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Abstract

The RPCA model has achieved good performances in

various applications. However, two defects limit its effec-

tiveness. Firstly, it is designed for dealing with data in ma-

trix form, which fails to exploit the structure information of

higher order tensor data in some pratical situations. Sec-

ondly, it adopts L1-norm to tackle noise part which makes

it only valid for sparse noise. In this paper, we propose a

tensor RPCA model based on CP decomposition and model

data noise by Mixture of Gaussians (MoG). The use of ten-

sor structure to raw data allows us to make full use of the

inherent structure priors, and MoG is a general approxima-

tor to any blends of consecutive distributions, which makes

our approach capable of regaining the low dimensional lin-

ear subspace from a wide range of noises or their mixture.

The model is solved by a new proposed algorithm inferred

under a variational Bayesian framework. The superiority of

our approach over the existing state-of-the-art approaches

is demonstrated by extensive experiments on both of syn-

thetic and real data.

1. Introduction

In the fields of data analysis, principal component anal-

ysis (PCA) has been a classical and prevalent tool and has

extensive applications [16]. Originally, PCA aims to find

the best L2-norm low-rank approximation of a specified

matrix due to its smoothness and has many fast numerical

solvers [9, 24, 25, 26, 35, 41]. But L2-norm is only suitable

for Gaussian noise and too susceptible to outliers and gross

noise. To increase the robustness of PCA, a series of works

have been conducted in recent years [12, 17, 13, 19].

Inspired by the improvement of low-rank matrix analy-

sis [4, 5, 30], the robust principal component analysis (RP-

CA) [40] has been proposed for remedying the deficiency of

traditional PCA, in which, a high dimensional observation

matrix is assumed to consist of a low-rank component and

∗Corresponding author.

a sparse component. Specifically, let Y ∈ Rm×n be the ob-

servation data matrix, X ∈ Rm×n be the low-rank matrix,

E ∈ Rm×n be the sparse noise matrix, and then we can

describe the RPCA as the following optimization problem:

min
X,E

‖X‖
∗
+ λ‖E‖1 s.t. Y = X + E, (1)

where ‖X‖
∗

=
∑

r σr (X) denotes the nuclear norm of

X , σr (X) (r = 1, 2, ...,min (m,n)) is the rth singular val-

ue of X , ‖E‖1 =
∑

ij |eij | denotes the L1-norm of E, and

eij is the element in the ith row and jth column of E. It has

been proved that if L and S satisfy a certain incoherence

condition, the RPCA can uniquely extract X and E from Y
[6]. RPCA has played an important role in handling vari-

ous problems, including robust matrix recovery [40], face

alignment [27], subspace segmentation [21] and so forth.

Recently, it has been noticed that more and more modern

applications contain data with a higher order tensor struc-

ture, such as background extraction [7], face recognition

and representation [40, 34, 38, 2], structure from motion

[36], object recognition [37] and motion segmentation [39].

Matrices can be viewed as second order tensors, howev-

er, moving from matrices to higher order tensors presents

significant new challenges. A direct way to address these

challenges is to unfold tensors to matrices and then directly

apply the matrix RPCA model. Unfortunately, as recently

pointed out by [7], the multilinear structure is lost in such

matricization and as a result, methods constructed based on

these techniques often lead to suboptimal results. As such,

it is helpful to handle such raw data by using a direct ten-

sor representation, and several researches have been made

in the literatures [11, 20].

Moreover, L1-norm and L2-norm can characterize spe-

cific Laplace and Gaussian distributions, respectively, but

the real noise is generally not of a particular kind of noise

configurations, as already shown in [42]. Mixture of Gaus-

sians (MoG) is capable to commonly approximate wider

range of distributions due to its universal approximation ca-

pability, and Laplacian and Gaussian are regarded as a spe-

cial case of MoG [3]. It has been demonstrated that MoG
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(a) Observation High-

order Tensor (b) Low-rank Tensor (c) MoG

Figure 1. TenRPCA-MoG sketch map. (a) is the observation ten-

sor, (b) is the low-rank tensor, (c) represents the complex noise.

can deal with complex noise in multiple computer vision

tasks, like image denoising and recovery [23, 42, 10].

In this paper, we propose a new tensor based RPCA

model with noise modeling by MoG, which is named as

TenRPCA-MoG. As shown in Fig. 1, the new model di-

vides the observation (noisy data) into a low-rank tensor

component (clean data) and the residue (noise), and models

them separately. It has the following contributions: firstly,

it treats raw high-order data as a tensor to reserve the com-

plete structure information, and uses CP tensor factorization

method to replace existing matrix factorization method to

extract low-rank structure in tensor data; secondly, it adopt-

s MoG to model noise which makes it have the ability to

fit a wide range of noises rather than Gaussian or Lapla-

cian noise; thirdly, we formulate the problem as a genera-

tive model under the Bayesian framework and propose an

algorithm based on the variational inference theory to infer

the posterior and effectively solve the problem.

2. Related work

In order to make full use of high-order data structure in-

formation, Cao et al [7] extended the RPCA to the tensor

form based on Tucker decomposition and successfully ap-

plied it to the background extraction. Compared with other

methods, this model can achieve good extraction results at a

very low sampling rate. However, it is designed to deal with

only two types of noises, i.e., Gaussian noise and impulse

noise, such that it is inadequate for more complex noise in

real scenarios.

Meng and De la Torre [23] firstly applied the MoG

to low-rank matrix factorization (LRMF) for adapting to

unknown noise. Consequently, Zhao et al [42] proposed

a RPCA-MoG model which used MoG to model RPCA

noise. Benefiting from powerful approximation capability

of MoG, they successfully applied it to the face modeling

and background subtraction. However, these methods are

designed based on matrix techniques and fail to take the ad-

vantage of structure prior of original data. In order to over-

come such defect, Chen et al [10] developed a low-rank ten-

sor factorization (MoG-WLRTF) model with MoG and got

a good result on image denoising.

The differences and improvements of our model against

Chen [10] and Cao [7] are specified as follows: Chen’s work

is a LRTF model, while our work is a RPCA model under

the Bayesian framework, which has better adaptivity to var-

ious problems and the rank can be automatically confirmed

by the algorithm itself; compared with our model, Cao’s

model lacks a universal noise modeling ability and is only

suitable for background extraction application.

3. Notations

Throughout the paper, lowercase letters (a, b, · · · ) de-

note scalars and bold lowercase letters denote vectors

(a,b, · · · ) with elements (ai, bj , · · · ). Uppercase letter-

s (A,B, · · · ) denote the matrices with column vectors

(a:i, b:j , · · · ) and elements (aij , bij , · · · ). High-order ten-

sors are represented by calligraphic letters (A,B, · · · ). A

K-mode tensor X ∈ R
I1×I2×···×IK is rank-one tensor

if it can be written as the out product of K vectors, i.e.,

X = a1 ◦ a2 ◦ · · · ◦ aK .

4. TenRPCA-MoG model

The traditional RPCA model is formulated as Eq. 2. Ten-

sor RPCA has the similiar form as:

min
X ,E

‖X‖
∗
+ λ‖E‖1 s.t. Y = X + E , (2)

where Y ∈ R
f×g×m is the observation data tensor, X ∈

R
f×g×m is the low-rank tensor and E ∈ R

f×g×m is the

noise tensor. Here, the L1 norm is specifically set for deal-

ing with noise under sparse assumption, Laplacian noise,

for example. However, as we introduced before, the real

noise is generally much more complex rather than a simple

Laplacian noise. In order to improve the robustness to com-

plex noise of tensor RPCA, we introduce MoG for noise

modeling and obtain TenRPCA-MoG as:

min
X ,E

‖X‖
∗
+ λ‖E‖M s.t. Y = X + E , (3)

where symbol ‖E‖M means that E is modeled with MoG.

As shown in Fig. 1 as a simulation, the first and the second

Gaussians are for describing dense noise, while the third

Gaussian is for approximating Laplacian noise.

In our model, the low- rank factorization of tensor X is

obtained by CP decomposition. Hence, the detailed intro-

duction of our model starts from CP decomposition with its

helpful properties.

4.1. CP decomposition

There are two general tensor decomposition frameworks,

Tucker and CANDECOMP/PARAFAC (CP). CP decompo-

sition can be considered as a higher-order generalization of

the matrix singular value decomposition [8]. It decompos-

es a tensor into a sum of rank-one component tensors [18].
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A K-mode tensor X ∈ R
I1×I2×···×IK , with the integer Ik

symbolizing the dimension of X along the K-th model, can

be represented in the CP decomposition form as:

X =
D
∑

d=1

Ud ◦ V d ◦ · · · ◦ T d. (4)

Here mark ‘◦’ denotes the vector outer product, D is re-

garded as the rank of the tensor X , and U, V, T represent

the matrices of the corresponding vectors in the rank-one

tensors, which are called factor matrix, for example,

U = [u1, u2, · · ·ud]. (5)

Using the factor matrix, the CP decomposition of a third-

order tensor can be written as an unfolding form:

X (1) = U(T ⊙ V )

X (2) = V (T ⊙ U)

X (3) = T (V ⊙ U),

(6)

where ⊙ denotes the Khatri-Rao product. The single ele-

ment of tensor can be written as:

xij···k =

D
∑

d=1

Ud
i V

d
j · · ·T d

k . (7)

In addition, by assuming U ∈ R
a×c and V ∈ R

b×c, the

Khatri-Rao product has the following property:

(U ⊙ V )T (U ⊙ V ) = (UTU) ∗ (V TV ), (8)

where ∗ indicates the dot product.

4.2. Tensor RPCA lowrank component modeling

There are several approaches for solving CP decomposi-

tion, such as nuclear norm based method [33, 15] and prob-

abilistic based method [32]. However, these methods are

either prone to overfitting due to an inaccurate tensor rank

and point estimations of latent factors or computationally

expensive, because the tensor rank needs to be predefined

by tuning parameter or cross-validations [43]. Variational

Bayesian method also has been widely applied to CP de-

composition [28, 29]. It is a commonly used approximation

method which employs more global criteria and has definite

solution of posterior [3]. It overcomes the aforementioned

defects. In this paper, we follow the thoughts of Variational

Bayesian method for solving the proposed TenRPCA-MoG

model.

In Eq. 4, U is a f × D matrix, V is a g × D matrix

and T is a m × D matrix. D is the rank of tensor X . One

way to model the low-rank component X is to apply Lapla-

cian prior to the factor matrix. The other way is to add the

beta-Bernoulli priors on the factor matrix [14]. Here we

introduce the automatic relevance determination (ARD) to

model the low-rank component of X [1], because of its high

computational efficiency.

Our goal is to achieve column sparsity in U, V and T ,

such that most of columns in U, V and T will approach

zeros, which makes the X low-rank. We assume that the

columns of U, V and T have the following priors:

u.d ∼ N (u.d|0, γ
−1
d If )

v.d ∼ N (v.d|0, γ
−1
d Ig)

t.d ∼ N (t.d|0, γ
−1
d Im),

(9)

where Im denotes the m × m identity matrix. Precision

variable γd follows a conjugate prior as:

γd ∼ Gam(γd|a0, b0). (10)

Such assumptions make the columns of U, V and T have i-

dentical sparsity outline enforced by the common presisions

γd. Such model has been demonstrated to have the ability of

making the γd very large during the inference, thus reduces

the rank estimation of X [1].

4.3. Tensor RPCA noise component modeling

Following the statement in Eq. 3, noise E is described

by the MoG as:

eijk ∼
∑N

n=1
πnN (eijk|µn, τ

−1
n ), (11)

where πn is the mixing proportion with πn ≥ 0 and
∑N

n=1 πn = 1, N is the Gaussian components number and

N (e|µ, τ−1) denotes the Gaussian distribution with mean

µ and precision τ . A latent binary random variable zijkn
is introduced to express Eq. 11 as a two-level generative

model via Eq. 12 and Eq. 13:

eijk ∼
∏N

n=1
N (eijk|µn, τn

−1)
zijkn

, (12)

zijk ∼ Multinomia(zijk|π), (13)

where zijk = (zijk1, · · · , zijkN ) ∈ {0, 1}N and
N
∑

n=1
zijkn = 1. The marginal distribution of Z abide by a

multinomial distribution in terms of the mixing proportion

πn as Eq. 13, where 0 ≤ πn ≤ 1 and
N
∑

n=1
πn = 1. In addi-

tion, we apply conjugate priors on the mixing coefficient π

and Gaussian parameters µn, τn.

µn, τn ∼ N (µn|µ0, (β0τn)
−1)Gam(τn|c0, d0), (14)

π ∼ Dir(π|α0), (15)

where Dir(π|α0) is the Dirichlet distribution parameter-

ized by α0 = (α01, · · · , α0n), and Gam(τ |c0, d0) denotes

the Gamma distribution with c0 and d0.
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Based on Eq. 3 and Eq. 9-15, the full Bayesian model

of tensor RPCA with MoG (TenRPCA-MoG), can be con-

structed as:

p(U, V, T, Z, µ, τ, π, γ|Y), (16)

where Z = {zijk}, µ = (µ1, · · · , µn), τ = (τ1, · · · , τn),
and γ = (γ1, · · · , γd).

5. TenRPCA-MoG Inference Algorithm

5.1. Variational Inference

Considering the following problem: there is an observed

data D and we have already known the form of the model,

we aim to draw the posterior p(l|D) of all the involved pa-

rameters and latent variables. Generally, the form of poste-

rior is intractable. Variational Bayesian (VB) method deal-

s with the problem by finding a more tractable and easi-

er mathematical form q(l) to approximate the true poste-

rior p(l|D) [3]. Naturally, we need a dissimilarity func-

tion d(q; p) to measure the difference between q(l) and

p(l|D). Hence, the inference is performed by selecting the

distribution q(l) and minimizing d(q; p) to find the approx-

imation distribution q(l|D). In this paper, we choose the

Kullback-Leibler divergence (KL-devergence) as the dis-

similarity function:

min
q∈C

KL(q ‖ p) = −

∫

q(l) ln

{

p(l|D)

q(l)

}

dl, (17)

where C denotes the set of probability densities with certain

restrictions to make the minimization tractable, KL(q ‖ p)
denotes the KL divergence. The variational distribution

q(l) is usually assumed to factorize over some partition

of the latent variables, known as mean-field variational

Bayesian, q(l) =
∏

i qi(li). By minimizing the KL dev-

ergence, q(l) has the closed-form solution as:

q∗j (lj) =
exp

{

〈ln p(l,D)〉l/lj

}

∫

exp
{

〈ln p(l,D)〉l/lj

}

dlj
, (18)

where 〈.〉l/lj is the expectation of the logarithm of the joint

probability of the data and latent variables without lj . In this

paper, the posterior of Eq. 16 will be replaced by factorized

form based on mean-field variational Bayesian theory as:

q(U, V, T,Z,µ, τ ,π,γ) =
∏

i q(ui.)
∏

j q(vj.)
∏

k q(tk.)
∏

ijk q(zijk)
∏

n q(µn, τn)q (π)
∏

d q(γd.),
(19)

where ui. denotes the the i-th row of U. The next section

will give the approximation distribution in Eq. 19.

5.2. Lowrank component estimation

U, V, T and γ are updated during the low-rank compo-

nent estimation. From Eq. 18, the row ui. of U has the

following inference result:

q(ui.) = N (ui.|µui.
,
∑

ui.

). (20)

Here ui. and
∑

ui.
denote the mean and covariance of the

Gaussian distribution respectively. The closed form of up-

dating is given by

µT
ui.

=
∑

ui.
∗
{

∑

n 〈τn〉
∑

jk 〈zijkn〉 (yijk − 〈µn〉)

〈tk. ⊙ vj.〉}
T
,

∑

ui.

=
{

∑

n
τn

∑

jk
〈zijk〉

〈

(tk. ⊙ vj.)
T
(tk. ⊙ vj.)

〉

+ Γ

}−1

.

Here Γ denotes diag (〈γ〉). However, the mean of

(tk. ⊙ vj.)
T
(tk. ⊙ vj.) cannot be solved directly, for

which the Eq. 8 is introduced and the following result is

obtained

∑

ui.

=
{

∑

n
τn

∑

jk
〈zijk〉

〈(

tk.
T
tk.

)

∗
(

vj.
T
vj.

)〉

+ Γ

}−1

.

The updates of V and T have similar froms.

q(vj.) = N (vj.|µvj.
,
∑

vj.

), (21)

µT
vj.

=
∑

vi.
∗
{

∑

n 〈τn〉
∑

jk 〈zijkn〉 (yijk − 〈µn〉)

〈tk. ⊙ ui.〉}
T
,

∑

vj.

=
{

∑

n
τn

∑

ik
〈zijk〉

〈(

tk.
T
tk.

)

∗
(

ui.
T
ui.

)〉

+ Γ

}−1

.

q(tk.) = N (tk.|µtk.
,
∑

tk.

), (22)

µT
tk.

=
∑

tk.
∗
{

∑

n 〈τn〉
∑

ij 〈zijkn〉 (yijk − 〈µn〉)

〈vj. ⊙ ui.〉}
T
,

∑

tk.

=
{

∑

n
τn

∑

ij
〈zijk〉

〈(

vj.
T
vj.

)

∗
(

ui.
T
ui.

)〉

+ Γ

}−1

.

The parameters γ has following update:

q (γd) = Gam(γd|ad, bd), (23)

where

ad = a0 +
f + g +m

2
,

bd = b0 +
1

2

(〈

u
T
.du.d

〉

+
〈

v
T
.dv.d

〉

+
〈

t
T
.dt.d

〉)

.
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5.3. Noise component estimation

Combining Eq. 14-15 and its conjugate characteristic,

µn and τn have the following inference results:

q(µn, τn) = N (mn, (βnτn)
−1)Gam(τn|cn, dn), (24)

here

βn = β0 +
∑

ijk
〈zijkn〉,

mn =
1

βn
(β0µ0+

∑

ijk
〈zijkn〉(yijk−〈ui.〉 〈vj. ⊙ tk.〉

T
),

cn = c0 +
1

2

∑

ijk
〈zijkn〉,

dn = d0 +
1
2

{

∑

ijk 〈zijkn〉

〈

(

yijk − 〈ui.〉 〈vj. ⊙ tk.〉
T
)2

〉

+ β0µ0
2 − 1

βn

(

∑

ijk 〈zijkn〉 (yijk − 〈ui.〉 〈vj. ⊙ tk.〉
T
)

+β0µ0)
2
}

.

The mixing coefficient also can be inferred as:

q(π) = Dir(π|α), (25)

where

α = (α1, · · · , αn),

αn = α0n +
∑

ijk
〈zijkn〉.

The latent binary random variable zijkn is inferred to have

following distribution:

q(zijk) =
∏

n
rijkn

zjikn , (26)

where

rijkn =
ρijkn

∑

n ρijkn
,

ln ρjikn = 1
2 〈ln τn〉 −

1
2 ln 2π − 1

2 〈τn〉 〈(yjik−
ui. (tk. ⊙ vj.)− µn)〉+ 〈lnπn〉 .

Based on Eq. 20-26, the overall optimization process un-

der variational Bayesian framework is shown in Algorithm

1.

6. Complexity

We take 3-order tensor of the size U×V ×T as an exam-

ple. The rank is set as R, and N is the number of Gaussians.

In our algorithm, only simple computations are involved in

the variational inference of parameters, except that inferring

each of ui, vj and tk needs to invert an R×R matrix, lead-

ing to O((U +V +Y ))R3 cost. The cost of the sum of zijk
and τn in the mean in Eq. 20 is O(UV TN), and the rest of

the mean in Eq. 20 takes no more than O(UV TR) cost. For

the variance in Eq. 20, it requires additional no more than

O((UV T + UV + V T + UT )R2 computational cost. In

all, the complexity of our algorithm is O((U +V +T )R3+
(UV T + UV + V T + UT )R2 + UV TR + UV TN) per

iteration. The cost of our method is thus linear in both data

dimensionality and size.

Algorithm 1: Variational Bayesian algorithm for

TenRPCA-MoG

Input: X ∈ R
f×g×m, each image with size f × g, and m

denotes the number of images.

Output: U , V , T by CP decomposition

1: Initialize Z,µ, τ ,π,γ, d, MoG number N , smal-

l threshold ε

2: Repeat

3: Low-Rank update

Updating U via Eq. 20

Updating V via Eq. 21

Updating T via Eq. 22

Updating γ via Eq. 23

4: MoG update

Updating µ and τ via Eq. 24

Updating π via Eq. 25

Updating Z via Eq. 26

5: Until converge

7. Experiments

In this section, we carry out a series of experiments on

synthetic data, benchmark RGB image, Columbia Multi-

spectral Image Database1, real hyperspectral images and

video sequences. We compare the proposed TenRPCA-

MoG with some competitive models including: VBRPCA

[1], RegL1ALM [44], PARAFAC [22], MoG-RPCA [42],

MoG-LRMF [23], LRTA [31], MoG-WLRTF [10].

7.1. Parameter settings

We adopt a non-informative way to deal with hyperpa-

rameters of TenRPCA-MoG, which can reduce the impact

on the posterior distributions [3]. In the following experi-

ments, we set µ0=0, and α01, · · · , α0N , β0, a0, b0, c0, d0
as 10−6. For the number of Gaussian component, we just

empirically set N=3 throughout all our experiments.

7.2. Synthetic Experiments

The test synthetic tensor is produced as follows: 1) we

randomly generate three matrices denoting as U , V , T with

size 100×5, 100×5, 10×5, respectively, where each col-

umn vector of the matrices follows the standard normal dis-

tribution N (0, 1); 2) we utilize inner product and Khatri-

Rao product as Eq. 6 to get the unfolding form of ground

truth tensor with the size of 100×100×10 and rank D =

5. 3) we add different types of noises to the ground truth

tensor. The types of noises are specified as follows: (1)

Sparse noise: 10% elements are corrupted by the uniform

noise between [-25,25]; (2) Gaussian noise: all elements

are corrupted with Gaussian noise N (0, 0.01); (3) Mixture

noise: 10% of elements mix with uniform noise within [-

25,25], 20% of elements mix with Gaussian noise N (0, 1)

1http://www1.cs.columbia.edu/CAVE/databases/multispectral
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Table 1. Reconstruction performance of diffirent methods with diffirent noises.

VBRPCA RegL1-ALM PARAFAC MoG-RPCA MoG-LRMF LRTA MoG-WLRTF TenRPCA-MoG

Gaussian Noise

RRE 0.2483 0.1772 0.0337 0.1006 0.1643 0.0222 0.0547 0.0261

MSE 0.01329 0.00727 0.00027 0.00263 0.00713 0.00011 0.00084 0.00020

PSNR 18.76 21.37 35.72 25.78 21.46 39.57 31.29 38.06

SSIM 0.2042 0.7080 0.9624 0.7977 0.6714 0.9809 0.8594 0.9563

Sparse Noise

RRE 0.0204 6.2697 1.9773 0.4458 4.2433 0.6089 0.0532 0.0419

MSE 0.00010 10.681 0.89897 0.05554 4.3628 0.10559 0.000728 0.000727

PSNR 39.88 -10.28 0.46 12.55 -6.39 9.76 31.77 36.31

SSIM 0.9943 0.0027 0.0016 0.8062 0.5822 0.0386 0.8604 0.9375

Mixture Noise

RRE 0.2088 6.4358 2.392 0.1340 2.6342 0.6509 0.0642 0.0634

MSE 0.01 10.6232 1.0739 0.0049 1.7949 0.1060 0.00109 0.00107

PSNR 19.84 -10.26 -0.30 23.02 -2.54 9.74 29.85 30.44

SSIM 0.1950 0.0030 0.0018 0.5853 0.1520 0.0718 0.7911 0.7955

(a)Original (c)VBRPCA (d)RegL1-ALM (e)PARAFAC (f)MoG-RPCA (g)MoG-LRMF (h)MoG-WLRTF (i)LRTA (j)TenRPCA-MoG

(a)Original

(a)Original

(a)Original

(c)VBRPCA

(c)VBRPCA

(c)VBRPCA

(c)VBRPCA

(d)RegL1-ALM

(d)RegL1-ALM

(d)RegL1-ALM

(d)RegL1-ALM

(e)PARAFAC

(e)PARAFAC

(e)PARAFAC

(e)PARAFAC

(f)MoG-RPCA

(f)MoG-RPCA

(f)MoG-RPCA

(f)MoG-RPCA

(g)MoG-LRMF

(g)MoG-LRMF

(g)MoG-LRMF

(g)MoG-LRMF

(h)MoG-WLRTF 

(h)MoG-WLRTF 

(h)MoG-WLRTF 

(h)MoG-WLRTF 

(i)LRTA

(i)LRTA

(i)LRTA

(i)LRTA

(j)TenRPCA-MoG

(j)TenRPCA-MoG

(j)TenRPCA-MoG

(j)TenRPCA-MoG

(b)Noise

(b)Noise

(b)Noise

(b)Noise

(b)Noise

(a)Original

 

Figure 2. The 31st band of multispectral images. (a) Original image; (b) Noisy image; (c)-(j) Recovered image

and 70% of elements mix with Gaussian noise N (0, 0.01).
The results are derived from the average of 10 trials.

We adopt four criteria to quantitatively evaluate the

performances. (1) Relative reconstruction error (RRE):

‖X −M‖F /‖M‖F , where M represents the ground truth

tensor and X represents the reconstructed low-rank tensor;

(2) Mean squared error (MSE); (3) Peak signal-to-noise ra-

tio (PSNR); (4) Structural similarity (SSIM). The smaller

RRE, MSE values and larger PSNR, SSIM values imply a

better denoising effect. The results are listed in Table 1.

We bold the optimal values and underline the subopti-

mal values. For the sparse noise case, our approach is supe-

rior to other competitive methods, except VBRPCA which

is specifically designed for sparse noise. For the Gaussian

noise case, all the best results are from tensor based meth-

ods (LRTA and our method). In the experiment of mix-
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(a)Original

(b)Noise

(c)TenRPCA-MoG Recovery

(a)Original

Figure 3. Ten randomly selected bands from glass tiles multispectral images. (a) Original image; (b) Noisy image; (c) Recovered image

(a)Original (b)Noise (c)VBRPCA (d)RegL1-ALM (e)PARFAC

(f)MoG-RPCA (g)MoG-LRMF (i)MoG-WLRTF(h)LRTA (j)TenRPCA-MoG

Figure 4. Smaller mixture noise for Facade. (a) Original image;

(b) Noisy image; (c)-(j) Recovered image

ture noise, the methods of noise modeling with MoG (our

method and MoG-WLRTF) provide better results than oth-

ers, and our method achieves the best performance overall.

These experiments illustrate the merits of tensor represen-

tation and MoG modeling, especially for complex noise.

7.3. Multispectral Image Restoration

Multispectral Image database includes image sets of var-

ious scenes, in which, each set includes 31 images of dif-

ferent bands with the size of 512×512. The mixed nois-

es we add here are 10% of the elements mixed with uni-

form noise within [-5, 5], 70% of elements with Gaussian

noise N (0, 1) and 20% of elements with Gaussian noise

N (0, 0.01). We input 31 bands at a time and show the re-

sults of Band 31 in Fig. 2 for comparison. All the meth-

ods have effects on denoising to different extents. MoG-

WLRTF performs much better than other competitive meth-

ods, but compared with our method, it loses more detail-

s and gets intensity deviations. In Fig. 3, we randomly

choose 10 bands from the glass tiles multispectral set and

show the denoising results by our method. All the band-

s are well recovered and preserve the differences between

different bands as well.

(a)Original (b)Noise (c)VBRPCA (d)RegL1-ALM (e)PRMF

(f)MoG-RPCA (g)MoG-LRMF (h)MoG-WLRTF(i)LRTA (j)TenRPCA-MoG

Figure 5. Bigger mixture noise for Facade. (a) Original image; (b)

Noisy image; (c)-(j) Recovered image

7.4. RGB Image Restoration

Single RGB image denoising is a more challenging prob-

lem, especially for matrix based method. It is because that

by vectoring and aligning the R, G, B channels, there are

only 3 linearly related dimensions such that it is harder to

seek a meaningful low dimensional subspace. We carry

out two experiments on colorful building facade image by

adding noises of different levels. In the first experiment,

the added noises are: 10% of elements mixed with uniform

noise within [-2.5,2.5], 20% of elements mixed with Gaus-

sian noise N (0, 1) and 70% of elements mixed with Gaus-

sian noise N (0, 0.01). As shown in Fig. 4, all the matrix

based methods lose efficiency, while the tensor based meth-

ods perform much better. Compared with other effective

methods, our method recovers more details and the colors

are more consistent with the original image. In the second

experiment, the added noises are bigger: 10% of elements

mixed with uniform noise within [-25,25], 70% of elements

mixed with Gaussian noise N (0, 1), and 20% of elements

mixed with Gaussian noise N (0, 0.01). As shown in Fig. 5,

almost all the competitive methods fail to recovery, as well

as MoG-WLRTF. Although our method loses more details

compared with the first experiment, the noise is well elimi-

nated and the recovery is satisfactory.
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(a) Pavia Centre 

original image band 1

(b) Pavia Universty 

original image band 1

(g) Pavia Centre 

recovered image band 1

(h) Pavia Universty 

recovered image band 1

(c) Indian Pines 

original image band 111

(d) Indian Pines 

original image band 56

(i)Indian Pines  

recovered image band 111

(j)Indian Pines  

recovered image band 56

(e) Urban original 

image band 207

(k) Urban recovered 

image band 207

(f) Urban original 

image band 208

(l)Urban recovered 

image band 208

Figure 6. Test on real hyperspectral images from various datasets. (a)-(f) Original image; (g)-(l) Recovered image

original

original

background

foreground

background

foreground

Campus

Bootstrap

Figure 7. Background subtraction experiments on Campus and

Bootstrap

7.5. Real Hyperspectral Image Restoration

To verify our method on dealing with real noise, we do

the test on four different real hyperspectral images datasets,

including Pavia Centre, Pavia Universty, Indian Pines and

Urban. All of them are earth observation images taken from

airbornes or satellites. Some bands are badly contaminated

by the air stream or signal transmission loss. Fig. 6 shows

the original images (the upper row) and the recovered im-

ages (the lower row) by our method. The results illustrate

that our method can handle real unknown complex noise,

even the gross one as shown in Urban band 208.

7.6. Background Substraction

We apply the proposed model to background subtrac-

tion experiments on general test video sequences Campus

and Bootstrap. The results for randomly sample frames are

shown in Fig. 7. We can see that our model is also effective

for background extraction application.

8. Conclusion

In this paper, we propose a TenRPCA-MoG model for

image denoising. Compared with the existing models, our

model directly deals with the third-order tensor instead of

two-dimensional matrix, which better preserves the original

data structure. Simultaneously, it introduces MoG to model

noise, which overcomes the disadvantages of traditional R-

PCA model or tensor factorization methods only for specif-

ic type of noise. In addition, we design an algorithm under

Bayesian framework for solving the model. Synthetic and

real data experiments demonstrate the effectiveness of our

method for complex noise.
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[6] E. Candèsn, X. Li, Y. Ma, and J. Wright. Robust principal

component analysis? Journal of the ACM, 58(3):11:1–11:37,

2011.

[7] W. Cao, Y. Wang, J. Sun, D. Meng, C. Yang, A. Cichocki,

and Z. Xu. Total variation regularized tensor rpca for back-

ground subtraction from compressive measurements. IEEE

Transactions on Image Processing, 25(9), 2016.

[8] J. Carroll and J.-J. Chang. Analysis of individual differences

in multidimensional scal ing via an n-way gener- alization of

eckart-young decomposition. Psychometrika, 35:283–319,

1970.

[9] P. Chen. Optimization algorithms on subspaces: Revisiting

missing data problem in low-rank matrix. International Jour-

nal of Computer Vision, 80:125142, 2008.

[10] X. Chen, Z. Han, Y. Wang, Q. Zhao, D. Meng, and Y. Tang.

Robust tensor factorization with unknown noise. Computer

Vision and Pattern Recognition, pages 5213–5221, 2016.

[11] E. Chi and T. Kolda. Making tensor factorizations robust to

non-gaussian. arXiv preprint arXiv, 2010.

[12] F. De la Torre and M. Black. A framework for robust sub-

space learning. International Journal of Computer Vision,

54(1).

[13] C. Ding, D. Zhou, X. He, and H. Zha. R1-pca: Rotational in-

variant l1-norm principal component analysis for robust sub-

space factorization. International Conference on Machine

Learning, pages 281–288, 2006.

[14] X. Ding, L. He, and L. Carin. Bayesian robust principal com-

ponent analysis. IEEE Transactions on Image Processing,

20(12):3419–3430, 2011.

[15] L. H. e. a. Huang J, Zhang S. Composite splitting algorithms

for convex optimization. Computer Vision and Image Un-

derstanding, 115(12):1610–1622, 2011.

[16] Jolliffe.I.T. Principal component analysis. Springer series in

statistics. Springer, New York, 2nd edition, 2002.

[17] Q. Ke and T. Kanade. Robust l1 norm factorization in the p-

resence of outliers and missing data by alternative convex

programming. Computer Vision and Pattern Recognition,

pages 234–778, 2005.

[18] T. Kolda and B. Bader. Tensor decompositions and appli-

cations. Society for Industrial and Applied Mathematics,

51(3):455–500, 2009.

[19] N. Kwak. Principal component analysis based on l1-norm

maximization. Pattern Analysis and Machine Intelligence,

30(9):1672–1680, 2008.

[20] X. Li, Bourennane, and C. Fossati. Tensor completion for

estimating missing values in visual data. Pattern Analysis

and Machine Intelligence, 34(1):208–220, 2013.

[21] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by

low-rank representation. International Conference on Ma-

chine Learning, pages 663–670, 2010.

[22] X. Liu, S. Bourennane, and C. Fossati. Denoising of hyper-

spectral images using the parafac and statistical performance

analysis. Geoscience and Remote Sensing, 50(10):3717–

3724, 2012.

[23] D. Meng and F. De la Torre. Robust matrix factorization

with unknown noise. Proceedings of the IEEE International

Conference on Computer Vision, pages 1337–1344, 2013.

[24] K. Mitra, K. Mitra, and R. Chellappa. Large-scale matrix

factorization with missing data under additional constraints.

Advances in Neural Information Processing Systems, pages

1651–1659, 2010.

[25] T. Okatani and K. Deguchi. On the wiberg algorithm for ma-

trix factorization in the presence of missing components. In-

ternational Journal of Computer Vision, 72:329–337, 2007.

[26] T. Okatani, T. Yoshida, and K. Deguchi. Efficient algorithm

for low-rank matrix factorization with missing components

and performance comparison of latest algorithms. Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, 2011.

[27] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl:

Robust alignment by sparse and low-rank decomposition for

linearly correlated images. Pattern Analysis and Machine

Intelligence, pages 2233–2246, 2010.

[28] H. Pragarauskas and O. Gross. Temporal collaborative fil-

tering with bayesian probabilistic tensor factorization. Pro-

ceedings of the 2010 SIAM International Conference on Da-

ta Mining, pages 211–222, 2010.

[29] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin.

Scalable bayesian low-rank decomposition of incomplete

multiway tensors. International Conference on Machine

Learning, pages 1800–1808, 2014.

[30] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-

rank solutions of linear matrix equations via nuclear norm

minimization. SIAM Review, 52(3):471–501, 2010.

[31] N. Renard, S. Bourennane, and J. Blanc-Talon. Denoising

and dimensionality reduction using multilinear tools for hy-

perspectral images. Geoscience and Remote Sensing Letters,

5(2):138–142, 2008.

[32] G. P. e. a. Sheng G A O, Denoyer L. Probabilistic latent ten-

sor factorization model for link pattern prediction in multi-

relational networks. The Journal of China Universities of

Posts and Telecommunications, 20:172–181, 2012.

[33] D. L. L. e. a. Signoretto M, Dinh Q T. Learning with tensors:

a framework based on convex optimization and spectral reg-

ularization. Machine Learning, 94(3):303–351, 2014.

5027



[34] L. Sirovich and M. Kirby. Low-dimensional procedure for

the characterization of human faces. Josa a, 4(3):519–524,

1987.

[35] N. Srebro and T. Jaakkola. Weighted low-rank approxima-

tions. International Conference on Machine Learning, pages

720–727, 2003.

[36] C. Tomasi and T. Kanade. Shape and motion from image

streams under orthography: a factorization method. Interna-

tional Journal of Computer Vision, 9(2):137–154, 1992.

[37] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-

nal of Cognitive Neuro Science, 3:71–86, 1991.

[38] M. Turk and A. Pentland. Face recognition using eigen-

faces. Computer Vision and Pattern Recognition, pages 586–

591, 1991.

[39] R. Vidal, R. Tron, and R. Hartley. Multiframe motion seg-

mentation with missing data using powerfactorization and g-

pca. International Journal of Computer Vision, 79(1):85–

105, 2008.

[40] J. Wright, Y. Peng, and Y. Ma. Robust principal component

analysis: Exact recovery of corrupted lowrank matrices by

convex optimization. Advances in Neural Information Pro-

cessing Systems, pages 2080–2088, 2009.

[41] K. Zhao and Z. Zhang. Successively alternate least square

for low-rank matrix factorization with bounded missing da-

ta. Computer Vision and Image Understanding, 114:1084–

1096, 2010.

[42] Q. Zhao, D. Meng, Z. Xu, W. Zuo, and L. Zhang. Robust

principal component analysis with complex noise. Interna-

tional Conference on Machine Learning, pages 55–63, 2014.

[43] Q. Zhao, L. Zhang, and A. Cichocki. Bayesian cp

factorization of incomplete tensors with automatic rank

determi- nation. Pattern Analysis and Machine Intelligence,

37(9):1751–1763, 2015.

[44] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi.

Practical low-rank matrix approximation under robust l1-

norm. Computer Vision and Pattern Recognition (CVPR),

pages 1410–1417, 2012.

5028


