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Abstract

Domain adaption (DA) allows machine learning meth-

ods trained on data sampled from one distribution to be ap-

plied to data sampled from another. It is thus of great prac-

tical importance to the application of such methods. De-

spite the fact that tensor representations are widely used in

Computer Vision to capture multi-linear relationships that

affect the data, most existing DA methods are applicable to

vectors only. This renders them incapable of reflecting and

preserving important structure in many problems. We thus

propose here a learning-based method to adapt the source

and target tensor representations directly, without vector-

ization. In particular, a set of alignment matrices is intro-

duced to align the tensor representations from both domains

into the invariant tensor subspace. These alignment matri-

ces and the tensor subspace are modeled as a joint opti-

mization problem and can be learned adaptively from the

data using the proposed alternative minimization scheme.

Extensive experiments show that our approach is capable of

preserving the discriminative power of the source domain,

of resisting the effects of label noise, and works effectively

for small sample sizes, and even one-shot DA. We show that

our method outperforms the state-of-the-art on the task of

cross-domain visual recognition in both efficacy and effi-

ciency, and particularly that it outperforms all comparators

when applied to DA of the convolutional activations of deep

convolutional networks.

1. Introduction

The difficulty of securing an appropriate and exhaus-

tive set of training data, and the tendency for the domain

of application to drift over time, often lead to variations

between the distributions of the training (source) and test
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(target) data. In Machine Learning this problem is labeled

domain mismatch. Failing to model such a distribution shift

may cause significant performance degradation. Domain

adaptation (DA) techniques capable of addressing this prob-

lem of distribution shift have thus received significant atten-

tion recently [23].

The assumption underpinning DA is that, although the

domains differ, there is sufficient commonality to support

adaptation. Many approaches have modeled this com-

monality by learning an invariant subspace, or set of sub-

spaces [1, 10, 12, 13]. These methods are applicable to vec-

tor data only, however. Applying these methods to struc-

tured high-dimensional representations (e.g., convolutional

activations), thus requires that the data be vectorized first.

Although this solves the algebraic issue, it does not solve

the underlying problem.

Tensor arithmetic is a generalization of matrix and vec-

tor arithmetic, and is particularly well suited to represent-

ing multi-linear relationships that neither vector nor matrix

algebra can capture naturally [33]. The higher-order statis-

tics of a vector-valued random variables are most naturally

expressed as tensors, for instance. The power of tensor

representations has also been demonstrated for a range of

computer vision tasks (see Section 2 for examples). Deep

convolutional neural networks (CNNs) [18] represent the

state-of-the-art method for a substantial number of visual

tasks [15, 20, 24], which makes DA a critical issue for their

practical application. The activations of such CNNs, and the

interactions between them, are naturally represented as ten-

sors, meaning that DA should also be applied using this rep-

resentation. We show in Section 5 that the proposed method

outperforms all comparators in DA of the convolutional ac-

tivations of CNNs.

Vectorization also often results in the so-called curse of

dimensionality [27], as the matrices representing the re-

lationships between vectorized tensors have n2 elements,

where n is the number of elements in the tensor. This leads

to errors in the estimation of this large number of parame-

ters and high computational complexity. Furthermore, after
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Figure 1: Vector subspace (top) vs. tensor subspace (bot-

tom). Third-order (3-mode) tensors are used as an example.

Compared to the vector subspace, the tensor subspace con-

sists of a set of subspaces characterizing each mode respec-

tively. Higher-order tensor modeling offers us an opportu-

nity to investigate multiple interactions and couplings that

capture the commonality and differences between domains.

vectorization, many existing approaches become sensitive

to the scarcity of source data (compared to the number of

dimensions) and noise in the labels. The proposed direct

tensor method uses much lower dimensional entities, thus

avoiding these estimation problems.

To address these issues we propose to learn an invari-

ant tensor subspace that is able to adapt the tensor repre-

sentations directly. The key question is thus whether we

can find an invariant tensor subspace such that the domain

discrepancy is reduced when the source data are adapted

into the target domain. Following this idea, a novel ap-

proach termed Tensor-Aligned Invariant Subspace Learning

(TAISL) is proposed for unsupervised DA. By introducing

a set of alignment matrices, the tensor representations from

the source domain are aligned to an underlying tensor sub-

space shared by the target domain. As illustrated in Fig. 1,

the tensor subspace is able to preserve the intrinsic struc-

ture of representations by modeling the correlation between

different modes. Instead of executing a holistic adaptation

(where all feature dimensions would be taken into account),

our approach performs mode-wise partial adaptation (where

each mode is adapted separately) to avoid the curse of di-

mensionality. Seeking such a tensor subspace and learning

the alignment matrices are consequently formulated into a

joint optimization problem. We also propose an alternat-

ing minimization scheme, which allows the problem to be

effectively optimized by off-the-shelf solvers.

Extensive experiments on cross-domain visual recogni-

tion demonstrate the following merits of our approach: i)

it effectively reduces the domain discrepancy and preserves

the discriminative power of the original representations; ii)

it is applicable to small-sample-size adaptation, even when

there is only one source sample per category; iii) it is ro-

bust to noisy labels; iv) it is computationally efficient, be-

cause the tensor subspace is constructed in a much smaller

space than the vector-form paradigm; and v) it shows supe-

rior performance over state-of-the-art vector representation-

based approaches in both the classification accuracy and

computation time. Source code is made available online at:

https://github.com/poppinace/TAISL.

2. Related work

Our work is closely related to subspace-based unsuper-

vised DA and tensor representations.

Subspace-based domain adaptation. Gopalan et al. [13]

present one of the first visual DA approaches, which sam-

ples a finite set of subspaces along geodesic flows to bridge

the source and target domains. Later in [12], Gong et al.

kernelize this idea by integrating an infinite number of sub-

spaces that encapsulate the domain commonness and dif-

ference in a smooth and compact manner. Recently, [10]

argues that it is sufficient to directly align the subspaces of

two domains using a linear projection. Intuitively, such a

linear mapping defines a shift of viewing angle that snap-

shots the source data from the target perspective. Subse-

quently, [1] extends [10] in a landmark-based kernelized

paradigm. The performance improvement is due to the non-

linearity of the Gaussian kernel and sample reweighting.

Alternatively, [28] imposes a low-rank constraint during the

subspace learning to reconstruct target samples with rele-

vant source samples. More recently, [30] proposes to use

the covariance matrix, a variant of the subspace, to charac-

terize the domain, the adaptation is then cast as two simple

but effective procedures of whitening the source data and

recoloring the target covariance.

Tensor representations. Tensor representations play a

vital role in many computer vision applications [16, 18, 19,

32]. At the early stage of face representations, [32] intro-

duced the idea of “tensorfaces” to jointly model multiple

variations (viewpoint, expression, illumination, etc.). [19]

achieves robust visual tracking by modeling frame-wise ap-

pearance using tensors. [16] proposes tensor-based canoni-

cal correlation analysis as a representation for action recog-

nition and detection. In other low-level tasks, such as image

inpainting and image synthesis [40], modeling images as a

tensor is also a popular choice.

More recently, the most notable example is the deep

CNNs [18], as convolutional activations are intrinsically

represented as tensors. The state-of-the-art performance

of generic visual recognition and semantic image segmen-

tation benefits from fully-convolutional models [15, 20].

Aside from this, by reusing convolutional feature maps, pro-

posal generation and object detection can be performed si-

multaneously in a faster R-CNN fashion [24]. Yet, convolu-

tional activations still suffer from the domain shift [21, 37].

How to adapt convolutional activations effectively remains

an open question.
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Tensor representations are important, while solutions to

adapt them are limited. To fill this gap, we present one of the

first DA approaches for tensor representations adaptation.

3. Learning an invariant tensor subspace

Before we present our technical details, some mathe-

matical background related to tensor decomposition is pro-

vided. In the following mathematical expressions, we de-

note matrices and tensors by uppercase boldface letters and

calligraphic letters, respectively, such as U and U .

3.1. Tensor decomposition revisited

A tensor of order (mode) K is denoted by X ∈
R

n1×...×nK . Its mode-k product is defined as

X ×k V . The operator ×k indicates matrix multipli-

cation performed along the k-th mode. Equivalently,

(X ×k V )(k) = V X(k), where X(k) is called the mode-k
matrix unfolding, a procedure of reshaping a tensor

X into a matrix X(k) ∈ R
nk×n1...nk−1nk+1...nK .

In this paper we draw upon Tucker Decomposition [17]

to generate tensor subspaces. Tucker decomposition de-

composes a K-mode tensor X into a core tensor multiplied

by a set of factor matrices along each mode as follows:

X = G ×1 U
(1) ×2 U

(2) ×3 · · · ×K U
(K) = [[G;U ]] , (1)

where G ∈ R
d1×...×dK is the core tensor, and U (k) ∈

R
nk×dk denotes the factor matrix of the k-th mode. The col-

umn space of U (k) expands the corresponding signal sub-

space. To simply the notation, with U = {U (k)}k=1,...,K ,

Tucker decomposition can be concisely represented as the

right part of Eq. 1. Here, U is the tensor subspace, and G
is the tensor subspace representation of X . Alternatively,

via the Kronecker product, Tucker decomposition can be

expressed in matrix form as X(k) = U (k)G(k)U
T
\k, where

U\k = U
(K) ⊗ · · · ⊗U

(k+1) ⊗U
(k−1) ⊗ · · · ⊗U

(1), (2)

and ⊗ denotes the Kronecker product.

3.2. Naive tensor subspace learning

Perhaps the most straight-forward way to adapt domains

is to assume an invariant subspace between the source do-

main S and the target domain T . This assumption is rea-

sonable when the domain discrepancy is not very large.

With this idea, we first introduce the Naive Tensor Subspace

Learning (NTSL) below, which can be viewed as a baseline

of our approach.

Given Ns samples {Xn
s }n=1,...,Ns

from source do-

main, each sample is denoted as a K-mode tensor Xn
s ∈

R
n1×...×nK . For simplicity, Ns samples are stacked into

a (K + 1)-mode tensor Xs ∈ R
n1×...×nK×Ns . Similarly,

let Xt ∈ R
m1×...×mK×Nt be a set of Nt samples from the

target domain T . In general, we consider nk = mk, k =
1, 2, ...,K, because the case with heterogeneous data is out

the scope of this paper. Provided that S and T share a

underlying tensor subspace U = {U (k)}k=1,...,K ,U (k) ∈
R

nk×dk , on the basis of Tucker decomposition, seeking U
is equivalent to solve the following optimization problem as

min
U,Gs,Gt

‖Xs − [[Gs;U ]]‖
2
F + ‖Xt − [[Gt;U ]]‖

2
F

s.t. ∀k, U (k)T
U

(k) = I

, (3)

where Gs and Gt denote the tensor subspace representation

of Xs and Xt, respectively. I is an identity matrix with

appropriate size. Here U is the invariant tensor subspace in

which the idea of DA lies. One can employ the off-the-shelf

Tucker decomposition algorithm to solve Eq. (3) effectively.

Once the optimum U∗ is identified, Gs can be obtained by

the following straight-forward multilinear product as

Gs = Xs ×1 U
∗(1)T ×2 U

∗(2)T ×3 · · · ×K U∗(K)T . (4)

A similar procedure can be applied to derive Gt. Next, if DA

is evaluated in the context of classification, one can learn a

linear classifier with Gs and source label Ls, and then veri-

fies the classification performance on Gt.

3.3. Tensor­aligned invariant subspace learning

Eq. (3) assumes a shared subspace between two domains.

However, when the domain discrepancy becomes larger, en-

forcing only a shared subspace is typically not sufficient.

To address this, we present Tensor-Aligned Invariant Sub-

space Learning (TAISL) which aims to reduce the domain

discrepancy more explicitly. Motivated by the idea that a

simple linear transformation can effectively reduce the do-

main discrepancy [2, 10], we introduce a set of alignment

matrices into Eq. (3). This yields the following optimiza-

tion problem as

min
U,Gs,Gt,M

‖[[Xs;M]]− [[Gs;U ]]‖
2
F + ‖Xt − [[Gt;U ]]‖

2
F

s.t. ∀k, U (k)T
U

(k) = I

, (5)

where M = {M (k)}k=1,...,K , M (k) ∈ R
mk×nk . With M,

samples from S can be linearly aligned to T . Here, M (k)

is unconstrained, which is undesirable in a well-defined op-

timization problem. To narrow down the search space, a

natural choice to regularize M (k) is the Frobenius norm

‖M (k)‖2F . However, [22] suggests that the original data

variance should be preserved after the alignment. Other-

wise, there is a high probability the projected data will clus-

ter into a single point. As a consequence, we employ a

PCA-like constraint on M to maximally preserve the data

variance. This gives our overall optimization problem

min
U,Gs,Gt,M

‖[[Xs;M]]− [[Gs;U ]]‖
2
F + ‖Xt − [[Gt;U ]]‖

2
F

+ λ‖[[[[Xs;M]];MT ]]−Xs‖
2
F

s.t. ∀k, U (k)T
U

(k) = I,M
(k)

M
(k)T = I

, (6)

where λ is a weight on the regularization term. Intu-

itively, the regularization term measures how well M re-

constructs the source data. Note that, in contrast U (k),

which is column-wise orthogonal, M (k) is row-wise or-

thogonal. Moreover, both U (k) and M (k) have no effect

601



on the (K + 1)-th mode, because the adaptation of data di-

mension makes no sense.

Relation to subspace alignment. As mentioned in Sec-

tion 2, the seminal subspace alignment (SA) framework is

introduced in [10]. Given two vector subspaces U s and

U t of two domains, the domain discrepancy is measured

by the Bregman divergence as ‖U sM − U t‖
2
F . Here M

aligns the subspaces. In our formulation, M seems to

align the data directly at the first glance. However, if one

takes the properties of the mode-k product into account,

one can see that this is not the case. According to the

definition of the Tucker decomposition, for Xs, we have

Xs = Gs ×1 U (1)
s ×2 · · · ×K U (K)

s , so [[Xs;M]] can be

expanded as

Xs ×1 M
(1) ×2 · · · ×K M

(K)

= Gs ×1 (M
(1)

U
(1)
s )×2 · · · ×K (M (K)

U
(K)
s )

. (7)

That is, the alignment of the tensor is equivalent to the align-

ment of the tensor subspace. As a consequence, our ap-

proach can be viewed as a natural generalization of [10] to

the multidimensional case. However, unlike SA, in which

the DA and subspaces are learned separately, the alignment

matrices M and the tensor subspace U in our approach are

learned jointly in an unified paradigm.

4. Optimization

Here we discuss how to solve the problem in Eq. (6).

Since M and U are coupled in Eq. (6), it is hard for a joint

optimization. A general strategy is to use alternative min-

imization to decompose the problem into subproblems and

to iteratively optimize these subproblems until convergence,

acquiring an approximate solution [28, 38, 39].

Optimize U , Gs, and Gt given M: By introducing an aux-

iliary variable Z = [[Xs;M]], the subproblem over U , Gs

and Gt can be given as

min
U,Gs,Gt

‖Z − [[Gs;U ]]‖
2
F + ‖Xt − [[Gt;U ]]‖

2
F

s.t. ∀k, U (k)T
U

(k) = I

, (8)

which is exactly the same problem in Eq. (3) and can be

easily solved in the same paradigm.

Optimize M given U , Gs, and Gt: By introducing another

auxiliary variable Y = [[Gs;U ]] ∈ R
n1×···×nK×Ns , we ar-

rive at the subproblem over M as

min
M
‖[[Xs;M]]− Y‖2F + λ‖[[[[Xs;M]];MT ]]−Xs‖

2
F

s.t. ∀k, M (k)
M

(k)T = I
. (9)

Directly solving M is intractable, but we can optimize each

M (k) individually. To this end, Eq. (9) needs to be refor-

mulated further. Let Y (k) be the k-mode unfolding matrix

of tensor Y , and M\k = I ⊗ M (K) ⊗ · · · ⊗ M (k+1) ⊗

M (k−1)⊗· · ·⊗M (1). Unfolding the k-th mode of the first

term in Eq. (9) can be given as

‖ [[[Xs;M]]− Y](k) ‖
2
F = ‖M (k)

Xs(k)M
T
\k − Y (k)‖

2
F . (10)

For the regularizer, since M cannot be directly decomposed

into individual M (k), we raise an assumption here to make

the optimization tractable in practice. Considering that

[[[[Xs;M]];MT ]] = Xs ×1 (M
(1)T

M
(1))×2 ...

×K(M (K)T
M

(K))
, (11)

for the k-th mode, we have
[

Xs ×k (M (k)T
M

(k))
]

(k)
= M

(k)T
M

(k)
Xs(k) . (12)

Provided that MT
\k is given and all M (i)s for i 6= k well

preserve the energy of Xs, i.e., we assume M (i)TM (i) ≈
I , i 6= k. Though this assumption seems somewhat heuris-

tic, we show later in experiments the loss decreases nor-

mally, which suggests it is at least a good approximation.

Hence, optimizing Eq. (9) over M can be decomposed to

K subproblems. The k-th subproblem over M (k) gives

min
M

(k)
‖M (k)

Q(k)−Y (k)‖
2
F +λ‖M (k)T

M
(k)

Xs(k)−Xs(k)‖
2
F

s.t. ∀k, M (k)
M

(k)T = I

,

(13)

where Q(k) = Xs(k)M
T
\k. Notice that

‖M (k)T
M

(k)
Xs(k)−Xs(k)‖

2
F = ‖Xs(k)‖

2
F − ‖M

(k)
Xs(k)‖

2
F .

(14)

Since ‖Xs(k)‖
2
F remains unchanged during the optimiza-

tion of M (k), this term can be ignored. Therefore, Eq. (13)

can be further simplified as

min
M(k)

‖M (k)
Q(k) − Y (k)‖

2
F − λ‖M (k)

Xs(k)‖
2
F

s.t. ∀k, M (k)
M

(k)T = I

. (15)

Finally, by replacing P = M (k)T , we can transform

Eq. (15) into a standard orthogonality constraint based op-

timization problem as

min
P

‖QT
(k)P − Y

T
(k)‖

2
F − λ‖XT

s(k)P ‖
2
F

s.t. ∀k, P T
P = I

, (16)

which can be effectively solved by a standard solver, like

the solver presented in [36]. This alternating minimization

approach is summarized in Algorithm 1. We observe that

the optimization converges only after several iterations.

5. Results and discussion

In this section, we first illustrate the merits of our ap-

proach on a standard DA dataset, and then focus on com-

parisons with related and state-of-the-art methods.

5.1. Datasets, protocol, and baselines

Office–Caltech10 (OC10) dataset. OC10 dataset [12] is

the extension of Office [25] dataset by adding another Cal-

tech domain, resulting in four domains of Amazon (A),

DSLR (D), web-cam (W), and Caltech (C). 10 common cat-

egories are chosen, leading to around 2500 images and 12

DA problem settings. This dataset reflects the domain shift

caused by appearance, viewpoint, background and image

resolution. For short, a DA task is denoted by S→T.
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Algorithm 1: Alternating minimization for TAISL

Input: Source data: Xs; Target data: Xt

Output: Tensor subspace: U ; Alignment matrices:M
Initialize: M (k) = I, k = 1, ...,K;

Tensor subspace dimensionality: dk, k = 1, ...,K;

Weight coefficient: λ;

Maximum iteration: T ;

for t← 1 to T do
Subspace learning over {U , Gs, Gt} as per Eq. (8);

for k ← 1 to K do

Optimization over M (k) as per Eq. (16);

Check for convergence;

ImageNet–VOC2007 (IV) dataset. We also evaluate our

method on the widely-used ImageNet [7] and PASCAL

VOC2007 [8] datasets. The same 20 categories of the

VOC2007 are chosen from the ImageNet 2012 dataset to

form the source domain, and the test set of VOC2007 is

used as the target domain. Notice that VOC 2007 is a multi-

label dataset. IV dataset reflects the shift when transferring

from salient objects to objects in complex scenes. We use

this to verify the effectiveness of DA approaches when mul-

tiple labels occur.

Experimental protocol. In this paper, we focus on the

small-sample-size adaptation, because if enough source and

target data are made available, we have better choices with

deep adaptation techniques [11, 26] to co-adapt the feature

representation, domain distributions and the classifier. In

particular, the sampling protocol in [12] is used. Concretely,

for both datasets, 20 images are randomly sampled from

each category of the source domain (8 images if the domain

is web-cam or DSLR) in each trials. The mean and standard

deviation of average multi-class accuracy over 20 trials are

reported on OC10 dataset. For the IV dataset, we follow the

standard evaluation criterion [8] to use the average preci-

sion (AP) as the measure. Similarly, the mean and standard

deviation of AP over 10 trials are reported for each category.

Baseline approaches. Several approaches are employed

for comparisons:

• No Adaptation (NA): NA indicates to train a classifier di-

rectly using the labeled source data and applies to the tar-

get domain. This is a basic baseline.

• Principal Component Analysis (PCA): PCA is a direct

baseline compared to our NTSL approach. It assumes an

invariant vector subspace between domains.

• Daumé III [6]: Daumé III is a classical DA approach

through augmenting the feature representations. Each

source data point xs is augmented to xs
′ = (xs,xs,0),

and each target data point xt to xt
′ = (xt,0,xt).

• Transfer Component Analysis (TCA) [22]: TCA formu-

lates DA in a reproducing kernel Hilbert space by mini-

mizing the maximum mean discrepancy measure.

• Geodesic Flow Kernel (GFK) [12]: GFK proposes a

closed-form solution to bridge the subspaces of two do-

mains using a geodesic flow in a Grassmann manifold.

• Domain Invariant Projection (DIP) [2]: DIP seeks

domain-invariant representations by matching the source

and target distributions in a low-dimensional reproducing

kernel Hilbert space.

• Subspace Alignment (SA) [10]: SA directly adopts a

linear projection to match the differences between the

source and target subspaces. Our approach is closely re-

lated to this method.

• Low-rank Transfer Subspace Learning (LTSL) [28]:

LTSL imposes a low-rank constraint during the subspace

learning to enforce only relevant source data are used to

reconstruct the target data.

• Landmarks Selection Subspace Alignment (LSSA) [1]:

LSSA extends SA via selecting landmarks and using fur-

ther nonlinearity with Gaussian kernel.

• Correlation Alignment (CORAL) [30]: CORAL charac-

terizes domains using their covariance matrices. DA is

performed through simple whitening and recoloring.

Notice that, for a fair comparison, some methods, e.g.,

STM [5], that take source labels into account during the op-

timization are not chosen for comparison, because TAISL

does not utilize the information of source labels during DA.

Parameters setting. We extract the convolutional activa-

tions from the CONV5 3 layer of VGG–16 model [29] as

the tensor representation. We allow the input image to be of

arbitrary size, so a simple spatial pooling [14] procedure is

applied as the normalization. Specifically, each image will

be mapped into a 6× 6× 512 third-order tensor. For those

conventional approaches, convolutional activations are vec-

torized into a long vector as the representation. For NTSL

and TAISL, we empirically set the tensor subspace dimen-

sionality as d1 = d2 = 6, and d3 = 128. The first and

second modes refer to the spatial location, and the third

mode corresponds to the feature. We set such parameters

with a motivation to preserve the spatial information and

to seek the underlying commonness in the low-dimensional

subspace. The weight parameter is set to λ = 1e−5, and the

maximum iteration T = 10. Note that we adopt these hyper

parameters for all DA tasks when reporting the results. For

the comparator approaches, parameters are set according to

the suggestions of corresponding papers. One-vs-rest linear

SVMs are used as the classifiers, and the penalty parame-

ter Csvm is fixed to 1. Please refer to the Supplementary

Materials for further details and results.

5.2. Evaluation on the Office–Caltech10 dataset

Before we present the full DA results, we first highlight

the merits of tensor subspaces for DA from three aspects:

1) quantifying the domain discrepancy to show how well
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Figure 2: Classification accuracy (a) and domain discrep-

ancy measured by domain-level A-distance (b) and class-

level Js divergence (c) over two DA tasks.

TAISL preserves the discriminative power of the source do-

main, 2) evaluating the classification performance with a

limited number of source/target data to see what scenarios

TAISL could be applied in, and 3) replacing source data

with noisy labels to verify whether TAISL can resist noise

interference.

Quantifying the class-level domain discrepancy. A-

distance has been introduced in [3] as a popular measure

of domain discrepancy over two distributions. Estimating

this distance involves pseudo-labeling the source domain

Ps and target domain Pt as a binary classification problem.

By learning a linear classifier, A-distance can be estimated

as dA(Ps,Pt) = 2(1 − 2ǫ), where ǫ is the generalization

error of the linear classifier. The lower A-distance is, the

better two distributions align, and vice versa. Given this

measure, we empirically examine the correlation between

the classification accuracy and A-distance. Fig. 2(a) and

Fig. 2(b) illustrate these two measures of several approaches

on two DA tasks. Surprisingly, two measures exhibit a to-

tally adverse tendency. The lowest classification accuracy

conversely corresponds to the lowest A-distance. As a con-

sequence, at least for convolutional activations, we consider

that the classification accuracy has low correlations with

the domain-level discrepancy. In an effort to explain such

a phenomenon, we consider comparing the class-level do-

main discrepancy taking source labels into account. Two

local versions of A-distance are consequently introduced as

d
w
A =

1

C

C
∑

i

dA(Pi
s, P̂

i
s)

d
b
A =

1

C(C − 1)

C
∑

i=1

C
∑

j=1,j 6=i

dA(Pi
s,P

j
s )

, (17)

where dw
A and db

A quantifies the within- and between-class

divergence, respectively. The superscript in Ps denotes a

specific class in C classes. In particular, considering the

fact that, if data can be classified reasonably, it should have

small within-class divergence and large between-class di-

vergence. Therefore, Js = dw
A/db

A is used to score the

overall class-level domain discrepancy. Fig. 2(c) shows the

value of Js over the same DA tasks. At this time, the classi-

fication accuracy shows a similar trend with the Js measure.

Our analysis justifies the tensor subspace well preserves the

discriminative power of source domain.

To give a more intuitive illustration, the data distribu-

tions are visualized in Fig. 3. Indeed, the problem occurs

during the transfer of source domain. As per the yellow

circle in Fig. 3(b), different classes of the source data are

overlapped after the adaptation. We call this phenomenon

over-adaptation. According to a recent study [35], there is

a plausible explanation. [35] shows that the feature distri-

butions learned by CNNs are relatively “fat”—the within-

class variance is large, while the between-class margin is

small. Hence, a slight disturbance would cause the over-

laps among different classes. In CORAL, the disturbance

perhaps boils down to the inexact estimation of covariance

matrices caused by high feature dimensionality and limited

source data. In contrast, as shown in Fig. 3(c)-(d), our ap-

proach naturally passes the discriminative power of source

domain. Notice that, though the adaptation seems not per-

fect as target data are only aligned close to the source, the

margins of different classes are clear so that there still has a

high probability for target data to be classified correctly.

Adaptation with limited source/target data. One of the

important features of TAISL in practice is the small amount

of training data required. In other words, one can char-

acterize a domain, and thus adapt a pre-trained classifier,

with very limited data. To demostrate this point, we eval-

uate the classification accuracy while varying the number

of source/target data used for adaptation. The DA task of

D → C is used. Concretely, we first fix the number of

target data and, respectively, randomly choose from 1 to 8
source samples per category. In turn, we fix the number

of source data to 8 per category and set the target samples

per category to 2k, k = 0, 1, 2, ..., 7. Fig. 4(a)-(b) illustrate

the results of different approaches. It can be observed that,

our approach demonstrates very stable classification perfor-

mance, while other comparing methods is sensitive to the

number of source samples used. Meanwhile, the number of

target data seems not to have much impact on the classifi-

cation accuracy, because in general one prefers to transfer

the source domain so that the target domain does not change

notably. It is worth noting that TAISL works even with only

one source sample per category, which suggests that it can

be applied for effective small-sample-size adaptation.

Adaptation with noisy labels. Recent studies [40]

demonstrate that tensor representations are inherently ro-

bust to noise. To further justify this in the context of

DA, we randomly replace the source data with samples

that have different labels. We gradually increase the per-

centage of noisy data Tnoisy from 0% to 20% and moni-

tor the degradation of classification accuracy. As shown in

Fig. 4(c), TAISL consistently demonstrates superior classi-

fication performance over other approaches.

Convergence analysis and efficiency comparison. In

this part, we empirically analyze the convergence behav-

ior of TAISL. Fig. 4(d) shows the change of loss function as
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Figure 3: Class-level data visualization using t-SNE [31] of different methods on the DA task of C (red) → D (black). 4

classes are chosen for better visualization. For CORAL, the data coming from the source domain tend to overlap with each

other after the adaptation, a phenomenon we call over-adaptation. (Best viewed in color.)
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Figure 4: Adaptation on D→C with (a) varying number of

source data per class N c
s , (b) a varying number of target

data per class N c
t , and (c) noisy source labels. (d) Empirical

convergence analysis of TAISL over several DA tasks.

the iteration increases. It can be observed that the optimiza-

tion generally converges in about 10 iterations. In addition,

we also compare the efficiency of different approaches. The

average evaluation time of each trial is reported. According

to Table 1, the efficiency of TAISL is competitive too. TCA

and LSSA are fast, because these two methods adopt kernel

tricks to avoid high-dimensional computation implicitly. In

general, learning a tensor subspace is faster than a vector

subspace in the high-dimensional case.

Recognition results. Quantitative results are listed in Ta-

ble 2. It shows that our approach is on par with or outper-

forms other related and state-of-the-art methods in terms of

both average accuracy and standard deviations. Note that

conventional methods that directly adapt vector-form con-

volutional activations sometimes have a negative effect on

the classification, even falling behind the baseline NA. The

main reason perhaps is the inexact estimation of a large

amount of parameters. For instance, in many subspace-

Method Daumé III TCA GFK DIP SA

Time 0.06 0.05 3.94 9.09 3.40

Method LTSL LSSA CORAL NTSL TAISL

Time 12.34 0.59 14.81 0.16 0.92

Table 1: Average evaluation time (min) of each trial of dif-

ferent methods on A→C. (Matlab 2016a, OS: OS X 64-bit,

CPU: Intel i5 2.9GHz, RAM: 8 GB)
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Figure 5: Adaptation accuracy of three types of tensor rep-

resentations on two DA tasks.

based approaches, one needs to estimate a flattened sub-

space from the covariance matrix. Given a data matrix

A ∈ R
d×n with dimension d and n samples, its covari-

ance matrix is estimated as AAT . Notice that rank(A) =
rank(AAT ) = rank(ATA) ≤ min(d, n − 1). If d ≫ n,

the vector subspace will only be spanned by less than n
eigenvectors. In addition, one also suffers from the prob-

lem of biased estimation [34] (large eigenvalues turn larger,

small ones turn smaller) when d ≫ n. Hence, such vector

subspaces are unreliable. In contrast, our approach avoids

this problem due to the mode-wise parameters estimation.

5.3. Evaluation on the ImageNet–VOC2007 dataset

Here we evaluate our approach under a more challeng-

ing dataset than OC10. As aforementioned, VOC2007 is

a multi-label dataset, so many images contain multiple la-

bels. Results are listed in Table 3. Due to the space lim-

itation, we show only results of 10 categories (additional

results are attached in the Supplementary). We observe

that TAISL still demonstrates the best overall classification

performance among comparing approaches. We also no-

tice that NTSL and TAISL show comparable results. We

conjecture that, since the target domain contains too many

605



Method A→C C→A A→D D→A A→W W→A C→D D→C C→W W→C D→W W→D MEAN

NA 77.3(1.8) 89.0(2.0) 82.8(2.2) 81.1(1.9) 74.6(3.1) 74.0(2.5) 86.2(4.0) 70.5(1.9) 79.4(2.7) 63.7(2.1) 91.1(1.7) 94.9(2.4) 80.4

PCA 36.7(3.0) 57.7(5.2) 23.5(8.1) 50.2(4.8) 18.6(6.2) 51.2(6.0) 29.9(7.8) 51.0(3.3) 26.4(6.7) 51.6(3.6) 49.5(4.2) 50.8(7.0) 41.4

Daumé III 73.1(1.5) 85.9(2.5) 70.9(3.7) 59.9(7.1) 70.6(3.5) 68.7(4.4) 81.4(4.1) 56.2(6.4) 75.4(4.0) 59.6(2.6) 81.5(2.7) 86.5(4.9) 72.5

TCA 56.7(4.5) 78.1(6.1) 59.9(6.7) 61.2(4.2) 55.5(6.4) 68.3(4.1) 74.3(5.2) 51.9(2.2) 69.0(6.6) 54.7(3.8) 89.8(2.2) 90.6(3.2) 67.5

GFK 75.1(3.9) 87.6(2.3) 81.4(4.3) 90.4(1.4) 74.3(5.2) 84.0(4.4) 84.8(4.5) 82.2(2.4) 81.9(4.9) 79.1(2.7) 92.8(2.2) 95.2(2.2) 84.1

DIP 59.8(5.7) 84.8(4.3) 52.2(8.1) 76.4(3.7) 45.5(9.1) 69.3(6.9) 82.8(7.7) 61.9(6.3) 73.5(4.9) 65.2(4.5) 90.9(2.3) 94.1(3.1) 71.4

SA 67.7(4.2) 82.0(2.6) 67.8(4.8) 77.4(6.0) 61.1(5.1) 80.1(4.3) 73.7(4.3) 66.9(3.3) 65.9(4.0) 70.4(4.1) 87.3(3.1) 91.1(3.3) 74.3

LTSL 70.2(2.4) 87.5(2.8) 77.7(4.6) 69.2(4.5) 66.7(4.6) 66.6(5.7) 82.3(4.1) 60.8(3.1) 75.3(4.2) 59.1(4.4) 86.0(2.9) 90.0(3.8) 74.3

LSSA 80.3(2.3) 86.4(1.7) 90.9(1.7) 92.3(0.6) 84.0(1.7) 86.6(4.5) 73.5(2.3) 65.9(6.5) 45.4(6.6) 29.5(7.0) 93.4(2.2) 85.8(4.7) 76.2

CORAL 77.6(1.2) 80.3(1.9) 64.3(2.9) 74.2(2.2) 61.2(2.4) 69.1(2.6) 62.1(3.0) 72.0(1.7) 63.8(3.1) 66.6(2.2) 89.6(1.6) 82.8(2.8) 72.0

NTSL 78.5(2.3) 89.6(2.2) 83.1(3.3) 87.8(1.4) 77.3(3.1) 85.8(2.8) 87.7(2.9) 79.8(1.5) 80.4(3.8) 80.0(2.0) 95.4(1.4) 97.8(1.7) 85.3

TAISL 80.1(1.4) 90.0(1.9) 85.1(2.2) 87.6(2.1) 77.9(2.6) 85.6(3.5) 90.6(1.9) 84.0(1.0) 85.3(3.1) 82.6(2.2) 95.9(1.0) 97.7(1.5) 86.9

Table 2: Average multi-class recognition accuracy (%) on Office–Caltech10 dataset over 20 trials. The highest accuracy in

each column is boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

Method aero bird bottle cat cow table mbike person sheep tv mAP

NA 66.4(2.1) 65.6(4.0) 29.5(2.1) 70.6(3.4) 30.3(8.0) 35.7(5.5) 47.0(8.0) 69.3(2.9) 44.9(6.9) 56.4(3.3) 51.6

PCA 28.9(5.8) 30.2(3.9) 23.3(5.2) 44.9(4.5) 6.0(1.8) 29.0(6.9) 25.0(5.0) 70.2(1.9) 11.7(3.5) 29.0(6.6) 29.8

Daumé III 64.1(3.7) 59.7(7.4) 26.6(3.3) 65.7(5.3) 26.9(8.5) 30.0(5.4) 40.5(6.6) 68.5(2.5) 37.7(7.4) 51.9(4.4) 47.2

TCA 43.2(9.8) 44.4(10.5) 20.7(1.7) 56.7(8.2) 16.9(6.3) 27.6(8.7) 31.8(10.2) 58.1(5.7) 22.7(8.0) 33.6(10.2) 35.6

GFK 70.0(6.9) 74.6(3.8) 32.5(4.4) 73.1(6.5) 28.9(5.3) 48.3(10.4) 58.3(4.8) 75.8(3.6) 52.5(4.8) 57.1(4.5) 57.1

DIP 69.8(5.5) 78.4(4.6) 29.1(5.0) 75.9(3.7) 25.5(5.0) 42.2(8.1) 56.3(5.7) 73.5(3.1) 48.9(4.3) 59.4(5.2) 55.9

SA 64.4(10.1) 69.3(5.4) 34.4(4.6) 67.4(4.9) 18.4(6.6) 36.9(12.8) 53.7(10.9) 68.9(2.4) 31.4(10.2) 55.2(5.7) 50.0

LTSL 56.9(10.4) 61.0(7.7) 34.9(6.2) 70.8(8.8) 21.9(6.3) 43.7(12.4) 52.5(10.7) 69.9(4.3) 38.2(9.5) 54.0(7.5) 50.4

LSSA 78.7(2.0) 79.7(1.2) 38.4(4.6) 81.7(0.5) 29.5(1.9) 33.7(3.4) 56.3(9.3) 51.2(2.0) 32.5(10.6) 51.6(4.6) 53.3

CORAL 71.4(3.3) 71.7(3.6) 35.2(2.4) 72.0(4.3) 36.0(5.7) 40.6(6.7) 57.3(5.6) 67.6(2.0) 54.8(2.9) 56.9(3.6) 56.6

NTSL 76.3(4.3) 71.0(3.9) 35.7(3.7) 71.3(3.2) 34.7(9.8) 49.8(10.4) 59.7(10.2) 72.0(4.6) 53.4(6.0) 60.2(3.5) 58.4

TAISL 76.4(5.1) 71.6(3.1) 36.7(3.5) 72.0(2.1) 33.3(6.6) 50.7(10.0) 60.3(8.7) 72.2(3.8) 53.6(5.6) 60.4(3.5) 58.7

Table 3: Average precision (%) on ImageNet–VOC2007 dataset over 10 trials. The highest performance in each column is

boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

noisy labels, it will be hard to determine a global alignment

that just matches class-level differences. As a result, the

alignment may not work the way it should. In addition, ac-

cording to Tables 2 and 3, LSSA shows superior accuracy

than ours over several DA tasks/categories. It makes sense

because LSSA works at different levels with further non-

linearity and samples reweighting. However, non-linearity

is a double-edged sword. It can improve the accuracy in

some situations, while sometimes it may not. For instance,

the accuracy of LSSA drops significantly on the W→C task.

5.4. Evaluation with other tensor representations

Finally, we evaluate other types of tensor representations

to validate the generality of our approach. We do not limit

the representation from deep learning features. Other shal-

low tensor features also can be adapted by our approach.

Specifically, the improved HOG feature [9] and convolu-

tional activations extracted from the CONV5 layer of VGG–

M [4] model are further utilized and evaluated on two DA

tasks from the OC10 dataset. Results are shown in Fig. 5.

We notice that TAISL consistently improves the recognition

accuracy with various tensor representations. In addition, a

tendency shows that, the better feature representations are,

the higher the baseline achieves, which implies a fundamen-

tal rule of domain-invariant feature representations for DA.

6. Conclusion

Practical application of machine learning techniques of-

ten gives rise to situations where domain adaptation is re-

quired, either because acquiring the perfect training data is

difficult, the domain shift is unpredictable, or simply be-

cause it is easier to re-use an existing model than to train a

new one. This is particularly true for CNNs as the training

time and data requirements are significant.

The DA method proposed in this work is applicable in

the case where a tensor representation naturally captures

information that would be difficult to represent using vec-

tor arithmetic, but also benefits from the fact that it uses a

lower-dimensional representation to achieve DA, and thus

is less susceptible to noise. We have shown experimentally

that it outperforms the state of the art, most interestingly for

CNN DA, but is also much more efficient.

In the future work, discriminative information from

source data may be employed for learning a more power-

ful invariant tensor subspace.
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