.2. Implementation Details

Following the convention in [4, 30, 9, 26], we convert

each frame into the YCbCr color space and only process
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Table 1. PSNR (in dB) comparisons of different network architectures: average PSNR of all the frames in each video sequence by 4x

upscaling is displayed. Best results are shown in bold. From left to right, Bi: the HR prediction from the i-th SR inference branch; B1,2:

the straight average of HR predictions from B1 and B2; B1,2+T : the adaptive aggregation of the outputs of B1 and B2 with joint learning.

B1,2,3 and B1,2,3 + T follow the similar definitions as B1,2 and B1,2 + T , respectively.

B1 B2 B3 B1,2 B1,2 + T B1,2,3 B1,2,3 + T

calendar 20.88 21.16 21.32 21.10 21.26 21.24 21.51

city 25.70 25.91 26.25 25.89 25.97 26.10 26.46

foliage 24.29 24.51 24.81 24.47 24.58 24.70 24.98

penguin 36.46 36.41 36.40 36.56 36.53 36.59 36.65

temple 28.97 29.30 29.72 29.33 29.46 29.64 30.02

walk 27.69 27.78 27.90 27.88 27.90 28.00 28.16

average 27.33 27.51 27.73 27.54 27.62 27.71 27.96

the luminance channel with our model. Hence each frame

has c = 1 channel. We focus on the upscaling factor of four,

which is usually the most challenging case in video SR. The

input LR frames to the temporal adaptive network are the

volume of 5× 30× 30 pixels, i.e. patches of 30× 30 pixels

from five consecutive frames. These data are augmented

with rotation, reflection and scaling, providing about 10

million training samples. We implement our model using

Caffe [11]. We apply a constant learning rate of 10−4 for

the first two layers and 10−5 for the last layer, a batch size

of 64 with momentum of 0.9. We terminate the training af-

ter five million iterations. Experiments are conducted on a

workstation with one GTX Titan X GPU. Based on the ar-

chitecture of each SR inference branch, we can initialize the

parameters from the single frame SR model, except that the

filter weights in the first layer are evenly divided along the

temporal dimension. In practice, it is observed that this ini-

tialization strategy leads to faster convergence and usually

improves the performances.

5.3. Analysis of Network Architecture

We investigate the SR performance of different architec-

tures of the temporal adaptive network. Recall that Bi de-

notes the SR inference branch working on 2i−1 LR frames,

and T is the temporal adaptive branch. We explore the ar-

chitectures that contain (1) only B1, (2) only B2, (3) only

B3, (4) B1,2, (5) B1,2 + T , (6) B1,2,3 and (6) B1,2,3 + T .

B1,2 denotes the straight average of HR predictions from

B1 and B2, and B1,2,3 follows the similar definition. Note

that in the case of (1), each frame is super-resolved indepen-

dently. For the experiments in this section, LR consecutive

frames are aligned as in Section 4.1.

The PSNR (unit: dB) comparisons of six test sequences

by 4x upscaling are shown in Table 1. Average PSNR of all

the frames in each video is shown in the table. It can be ob-

served that generally the network performance is enhanced

as more frames are involved, and B1,2,3 + T performs the

best among all the architectures. B1,2 + T obtains higher

PSNRs than B1,2 and B1,2,3 + T is superior than B1,2,3,

which demonstrates the advantage of adaptive aggregation

over the straight averaging on various temporal scales.

(a) B1 (b) B3

(c) B1,2,3 + T (d) Ground truth
Figure 3. Examples of SR results from walk by 4x upscaling using

different network architectures. Compared with B1 and B3, the

temporal adaptive architecture B1,2,3 + T is able to effectively

handle both the rigid motion shown in the top left zoom-in region

and the complex motion in the bottom right zoom-in region.

In order to show the visual difference of SR results

among various architectures, we choose one frame from

walk, and show the SR results from B1, B3, B1,2,3 + T

as well as the ground truth HR frame in Figure 3 with two

zoom-in regions. The region in the blue bounding box con-

tains part of a flying pigeon which is subject to complex

motion among consecutive frames and thus is challenging

for accurate motion estimation. It can be observed that the

HR inference from B1 has much less artifacts than that from

B3, indicating the short term temporal dependency allevi-

ates the detrimental effect of erroneous motion estimation

in this case. On the contrary, the zoom-in region in the red

bounding box includes the ear and part of the neck of the

pedestrian with nearly rigid motion, in which case the HR

inference from B3 is able to recover more details. This man-

ifests the necessity of the long term temporal dependency.

B1,2,3+T is able to generate better HR estimates compared

with its counterparts of single branch in these two zoom-in

regions, and thus shows the effectiveness of the temporal

adaptive design in our model.

To further analyze the temporal adaptive branch, we vi-
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(a) Reference (b) B1 (c) B2 (d) B3 (e) Max label map
Figure 4. Weight maps of three SR inference branches given by the temporal modulation branch in the architecture B1,2,3 + T . The max

label map records the index of the maximum weight among all the SR inference branches at every pixel, which is shown in the last column.

B1, B2 and B3 are indicated in yellow, teal and blue, respectively. Frames from top to bottom: foliage and temple by 4x upscaling.

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 5. Comparison between the optical flow alignment and our

proposed rectified optical flow alignment. (a)-(c): three consec-

utive LR patches warped by optical flow alignment. (d)-(f): the

same three LR patches aligned by rectified optical flow alignment.

(g): HR prediction from (a)-(c). (h): HR prediction from (d)-(f).

(i): ground truth. Note that the rectified optical flow alignment

recovers more details inside the white bounding box.

sualize the weight maps given by the temporal modulation

branch of two frames from foliage and temple for each SR

inference branch. In addition, we use the index of the maxi-

mum weight among all SR inference branches at each pixel

to draw a max label map. These results are displayed in

Figure 4. It can be seen that B1 mainly contributes the

region of cars in foliage and the top region of the lantern

in temple, which are subject to large displacements caused

by object motion and camera motion. On the contrary, the

weight map of B3 has larger responses in the region sub-

ject to rigid and smooth motion, such as the plants of the

background in foliage and the sky in temple. Their com-

plementary behaviors are properly utilized by the temporal

adaptive aggregation of our model.

5.4. Analysis of Spatial Alignment Methods

We conduct experiments with the image alignment meth-

ods discussed in Section 4. We choose the algorithm of Liu

[19] to calculate optical flow, considering the motion esti-

mation accuracy and running time. Figure 5 shows a case

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Visualization of the inputs and outputs of the spatial

alignment network. (a)-(e): five consecutive LR frames as inputs.

(f)-(j): their corresponding outputs. Note that (c) and (h) are the

same reference frame without processing of this network. Only

the region in the center red bounding box is kept for SR.

where the conventional optical flow alignment fails and in-

troduces obvious artifacts in LR frames while the rectified

optical flow alignment succeeds.

As for the spatial alignment network, we use the result of

the rectified optical flow alignment as the training target of

the spatial transform parameter. We choose the input patch

size as 60 × 60 pixels for the spatial alignment network to

achieve the best motion modeling. We keep the center re-

gion to be 30× 30 pixels in each patch and discard the rest

region after translation. In the joint training λ is set as −103

empirically. The visualization of the inputs and outputs of

the spatial alignment network is shown in Figure 6. It is ob-

vious that the output neighboring frames are aligned to the

reference frame.

The PSNR comparisons between these alignment meth-

ods on six video sequences by 4x upscaling are shown in

Table 3. Average PSNR of all the frames in each video is

shown, and only B3 is used in the SR network. Our pro-

posed rectified optical flow alignment achieves the highest

PSNR, demonstrating its superiority over the conventional

optical flow alignment. The approach of spatial alignment

network clearly improves SR quality over its plain counter-

part, which shows the effectiveness of its alignment.
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Table 2. PSNR (in dB) comparisons of various video SR methods: PSNR of only the center frame in each video sequence by 4x upscaling

is displayed. Best results are shown in bold.

VSRnet[12] Bayesian[20] Deep-DE[17] ESPCN[26] VDSR[14] Proposed

calendar 20.99 21.59 21.40 20.97 21.50 21.61

city 24.78 26.23 25.72 25.60 25.16 26.29

foliage 23.87 24.43 24.92 24.24 24.41 24.99

penguin 35.93 32.65 30.69 36.50 36.60 36.68

temple 28.34 29.18 29.50 29.17 29.81 30.65

walk 27.02 26.39 26.67 27.74 27.97 28.06

average 26.82 26.75 26.48 27.29 27.58 28.05

Table 3. PSNR (in dB) comparisons of various frame alignment

methods: average PSNR of all the frames in each video sequence

by 4x upscaling is displayed. Best results are shown in bold. From

left to right, raw: raw LR frames; OF: conventional optical flow

alignment; ROF: rectified optical flow alignment; SAN: spatial

alignment network.

raw OF ROF SAN

calendar 21.07 21.28 21.32 21.27

city 25.92 26.29 26.25 26.23

foliage 24.49 24.62 24.81 24.78

penguin 36.37 36.32 36.40 36.29

temple 29.40 29.52 29.72 29.60

walk 27.82 27.79 27.90 27.83

average 27.51 27.64 27.73 27.67

5.5. Comparison with State-of-the-Art

We use our best model B1,2,3 + T with rectified optical

flow alignment to compare with several recent image and

video SR methods: VSRnet [12], Bayesian method [20],

Deep-DE [17], ESPCN [26] and VDSR [14] on the six test

sequences. We use the model and code of VSRnet, Deep-

DE and VDSR from their websites, respectively. The source

code of Bayesian method is unavailable, so we adopt the

reimplementation of Bayesian method in [23] and use five

consecutive frames to predict the center frame. We imple-

ment ESPCN by ourselves since its source code is unavail-

able as well. We report the result on only the center frame of

each sequence in that Deep-DE requires 15 preceding and

15 succeeding frames to predict one center frame and there

are only 31 frames in each sequence. We display several

visual results in Figure 7. It can be seen that our method is

able to recover more fine details with shaper edges and less

artifacts. The PSNRs are shown in Table 2. Our method

achieves the highest PSNR on all the frames.

For the application of HD video SR, we compare our

method with VSRnet and ESPCN on Ultra Video Group

Database. We do not include Bayesian method and Deep-

DE for comparison, since both of them take multiple hours

to predict one 4k HR frame (only the CPU version of code

for Deep-DE is available). The PSNR comparisons of these

three methods are in Table 4. Average PSNR of all the

frames in every video is shown. Our method obtains the

Table 4. PSNR (in dB) comparisons of several video SR methods

on Ultra Video Group Database by 4x upscaling. Best results are

shown in bold.

VSRnet[12] ESPCN[26] Proposed

Beauty 35.46 35.68 35.72

Bosphorus 43.02 43.01 43.28

HoneyBee 39.69 39.82 39.89

Jockey 40.25 40.65 40.81

ReadySteadyGo 39.69 40.36 40.82

ShakeNDry 39.06 39.51 39.58

YachtRide 37.48 37.56 37.87

Average 39.24 39.52 39.71

Table 5. Face identification accuracy of using various video SR

methods on YouTube Face dataset downsampled by a factor of 4.

The baseline refers to the result from the model directly trained on

LR frames. Best results are shown in bold.

Top-1 accuracy Top-5 accuracy

Baseline 0.442 0.709

VSRnet[12] 0.485 0.733

ESPCN[26] 0.493 0.734

Proposed 0.511 0.762

highest PSNR consistently over all the video sequences.

SR can be used as a pre-processing step to enhance the

performance of high-level vision applications, such as se-

mantic segmentation, face recognition and digit recognition

[3, 29], especially when the input data is of low visual qual-

ity. Here we evaluate how various video SR algorithms

could benefit the video face identification on YouTube Face

(YTF) dataset [31]. Our proposed method is compared with

VSRnet and ESPCN. We form a YTF subset by choosing

the 167 subject classes that contain more than three video

sequences. For each class, we randomly select one video

for testing and the rest for training. The face regions are

cropped and resized to 60 × 60 pixels, as the original res-

olution set, and then are downsampled by a factor of 4 to

comprise the low-resolution set. We train a customized

AlexNet [16] on the original resolution set as the classifier,

and feed SR results from the low-resolution set by various

algorithms for face identification. During testing, the pre-

diction probability is aggregated over all the frames in each

video clip. The top-1 and top-5 accuracy results of face

identification are reported in Table 5. We include as the
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VSRnet [12] Bayesian [20] Deep-DE [17] ESPCN [26] Proposed
Figure 7. Visual comparisons of SR results by 4x upscaling among different methods. From top to bottom: zoom-in regions from foliage,

penguin and temple.

baseline the result from a model directly trained on the LR

set. Our proposed method achieves both the highest top-1

and top-5 accuracy among all the SR methods, showing that

it is able to not only produce visually pleasing results, but

also recover more semantically faithful features that benefit

high-level vision tasks.

5.6. Running Time Analysis

In testing, the running time is mainly composed of two

parts: the frame alignment as pre-processing and the SR

inference. For the first part, the spatial alignment network

can align frames significantly faster than the optical flow

based method. For 4x SR of 4k videos, it takes about 15s
to warp five consecutive frames of 540× 960 pixels for the

optical flow based method on an Intel i7 CPU, while the

spatial alignment network needs only around 0.8s on the

same CPU, which reduces the time by one order of magni-

tude. For the second part, B1 takes about 0.3s to generate

a 4k HR frame. B1, B2 and B3 differ only in the numbers

of channels in the first layer, so their inference time varies a

little. The inference time of the temporal modulation branch

is comparable to that of the SR inference branch. All these

branches enjoy the benefit of extracting features directly on

LR frames and can be implemented in parallel for time effi-

ciency.

6. Conclusions

In this paper, we propose a temporal adaptive network

and explore several methods of image alignment including

a spatial alignment network, for the better usage of temporal

dependency and spatial alignment to enhance video SR. We

compare our proposed model with other recent video SR ap-

proaches comprehensively on various video sequences and

our model obtains state-of-the-art SR performance. Both

the temporal adaptation and the enhanced spatial alignment

increase the robustness to complex motion which benefits

video SR.
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