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Abstract

Solving the global method of Weighted Least Squares

(WLS) model in image filtering is both time- and memory-

consuming. In this paper, we present an alternative ap-

proximation in a time- and memory- efficient manner which

is denoted as Semi-Global Weighed Least Squares (SG-

WLS). Instead of solving a large linear system, we pro-

pose to iteratively solve a sequence of subsystems which

are one-dimensional WLS models. Although each subsys-

tem is one-dimensional, it can take two-dimensional neigh-

borhood information into account due to the proposed spe-

cial neighborhood construction. We show such a desirable

property makes our SG-WLS achieve close performance to

the original two-dimensional WLS model but with much

less time and memory cost. While previous related meth-

ods mainly focus on the 4-connected/8-connected neighbor-

hood system, our SG-WLS can handle a more general and

larger neighborhood system thanks to the proposed fast so-

lution. We show such a generalization can achieve better

performance than the 4-connected/8-connected neighbor-

hood system in some applications. Our SG-WLS is ∼ 20
times faster than the WLS model. For an image of M ×N ,

the memory cost of SG-WLS is at most at the magnitude of

max{ 1
M
, 1
N
} of that of the WLS model. We show the effec-

tiveness and efficiency of our SG-WLS in a range of appli-

cations.

1. Introduction

Image smoothing is an important operation in both im-

age processing and computer graphics. Many applications

require decomposing an image into a piecewise smooth base

layer which contains the main structure information and a

detail layer which captures the residual details. To achieve

the decomposition, Edge-Preserving Smoothing (EPS) is

required. EPS can be achieved with local filters which com-

pute the output as a weighted average of the input. Bilateral

filter [24] is one of the well-known filters which has been

widely used in various applications such as image upsam-

∗Part of this work was done when W. Liu was visiting The University

of Adelaide.

FIGURE 1: (a) Input image. Image smoothing (the upper left part) and

detail enhancement (the lower right part) with (b) WLS [6], time cost is

3.11 seconds, (c) FGS [20], time cost is 0.047 seconds, (d) our SG-WLS

with r = 1, τ = 1, time cost is 0.14 seconds. Our SG-WLS is over 20×

faster than WLS [6] but can overcome the limitation of FGS [20]. Zoom in

for better visual comparison.

pling [11], flash/no flash image filtering [21] and HDR tone

mapping [5]. There are also other local filters based on dif-

ferent theories and computational models [8, 10, 19, 29].

Most local filters can be efficiently computed. However,

they can cause gradient reversals and halo artifacts [6, 10]

which are their main drawbacks.

There are also EPS methods based on global filters

[6, 17, 26, 27]. These methods seek a globally optimal

solution to the objective function. The objective function

usually contains a data constraint term and a prior smooth-

ness term and needs to be solved globally in a principled

manner. Global filters can overcome the limitations of local

filters such as gradient reversals and halo artifacts [6]. How-

ever, most of global filters are time-consuming and some

of them are also memory-consuming. The Weight Least

Squares (WLS) model has been widely used in image pro-

cessing and computer graphics [1, 4, 6, 17]. The solution

to the model typically needs to solve a large linear system

which is both time- and memory-consuming.

In this paper, we present a new approximation to the

WLS model which is denoted as Semi-Global Weighted

Least Squares (SG-WLS). The main contributions of this

paper are as follows.
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− Our SG-WLS can achieve close performance to the orig-

inal WLS model in several challenging tasks. Yet, our SG-

WLS is ∼ 20 times faster than the original WLS model.

For an image of M ×N , the memory cost of SG-WLS is at

most at the magnitude of max{ 1
M
, 1
N
} of that of the origi-

nal WLS model.

− The 1D filters in our SG-WLS can take two-dimensional

neighborhood information into account each time due to the

newly proposed neighborhood construction. This is differ-

ent from previous methods [8, 22, 29, 20] that can only con-

sider neighbors in one dimension each time. Our neighbor-

hood construction thus overcomes the limitation of previous

methods and shows improved results in several applications.

− We propose a fast solution to each 1D filter in our

SG-WLS, which is denoted as r-band LU decomposition,

to handle a more general and larger neighborhood system

other than the 4-connected/8-connected neighborhood sys-

tem. Such a generalization can achieve better performance

than the 4-connected/8-connected neighborhood system in

some applications such as guided depth upsampling.

Background The WLS model is a fundamental opti-

mization framework that has been widely used [1, 4, 6, 17].

Given a target image F to be filtered and a guidance image

G, the formulation of WLS is defined as:

E(U) =
∑

i∈Ω

(Ui − Fi)
2 + λ

∑

i∈Ω

∑

j∈N(i)

ωi,j(Ui − Uj)
2

(1)

where Ω represents the set of all the coordinates. λ is a pa-

rameter that balances the data term and smoothness term. A

larger λ results in a larger smoothing effect on F . N(i) is

the neighborhood of the pixel with coordinate i which is a

square patch of (2r + 1) × (2r + 1) centered at i. ωi,j is

the guidance weight based on G. Based on different appli-

cations which we will detail in Sec. 3, we adopt two types

of guidance weight for different applications:

ωi,j = ωfrac
i,j =

1

|i− j|αs + ε
·

1

|Gi −Gj |αr + ε

ωi,j = ωexp
i,j = exp

(

−
|i− j|2

2σ2
s

)

· exp

(

−
|Gi −Gj |

2

2σ2
r

) (2)

where αs, αr, σs and σr are constants defined by the user.

ε is a small constant that prevents division by zero in areas

where G is constant. In this paper, we set ε = 0.0001.

The unique minimum of Eq. (1) can be obtained by solv-

ing the following large linear system:

A · U = F (3)

here U and F are vector representations of two-dimensional

images. If an image is of size M ×N , then its vector repre-

sentation is a S×1 vector where S = M ×N . A is a S×S
matrix and is defined as:

Ai,j =







1 + λ
∑

j∈N(i) ωi,j for i = j

−λωi,j for j ∈ N(i)
0 otherwise

(4)

There are two challenging issues in solving Eq. (3): (I)

Large memory cost. Despite the memory cost of the solver,

the memory cost of storing A in Eq. (4) is O(MNr2). As r
becomes larger, the memory cost increases very fast. (II)

Large time cost. Solving Eq. (3) is an inverse problem

which is time-consuming since Eq. (3) is very large. Note

that the time cost also increases as r becomes larger.

Eq. (3) can be directly solved by modern linear solvers

such as Preconditioned Conjugate Gradient (PCG) [12, 13].

However, the convergence of PCG strongly depends on a

good choice of the preconditioner [17]. Besides, the mem-

ory cost is not reduced. To solve the above two issues, vari-

ous approximate methods have been proposed in the litera-

ture. Barron et al. [3] proposed to first project the original

image into a bilateral space. Then a much smaller linear

system is solved with PCG [23]. The output is projected

back into the original image space which is the final filtered

result. The method in [2] shares the similar idea. Both of

their methods are post-processed by the domain transform

filtering [8] to smooth out the blocky artifacts introduced by

the bilateral grid. Xu et al. [25] proposed to first cluster the

image in an affinity space with kd tree and then solve an-

other linear system with the clustered image. In summary,

the key idea of these methods is to reduce the dimension

of either the large matrix (“A” in Eq. (3)) or the input im-

age. Thus the inverse operation of the very large system can

be reduced to the matrix inverse of much smaller matrixes

which can reduce both time and memory cost.

The Fast Global Smoother (FGS) proposed by Min et

al. [20] is closely related to our work. FGS divides the

WLS model into a sequence of subsystems in each row

and column which is different from the previous methods

[1, 2, 3, 25]. As FGS is locally global in each row and col-

umn, we denote it as a semi-global method. Our work is

also a semi-global method. It is different from FGS [20]

in the following two aspects: (I) Our construction of sub-

systems is different from that in FGS. FGS only consid-

ers neighbors in one dimension each time (row direction

or column direction) which has largely destroyed the two-

dimensional neighborhood system in the original model.

This can cause noticeable artifacts as illustrated in Fig. 1(c).

On the contrary, our method can take two-dimensional

neighborhood information into account. Thus, our method

can overcome the limitation of FGS and achieves close

performance to the original WLS model as illustrated in

Fig. 1(d). (II) The FGS only adopts the 4-connected/8-

connected neighborhood system while our method can han-

dle a more general (2r + 1) × (2r + 1) neighborhood sys-

tem thanks to the proposed fast solution. We show that such

a generalization makes our method achieve better perfor-

mance than the 4-connected/8-connected one in some ap-

plications such as guided depth upsampling [7, 16].
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FIGURE 2: Visual comparison of HDR tone mapping. Results of (a) WLS [6], (b) FGS [20] and (c) our SG-WLS with r = 1, τ = 1. Blocky artifacts are

noticeable in (b).

2. Semi-Global Weighted Least Squares

2.1. Neighborhood Construction of Subsystems

Like many previous separate filters [8, 22, 29], the FGS

proposed by Min et al. [20] separates a two-dimensional

filtering process into an iterative one-dimensional filtering

process. FGS is fast and can process a 1-megapixel RGB

image in 0.1 seconds on a standard desktop. However, the

main limitation of this separation is that only neighborhood

in one dimension is considered each time. In such cases,

the original two-dimensional neighbors has been largely de-

stroyed as illustrated in Fig. 3. In some applications, such

limitation can cause noticeable artifacts. We show some

examples of image detail enhancement and HDR tone map-

ping obtained by FGS in Fig. 1(c) and Fig. 2(b) respectively.

In this section, we show a new type of neighborhood

construction that can handle neighbors in two dimen-

sions each time within one-dimensional separate filters.

For a pixel at row s and column t in image I of size

M × N , we denote it as I(s,t). For a WLS model with a

(2r + 1) × (2r + 1) neighborhood system, we first extract

2r + 1 columns around the kth (k = r + 1, · · · , N − r)

column in the image, which are denoted as

[I(∗,k−r), I(∗,k−r+1), · · · , I(∗,k), · · · , I(∗,k+r−1), I(∗,k+r)].
Here I(∗,k) denotes all the pixels in the kth column. If

arranged in their original order, these 2r + 1 columns

totally have M row vectors of size 2r + 1. Then for each

ith (i = 1, · · · ,M ) row vector, if i is even, we reverse the

order of the ith row vector. Finally, these row vectors are

connected head to end to form a (2r + 1)M × 1 column

vector. We denote this process as neighborhood construc-

tion along column direction. It can also be performed along

row direction for each kth (k = r + 1, · · · ,M − r) row. In

this way, the formed 1D vector is a (2r + 1)N × 1 one. An

example of r = 1 is illustrated in Fig. 3.

Now we show how the above neighborhood construction

can handle neighbors in two dimensions. First, note that for

any 2r+1 neighboring pixels in the formed 1D vector, they

are also neighbors in the original (2r+1)× (2r+1) neigh-

borhood system. Then take the neighborhood construction

FIGURE 3: Illustration of neighborhood construction in subsystems of

FGS [20] and our SG-WLS.

along column direction for example, the final 1D vector also

contains pixels from neighboring r columns on each side

of the current column, which also contains neighbors in the

row direction. In this way, the final vector can handle neigh-

bors from both row and column directions. As illustrated

in Fig. 3, pixel “4” and pixel “6” are neighbors of pixel

“5” in row direction in the original neighborhood system.

In the neighborhood construction along column direction,

pixel “4” and pixel “6” are still neighbors of pixel “5”.

This newly designed neighborhood construction can well

overcome the limitation of previous separate filters that only

handle neighbors in one dimension [8, 22, 29]. Fig. 1(d) and

Fig. 2(c) show results obtained with our newly designed

neighborhood construction. Our results are indistinguish-

able to the ones obtained with WLS [6] and well overcome

the limitation of FGS [20]. Details of our method will be

described in Sec. 2.3.

2.2. Fast and Exact Solution to Subsystems

Since any neighboring 2r + 1 pixels in the 1D vector

formed in the neighborhood construction step are neigh-

boring pixels in the original two-dimensional neighborhood

system, we can solve another WLS model using this 1D

vector with a 2r + 1 neighborhood system. Similarly, for

each formed 1D vector, we can obtain a much smaller lin-

ear system as follows:

As · u = f (5)

where f is the formed 1D vector in the neighborhood con-

struction step. As is formed in a way similar to Eq. (4).

Eq. (5) is denoted as a subsystem of our method. Note

that the neighborhood system N(i) here is one-dimensional
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2r+1 pixels. To be explicit, As has the following structure:

As =





































a1 b1,1 b1,2 ··· b1,r
c1,1 a2 b2,1 ··· b2,r−1 b2,r
c1,2 c2,1 a3 ··· b3,r−2 b3,r−1 b3,r

.

.

.
.
.
.

.

.

.
. . .

. . .
. . .

. . .
. . .

c1,r c2,r−1 c3,r−2

. . .
. . .

. . .
. . .

. . .
. . .

c2,r c3,r−1

. . .
. . . as−r bs−r,1 bs−r,2 ··· bs−r,r

c3,r

. . .
. . . bs−r,1

. . .
. . .

. . .
.
.
.

. . .
. . . bs−r,2

. . . as−2 bs−2,1 bs−2,2

. . .
.
.
.

. . . cs−2,1 as−1 bs−1,1
cs−r,r ··· cs−2,2 cs−1,1 as





































here s = (2r + 1)M for neighborhood construction along

column direction and s = (2r+1)N for neighborhood con-

struction along row direction.

Matrix As in Eq. (5) is positive definite and it is also

a diagonal matrix with bandwidth of r. For r = 1, solving

Eq. (5) has been well studied and has classical solution such

as LU decomposition [9]. However, here we need to solve

a more general case with r ≥ 1 which is seldom studied.

In this section, we propose a solution to Eq. (5) to handle

the case for any r ≥ 1, which is denoted as r-band LU de-

composition. Moreover, such a decomposition can be com-

pleted efficiently. To be more explicit, this process can be

formulated as follows:

As = P ·Q (6)

P · y = f (7)

Q · u = y (8)

Assuming P and Q have the following structures:

P =



































α1

γ1,1 α2

γ1,2 γ2,1 α3

...
...

...
. . .

γ1,r γ2,r−1 γ3,r−2

. . .
. . .

γ2,r γ3,r−1

. . .
. . . αs−r

γ3,r

. . .
. . . γs−r,1

. . .

. . .
. . .

...
. . .

. . .

. . .
...

. . .
. . . αs−1

γs−r,r ··· γs−2,2 γs−1,1 αs



































Q =





















1 β1,1 β1,2 ··· β1,r

1 β2,1 ··· β2,r−1 β1,r

1 ··· β3,r−2 β2,r−1 β1,r

. . .
. . .

. . .
. . .

. . .
1 βs−r,1 ··· ··· βs−r,r

. . .
. . .

. . .
...

1 βs−2,1 βs−2,2

1 βs−1,1

1





















According to Eq. (6), for i = 1, · · · , r, we have:

α1 = a1, γ1,i = c1,i, β1,i = b1,i/α1 (9)

For k = 2, · · · , r and i = 1, · · · , r − k + 1, we have:

αk = ak −
∑k−1

t=1 γk−t,tβk−t,t,

γk,i = ck,i −
∑k−1

t=1 γk−t,i+tβk−t,t,

βk,i =
1
αk

(bk,i −
∑k−1

t=1 βk−t,i+tγk−t,t)
(10)

For k = 3, · · · , r and i = r−k+2, · · · , r−1, we have:

γk,i = ck,i −
∑r−i

t=1 γk−t,i+tβk−t,t,

βk,i =
1
αk

(bk,i −
∑r−i

t=1 βk−t,i+tγk−t,t)
(11)

For k = r + 1, · · · , s, we have:

αk = ak −
∑r

t=1 γk−t,tβk−t,t, (12)

For k = r+1, · · · , s− 1 and i = 1, · · · ,min{r− 1, s−
k}, we have:

γk,i = ck,i −
∑r−i

t=1 γk−t,i+tβk−t,t,

βk,i =
1
αk

(bk,i −
∑r−i

t=1 βk−t,i+tγk−t,t)
(13)

For k = 2, · · · , s− r, we have:

γk,r = ck,r, βk,r =
bk,r

αk
(14)

Eqs. (9)∼(14) are the r-band LU decomposition in

Eq. (6). When this is completed, we can solve Eq. (5)

through Eq. (7) and Eq. (8). When solving Eq. (7), we first

have:

y1 = f1
α1

(15)

For k = 2, · · · , r, we have:

yk = 1
αk

(fk −
∑k−1

t=1 γt,k−tyt) (16)

For k = r + 1, · · · , s, we have:

yk = 1
αk

(fk −
∑r

t=1 γk−t,tyk−t) (17)

When solving Eq. (8), we first have:

us = ys (18)

For k = s− 1, · · · , s− r + 1, we have:

uk = yk −
∑s−k

t=1 βk,txk+t (19)

For k = s− r, · · · , 1, we have:

uk = yk −
∑r

t=1 βk,txk+t (20)

The subsystem in Eq. (5) can be solved exactly through

Eqs. (9)∼(20). Note that for r = 1, only Eqs. (9), (12),

(14), (15), (17), (18) and (20) are needed. For r = 2, only

Eq. (11) is not needed.
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2.3. Semi­global Edge­preserving Smoothing

Based on the subsystems described in Sec. 2.1 and

Sec. 2.2, we can perform edge-preserving smoothing which

can benefit numerous applications [6, 20]. For a M×N im-

age with a (2r+1)×(2r+1) two-dimensional neighborhood

system, our goal is to divide the original two-dimensional

WLS model described in Eq. (1) into a sequence of one-

dimensional WLS models with a 2r + 1 one-dimensional

neighborhood system in Eq. (5).

Our smoothing process contains four steps. The first

step is the one-dimensional neighborhood construction de-

scribed in Sec. 2.1. 2r + 1 columns (along column direc-

tion) or rows (along row direction) in the original image

are needed each time. This step results in 1D vectors of

size (2r+1)M along column direction or (2r+1)N along

row direction. Each vector has a 2r + 1 neighborhood sys-

tem. The second step is solving the linear system with the

formed 1D vector which is described in Sec. 2.2 . The third

step is transforming the solution in the second step into an

image patch of 2r + 1 rows/columns. This is a simple in-

verse operation of the neighborhood construction in the first

step. The fourth step is averaging pixel values. This is

because one pixel can be involved in several subsystems.

These values in different subsystems of the same pixel are

averaged as the final output. The above four steps are per-

formed T times along column direction and row direction

alternatively to get the final smoothed image. In this paper,

we find T = 2 ∼ 4 is appropriate for most applications. As

each subsystem is a globally optimized one while it is only

performed in a local region of an image, we call our method

as Semi-Global Weighted Least Squares (SG-WLS).

When SG-WLS is used for sparse interpolation such as

guided depth upsampling [7, 16] and colorization [15], it

cannot be directly applied to the sparse input data due to the

unstable result. Instead, we perform guided sparse interpo-

lation in a way similar to the one in [14, 16, 20]. Denote the

index map of input as H , then the output is computed as:

U(m) =
A−1F (m)

A−1H(m)
,m ∈ Ω (21)

The WLS smoothing is applied to both the input F and

the index map H . This procedure is approximated with our

SG-WLS.

Different from the FGS [20] that only adopts the 4-

connected/8-connected neighborhood system, our SG-WLS

focuses on a more general case where the neighborhood

system is (2r + 1) × (2r + 1). In fact, the 8-connected

neighborhood system in the FGS [20] is a special case of

our neighborhood system with r = 1. In their work, the

smoothing strength is increased by enlarging λ. For our

SG-WLS, we show that the smoothing strength can also be

increased by enlarging the radius r of the neighborhood sys-

tem. Particularly, in some cases, enlarging r can achieve

FIGURE 4: Visual comparison of the advantage of using a lager neighbor-

hood system radius. 4× guided upsampling result of our SG-WLS with (a)

r = 1, σs = 1, σr = 3, λ = 900, the MAD is 2.4, (b) r = 4, σs = 4,

σr = 3, λ = 200, the MAD is 1.9.

the smoothing property that cannot be achieved by simply

enlarging λ. Fig. 4 shows one example of guided depth up-

sampling. When enlarging λ, depth edges have been blurred

while some parts are still noisy as highlighted. However,

when we use a larger r but a smaller λ, depth edges are

well preserved while the noise is also smoothed. Note that

Yang et al. [28] also adopted an 11× 11 neighborhood sys-

tem other than a 4-connected/8-connected one for guided

depth upsampling. This also validates the effectiveness of

larger neighborhood systems. Quantitative measurement of

Mean Absolute Difference (MAD) between the result and

the groundtruth also shows the effectiveness of using larger

neighborhood systems.

The neighborhood construction in the first step

can be performed in a sliding manner. Take the

neighborhood construction along column direction

for example, when a 1D vector is formed with

2r + 1 columns centered at the kth column, i.e.,

[I(∗,k−r), I(∗,k−r+1), · · · , I(∗,k), · · · , I(∗,k+r−1), I(∗,k+r)].
Then the next 1D vector is formed with 2r + 1 columns

centered at the (k + 1)th column. However, we find this

kind of neighborhood construction is redundant. We can

slide it with a step τ , i.e., for the above case, the next 1D

vector can formed with 2r + 1 columns centered at the

(k + τ)th column. According to our experimental results,

for τ ≤ r, our SG-WLS has similar performance to that

of τ = 1 but with smaller computational cost. Fig. 5

shows an example of detail enhancement and guided depth

upsampling. The MAD of guided depth upsampling results

in Fig. 5(c) also shows increasing τ seldom decreases the

performance. Fig. 6 shows computation time comparison

among different values of τ . As shown in Fig. 6, increasing

τ can greatly reduce the computational cost.

Computation Complexity Assume that the image is of

size M×N . The neighborhood system is (2r+1)×(2r+1)
in the original two-dimensional WLS model. Thus, the

neighborhood system of our SG-WLS is 2r + 1. Despite

the few elements near the boundary, when solving a sub-
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FIGURE 5: Comparison of image detail enhancement and guided depth upsampling using different values of τ . Results are obtained with r = 4 and (a)

τ = 1, (b) τ = 4. (c) MAD comparison of guided depth upsampling under different values of τ .

FIGURE 6: Computation time of our SG-WLS for smoothing a 1-megapixel

RGB image with different parameter settings.

system in Eq. (5), there are r times multiplication for each

αk and γk,i, r + 1 times multiplication for each βk,i, r + 1
times addition for αk, γk,i and βk,i. Thus, Eqs. (9)∼(14)

require O(sr + sr2 + sr(r + 1)) times multiplication op-

erations and O(s(r + 1) + 2sr(r + 1)) times addition op-

erations. Since s = (2r + 1)M along column direction

and s = (2r + 1)N along row direction, the computa-

tional complexity is O(Mr3) or O(Nr3) for both multipli-

cation and addition. Similarly, solving Eq. (7) and Eq. (8)

through Eqs. (15)∼(20) requires O(Mr2) or O(Nr2) multi-

plication and addition operations. Thus, the computational

complexity of solving a subsystem in Eq. (5) is O(Mr3)
or O(Nr3). There are total N

τ
subsystems when applying

SG-WLS along column direction and M
τ

subsystems along

row direction. Thus, when applied T times, the final com-

putational complexity of SG-WLS is O(T
τ
MNr3). Fig. 6

shows the computation time of different r and τ for filtering

TABLE 1: Computation time of different methods for smoothing a 1-

megapixel RGB image.

Method WLS [6] FGS [20] Ours (r = 1, τ = 1)

Time (seconds) 8.02 0.1 0.35

a 1-megapixel RGB image on a computer with an Intel i7

3.40GHz CPU and 8GB memory. The iteration number is

fixed with T = 4. In particular, we compare the compu-

tation time of our SG-WLS of r = 1, τ = 1 with that of

the WLS model [6] and FGS [20] in Table 1. Our method

is over 20× faster than the WLS model [6]. Although our

SG-WLS is a little slower than FGS [20], it can overcome

several limitations of FGS [20] and achieves close perfor-

mance to the WLS model [6].

Storing matrixes As, P,Q in Eq. (6) is the main mem-

ory cost of our SG-WLS which is O(sr). Since the memory

cost of Eqs. (9)∼(20) is O(s), the final memory cost of our

SG-WLS is O(sr + s) which is O(Mr2) or O(Nr2). Note

that despite the memory cost of the solver which may be

different among different solvers, the memory cost of stor-

ing the matrix A in the original WLS model in Eq. (3) is

O(MNr2). Thus, the memory cost of our SG-WLS is at

most at the magnitude of max{ 1
M
, 1
N
} of that of the WLS

model.

3. Applications and Experimental Results

We test our SG-WLS on four applications including im-

age detail enhancement, HDR tone mapping, guided depth

upsampling and image colorization. For the first two appli-

cations which represent applications with dense input data,

we adopt ωi,j = ωfrac
i,j in Eq. (2). For the rest two ap-

plications, we adopt ωi,j = ωexp
i,j in Eq. (2). These two

applications represent applications with sparse input data

which can be regular (guided depth upsampling) or irreg-

ular (image colorization). For more experimental results,

please refer to our supplementary materials.

Image detail enhancement aims at enhancing the details

of an image while avoiding artifacts such as gradient re-

versals and halos [6, 10]. In our experiments, an image

is decomposed into a base layer and a detail layer through

edge-preserving smoothing such as FGS [20] and WLS [6].

Parameters of our SG-WLS are set as follows: r = 1, τ =
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FIGURE 7: Image detail enhancement comparison. (a) Input image. Results of (b) WLS [6], (c) FGS [20] and (d) our SG-WLS. The result in (b) is pale

while the ones in (a) and (c) are more colorful.

1, αs = αr = 1.2, λ = 900. Similar to the result in Fig. 1,

we illustrate another example of our detail enhancement re-

sults and comparison with results of other methods in Fig. 7.

All the results are obtained by enlarging 3 times of their cor-

responding detail layer. Visual comparison shows that our

SG-WLS can achieve close performance to the WLS [6].

Note that the result of FGS appears pale while results of our

SG-WLS and WLS [6] are more colorful. Please zoom in

for better visual comparison.

HDR tone mapping is another application that needs edge-

preserving smoothing. Based on the multi-scale tone map-

ping framework proposed by Farbman et al. [6] 1, the input

image is decomposed into a base layer and three detail lay-

ers. The base layer is nonlinearly mapped to a low dynamic

range and is re-combined with detail layers. Filters are ap-

plied to the logarithmic HDR images. Parameters of our

SG-WLS are set as follows: r = 1, τ = 1, αs = αr = 1.2
and λ = 5/40/320 for the first/second/third detail layer.

Results are illustrate in Fig. 2 as well as Fig. 8. There are

noticeable blocky artifacts in the results of FGS [20] while

our SG-WLS can well overcome this limitation and shows

close performance to WLS [6].

Guided depth upsampling aims at enlarging the resolution

and smoothing the noise of a small noisy input depth map

with the guidance of a color image. The input depth map

is firstly projected onto the high resolution coordinate. We

adopt Eq. (21) for this task where our SG-WLS is applied

to both the sparse input and the index map. The guidance

weight is based on the guidance image. Results of FGS [20]

are obtained in a similar manner. The parameter setting of

our SG-WLS is as follows: r = 4, τ = 4, σs = 4, σr = 3
and λ = 100/200/400 for 2 × /4 × /8× upsampling. We

adopt the parameters used in [16] for FGS [20] to produce

the results. Upsampling results of different methods are

shown in Fig. 9. The main challenges of guided depth up-

sampling are texture copy artifacts and blurring edges [18].

As illustrated in highlighted regions, our SG-WLS shows

1The source code can be downloaded here http://www.cs.huji.

ac.il/˜danix/epd/

better performance in handing the challenges than com-

pared methods. We further show MAD of different meth-

ods in Table 2. Note that the results of our SG-WLS with

r = 4, τ = 4 clearly outperform the results of WLS [6],

FGS [20] and our SG-WLS with r = 1, τ = 1. This also

validates the effectiveness of using large neighborhood sys-

tems.

Image colorization is colorizing a gray image given user

specified scribbles. Two chrominance channels U and V
extracted from the input color scribbles are used as sparse

input which is propagated with the guidance of the gray im-

age. Similar to guided depth upsampling, we use Eq. (21)

for the propagation of the U and V channel. The parame-

ters of our SG-WLS are set as follows: r = 4, τ = 2, σs =
4, σr = 2, λ = 900. We show experimental results of differ-

ent methods in Fig. 10. Note that the hair in the red circle in

the result of FGS [20] is seldom colorized while the ones in

our result and the result of WLS [6] are properly colorized.

Conclusion In this paper, we have presented a fast alter-

native approximation to the Weighted Least Squares (WLS)

model, termed Semi-Global Weighted Least Squares (SG-

WLS). Both the time cost and the memory cost of our SG-

WLS are much more efficient than that of the WLS model

while it can achieve close performance to the WLS model

in several applications. Our SG-WLS can overcome sev-

eral limitations of previous related work due to the newly

designed neighborhood system construction. Thanks to the

proposed fast solution to 1D filters, our SG-WLS is also

capable of a more general and larger neighborhood system

other than the 4-connected/8-connected neighborhood sys-

tem adopted by previous work. We show such a generaliza-

tion can achieve better performance in some applications

such as guided depth upsampling. Through experiments

of several applications, we show the effectiveness and ef-

ficiency of our SG-WLS.
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TABLE 2: Mean Absolute Difference (MAD) of guided depth upsampling errors for different methods. Best results are in bold.

Art Book Dolls Laundry Moebius Reindeer

2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×

JBU [11] 1.59 2.06 3.18 0.87 1.24 2.04 0.91 1.2 1.98 0.94 1.38 2.15 0.89 1.28 2.05 0.95 1.36 2.24

GF [10] 1.91 2.23 3.11 0.84 1.19 1.86 0.87 1.17 1.89 1.01 1.31 2.25 0.92 1.19 1.88 1.06 1.34 1.98

WLS [6] 1.58 2.52 3.96 0.9 1.25 1.85 0.93 1.3 1.84 1.03 1.5 2.33 0.94 1.34 1.97 1.09 1.6 2.42

FGS [20] 1.36 2.01 3.71 1.25 1.73 2.58 1.33 1.89 2.62 1.11 1.62 2.61 1.35 1.95 2.81 1.46 2.08 3.07

Ours (r = 1, τ = 1) 1.6 2.4 3.75 0.95 1.31 1.97 0.96 1.37 2.05 1.05 1.6 2.45 0.94 1.37 2.02 1.12 1.68 2.49

Ours (r = 4, τ = 4) 1.26 1.9 3.07 0.82 1.12 1.73 0.87 1.11 1.81 0.86 1.17 2 0.82 1.08 1.79 0.9 1.32 2.01

FIGURE 8: HDR tone mapping results of (a) WLS [6], (b) FGS [20] and (c) our SG-WLS. Regions in red boxes are highlighted. The result in (b) shows

noticeable blocky artifacts.

FIGURE 9: Guided depth upsampling results comparison. (a) Guidance color image. (b) Input noisy depth map (shown in bicubic interpolation). Results of

(c) WLS [6], (d) FGS [20] and (e) our SG-WLS.

FIGURE 10: Image colorization results comparison. (a) Input gray image with color scribbles. Results of (b) Levin et al. [15], (c) FGS [20] and (d) our

SG-WLS.
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