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Abstract

This work introduces a novel Convolutional Network ar-

chitecture (ConvNet) for the task of human pose estimation,

that is the localization of body joints in a single static im-

age. We propose a coarse to fine architecture that addresses

shortcomings of the baseline architecture in [26] that stem

from the fact that large inaccuracies of its coarse Con-

vNet cannot be corrected by the refinement ConvNet that

refines the estimation within small windows of the coarse

prediction. We overcome this by introducing a Markov Ran-

dom Field (MRF)-based spatial model network between the

coarse and the refinement model that introduces geometric

constraints on the relative locations of the body joints. We

propose an architecture in which a) the filters that imple-

ment the message passing in the MRF inference are fac-

tored in a way that constrains them by a low dimensional

pose manifold the projection to which is estimated by a sep-

arate branch of the proposed ConvNet and b) the strengths

of the pairwise joint constraints are modeled by weights

that are jointly estimated by the other parameters of the

network. The proposed network is trained in an end-to-

end fashion. Experimental results show that the proposed

method improves the baseline model and provides state of

the art results on very challenging benchmarks.

1. Introduction

The problem of human pose estimation in monocular

RGB images, that is the problem of precise localization of

important landmarks of the human body, has received sub-

stantial attention in the Computer Vision community. Due

to the availability of ever larger and more comprehensive

datasets [1, 15, 24] and to the success of Deep Learning ar-

chitectures, especially ConvNets [7, 27, 14, 26], there has

been significant progress in this problem over the recent

years.

A central issue in human pose estimation, when seen as

a special case of a Machine Learning problem with struc-

tured outputs, is the enforcement of constraints between the

different outputs, that is the enforcement of geometric con-

(a) (b)

Figure 1. The probability of the hip location given the head loca-

tion on (a) Fashion Pose and (b) MPII databases.

straints on the relative locations of the body joints. This

is typically modeled at the later layers of a ConvNet. For

example, in [26] a MRF that models pairwise relations be-

tween different joints is encoded in a single CNN layer. In

such a network the filters ea|c encode the conditional prob-

abilities of the location of joint a, given the location of an-

other joint c. A major drawback with such an approach is

that a single filter is used to model all of the pairwise re-

lations. This works well when applied to simpler datasets,

such as FashionPose, where there is little pose variation and

therefore the conditional probabilities have a few distinct

modes. However, for more complex datasets the condition-

als become more uninformative as they attempt to model

pairwise relations under wide variety of poses - for exam-

ple, the relative location of the head and the hip both in up-

right and in laying poses. This is evident in Figure 1, where

the probability of the hip location given the head is depicted

in Figure 1(a) for images of the FashionPose dataset and

in Figure 1(b) for images of the MPII benchmark. Other

works, such as [5] where the geometric constraints are im-

plicitly modeled in the latest layers of the network, suffer

from similar shortcomings. For example, in [5] the last lay-

ers that incorporates intensity constraints, imposes pairwise

constraints encoded in a single filter (that is, one filter per

pair of joints).

In this paper, we present a three stage coarse-to-fine Con-

volutional Network architecture for the task of human pose
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estimation. Our model comprises of: a) a coarse ConvNet

that provides coarse low(er) resolution heat-maps for the

joint locations, b) a part-based constrained MRF model that

enforces geometric constraints conditioned on a global pro-

jection on a low dimensional manifold, and c) a refinement

(coarse to fine) ConvNet, that refines the estimation within

windows around the peaks of the coarse heat-maps. The

combined model is trained in an end to end fashion to min-

imize the weighted sum of the costs of each of the three

ConvNets. The coarse to fine architecture, that is the coarse

and the refinement models, is similar to the baseline model

of [25] and is reminiscent of recent works [17] that reuse

early layers at the later stages of the architecture. A major

challenge in such an architecture is that large inaccuracies

of its coarse ConvNet, i.e. when spurious peaks are chosen,

cannot be corrected by the refinement ConvNet. For exam-

ple, the coarse-to-fine ConvNet in [25] relies little on the re-

finement ConvNet, as evidenced by the low weight assigned

to the corresponding cost, resulting only in a moderate im-

provement of the final localization accuracy.

In this work, we introduce a novel MRF-part based spa-

tial model network between the coarse and the refinement

model that enforces spatial geometric constraints between

joints (Section 3.2). The proposed MRF model is a gen-

eral idea that could be applied at other ConvNet systems.

It builds on the the geometric model used in [25] that ex-

presses message-passing as convolution operations that can

be implemented using ConvNets - the filters expressing the

conditional dependencies between the location of different

joints. By contrast to it, in our formulation, each of the fil-

ters that perform the convolution operations is assumed to

be a linear combination of K filters. The weights of this

linear combination are the projection of the heat-maps into

a K dimensional manifold that encodes global constraints,

such as the global pose. Unlike all other architectures, the

filters that are applied in our architecture at test time are not

static but dynamic, while the projection of the heat-map vol-

ume to the low dimensional manifold is performed by a side

auto-encoder ConvNet that is jointly trained with the other

ConvNets. Thus, the weights are learned by a cost function

that combines both a generative term that comes from the

auto-encoder ConvNet and a discriminative cost that comes

from the heat-map prediction. In this way, the conditionals

become more informative as they attempt to model pairwise

relations under specific global constraints. Additionally, in

our formulation, different pairwise constraints are given dif-

ferent weights. The above constraints amount to a factor-

ization of the filter tensor. Finally, inspired by the work in

[6], the message passing procedure is applied in an iterative

manner to better mask-out the incorrect joints’ activations.

In addition to these central methodological contribu-

tions, we make two additional ones that considerably im-

prove the performance. First, we use cropping windows of

varying sizes at the peaks of the heat-maps from the coarse

network to ensure that the cropped window that is used

in the ”refinement” network encloses the target joint (Sec-

tion 3.3). This is in contrast to [25] that uses a fixed window

size and therefore relies little on the ”refinement” network

for the final pose estimation, as evidenced by the fact that a

small weight to the cost of the ”refinement” network is used

during training. Secondly, we use a novel data augmenta-

tion and a learning procedure that were both adapted to the

difficulty of the specific data instances/images (Section 4.2).

More specifically, hard instances (i.e. training images with

a large prediction error) were assigned a lower learning rate

and were augmented by applying more transformations (ro-

tation, scaling, shearing, stretching and flipping) to them.

Furthermore, we have trained our learning framework in a

way that is beneficial for our unified learning framework

(Section 4.2).

The proposed architecture is trained in an end-to-end

fashion. We show experimentally (Section 5) that the com-

bination of the three proposed ConvNets into a unified

learning framework: a) significantly outperforms the meth-

ods proposed in [25] and [26] and b) provides state of the

art results on very challenging benchmarks.

2. Related Work

Many methods extract, learn, or reason over entire body

features. Some use a combination of local detectors and

structural constraints [23] for coarse tracking or for person

dependent tracking [4]. Methods using ”Pictorial Struc-

tures”, such as [12], made this approach tractable with so

called ”Deformable Part Models (DPM)”. Subsequently a

large number of related models were developed [8, 30, 10].

Algorithms which model more complex joint relationships,

such as [30], use a flexible mixture of templates modeled

by linear SVMs. A cascade of body part detectors to obtain

more discriminative templates was employed in [16]. Most

recent approaches aim to model higher-order part relation-

ships. A model that augments the DPM model with Pose-

let [3] priors was proposed in [19, 20] in order to capture

spatial relationships of body-parts. A multi-modal model

which includes both holistic and local cues for mode se-

lection and pose estimation was proposed in [24]. Follow-

ing the Poselets approach, the Armlets approach in [13]

employs a semi-global classifier for part configuration and

shows good performance on real-world data. This approach

exhibits good performance on real-world data, however it

is demonstrated only on arms. All these approaches use

hand crafted features (i.e. edges, contours, HoG features

and color histograms), which have been shown to have poor

generalization performance and discriminative power.

With the introduction of ”DeepPose” in [27], the re-

search on human pose estimation shifted to deep network

approaches. A network to directly regress the 2D coordi-
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nates of joints was used in [27]. In addition to the use of

graphical models, there are several examples of iterative or

multi-stage training methods in a sequential, cascaded fash-

ion [28].

In [6], the ConvNet predictions were improving itera-

tively in a process called Iterative Error Feedback (IEF).

Each successive run through their network takes as input

the image along with predictions from the previous for-

ward pass and further refines them. This way it iteratively

improves part detections using error feedback, but uses a

Cartesian representation as in [27] which does not preserve

spatial uncertainty and results in lower accuracy in the high

precision regime. In [28], an extension based on the work

of multi-stage pose machines [22] by using ConvNets for

feature extraction without an explicit graphical model-style

inference was proposed. A ”stacked hourglass” network de-

sign for predicting human pose was proposed in [17]. This

network tries to capture and consolidate information across

all scales of the image by pooling down to a very low reso-

lution, then upsampling and combining features across mul-

tiple resolutions.

The combination of a low-dimensional representation of

the input image produced by a ConvNet in [7] and an im-

age dependent spatial model show improvement over the

work proposed in [27]. In other words, detections were

clustered into typical orientations so that when their clas-

sifier makes predictions additional information is available

indicating the likely location of a neighbouring joint. In the

literature, multi-resolution ConvNet architectures were de-

veloped in order to perform heat-map likelihood regression

for each joint (rougher pose estimators). These architec-

tures were trained jointly with a MRF-based spatial model

network [26] or with a pose refinement model [25]. Oth-

ers have recently tackled the problem of learning typical

spatial relationships between joints in similar ways [11, 21]

with variations on how to approach unary score generation

and pairwise comparison of adjacent joints. Similarly, mo-

tion features can be added to the input of a multi-resolution

ConvNet architecture to further improve accuracy [14]. In

[5], a ConvNet cascaded architecture designed for learning

part relationships and spatial context is presented.

3. Model Architecture

The overall architecture is shown in Figure 2. It consists

of a coarse heat-map regression model, our proposed spa-

tial geometric model, the module to sample and crop the

convolutional feature maps at a specified (x, y) location for

each joint, and the fine heat-map regression (coarse to fine)

model. In this Section we give a description of each Con-

vNet used in our framework focusing on the proposed part-

based spatial model.

3.1. Coarse Heat­Map Regression Model

The coarse heat-map regression model takes as input an

RGB Gaussian pyramid of three levels (in Figure 3 only two

levels are shown for brevity) and for each body joint it out-

puts a heat-map, that is a per-pixel likelihood that the joint

in question is depicted at that location. We use an input res-

olution of 256×256 pixels at the highest level of the pyra-

mid. The first layer of the network performs local contrast

normalization (LCN) using the same filter kernel in each of

the three resolution banks. Each LCN image is then input to

a ten layer multi-resolution ConvNet. Due to the presence

of pooling the output heat-map is at a lower resolution than

the input image.

3.2. Part­based Spatial Model

In this Section we describe in detail the spatial model

that introduces the geometric constraints between the body

parts. Our model, depicted in Figure 4, builds on the MRF-

based spatial model proposed in [25, 26], that formulates a

tree-structured MRF over spatial locations using a random

variable for each joint. In that formulation, the message

passing that performs inference is expressed using convolu-

tional filtering operations and therefore can be implemented

as a specialized layer in a ConvNet. In this way the filters

that produce the unary and the pairwise potentials of the

MRF model can be learned by supervised training, either

of the last layer, or of the whole network in an end-to-end

fashion. For our 32×32 pixel heat-map input to this model,

this results in large 63×63 convolution kernels to account

for a joint displacement radius of maximum 32 pixels. The

convolution sizes are adjusted so that the largest joint dis-

placement is covered within the convolution window. In

such a network, the filters, denoted by fa|c, are functions of

the conditional probabilities ea|c of the location of joint a,

given the location of another joint c. That is, the refinement

ea of the heat-map for a joint a, is given by filtering opera-

tions on functions of the heatmaps ec of the other joints c.

More specifically,

ea = exp

(

∑

c∈V

log[fa|c ∗ReLU(ec)+SoftP lus(ba|c)]

)

,

(1)

where fa|c = SoftP lus(ea|c) (see [26] for more details).

A major drawback with such an approach is that a sin-

gle filter, i.e. fa|c is used to model the pairwise relations

between joints. In the case of a dataset containing a large

variety of poses (e.g. both standing and laying) this results

with rather uninformative filters. To deal with this problem

the proposed MRF-based loopy belief propagation network

is constrained by a low dimensional latent model. In the

proposed model, each of the filters fa|c is a linear combi-

nation of K filters fk
a|c, where the weights w ∈ RK of

this linear combination are determined by the projection of

3468



Figure 2. Overview of our unified learning framework.

Figure 3. Architecture of our coarse heat-map regression model.

the heat-maps into a K dimensional manifold that encodes

global constraints, such as the global pose. That is:

fa|c =

K
∑

k=1

wk ∗ fk
a|c = w

T













f1
a|c

.

.

.

fK
a|c













. (2)

The projection of the heat-map volume to the low di-

mensional manifold, that is the calculation of the weights

w, is performed by a separate branch of the network that

performs dimensionality reduction on the heat maps. It con-

sists of convolutional and fully-connected layers and is de-

picted as the lower branch in Figure 4. The parameters of

that branch are jointly trained with the main network using

both a discriminative and a generative cost - the latter being

essentially a classical auto-encoder cost. Thus, the weights

w are learned by a cost function that combines both a gen-

erative term that comes from the auto-encoder ConvNet and

a discriminative cost that comes from the heat-map predic-

tion. In this way, the conditionals become more informative

as they attempt to model pairwise relations under specific

global constraints as those are encoded in the coordinates

w at the global pose manifold.

Another drawback of the baseline model of Eq. 1 is

that it assumes that the learned pair-wise joint distribu-

tions/relations should contribute equally to marginal like-

lihood of location of a joint. We relax this assumption by

applying, for each of the K dimensions of the pose mani-

fold, a weighting scheme that determines the strength of the

joints’ spatial relationships. That is, we allow that, condi-

tioned on a global pose, some pairwise relations between

different joints are more informative that others. This is ex-

pressed as a filtering operation with weights βk
a|c. That is:
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Figure 4. The proposed constrained convolutional MRF-part based spatial model architecture. The lower branch is an auto-encoder Con-

vNet which learns the low Kth dimensional pose manifold. The weights w ∈ RK are learned by a cost function that combines both a

generative term that comes from the auto-encoder ConvNet and a discriminative cost that comes from the heat-map prediction.

ea = exp

(

∑

c∈V

[

K
∑

k=1

βk
a|c log

[

wk ∗ fk
a|c ∗ReLU(ec)

+SoftP lus(ba|c)
]]

)

, (3)

The weights βk
a|c, (1 ≤ k ≤ K) are learned jointly with the

other parameters of the network using back-propagation.

Note, that w are not fixed weights that are learned during

training and fixed during testing, but weights that are esti-

mated at test time, by the auto-encoder ConvNet.

Finally, the baseline model of [26] applies only one step

of the MRF-based inference. Inspired by the ConvNet in [6]

that uses a self-correcting model that progressively changes

an initial solution by feeding back error predictions, we ap-

ply the filtering steps of Eq. 3 in an iterative manner up-

dating the same fa|c, ba|c and βa|c parameters. That is, the

output heat-maps of the proposed MRF-part based spatial

model are progressively changing by being fed back to the

model as inputs. This is depicted by the feedback loop in

Figure 4.

3.3. Fine Heat­Map Regression Model

V3The goal of using a fine regression model is to recover

the spatial accuracy lost by pooling in the coarse regression

model. Thus, an additional ConvNet proposed in [25] was

used to refine the localization result of the unified coarse

model. More specifically, by reusing existing convolution

features this model is trained to estimate the joint offset lo-

cation within a small region of the image extracted around

the estimates of the unified coarse model, reducing in that

way the number of trainable parameters in the cascade. This

network outputs a high resolution per-pixel heat-map which

corresponds to this small region, that is a per-pixel likeli-

hood for key joint locations on the human skeleton.

4. Training and Data Augmentation

4.1. Model Training

All of the ConvNets described above do not estimate

the positions of the body joints directly [18, 27], but esti-

mate instead one heat-map for each of the joint positions.

Those heat-maps (i.e. the output of last convolutional layer)

form a fixed-size M × N × J−dimensional tensor (here

32×32×J), where M,N and J denote the height, the width

and the number of joints, respectively. In case of the coarse

heat-map regression model and the MRF-part based spa-

tial model the output heat-maps have fixed spatial dimen-

sions, M=N=32, while in case of the fine heat-map regres-

sion model these two dimensions depend on the size of the

cropping region as described before.
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At training time, the ground truth labels for all ConvNets

are heat-maps that are constructed for each joint separately

by placing a Gaussian with fixed variance (σ ≈ 1.5 pix-

els) at the ground truth position of the corresponding joint.

We then use an ℓ2 loss, that is we optimize the sum of the

squared pixel-wise differences between the output heat-map

and the constructed ground truth heat-map.

Let us denote by (Ii, Ci) the i-th training example, where

Ci ∈ R2J denote the coordinates of the J joints in the im-

age Ii. Given a training dataset N = {(Ii, Ci)} and the

ConvNet regressor φ (the output of last convolutional layer),

we train our ConvNet by estimating the network weights p

that minimize the objective function E<ConvNet>:

E<ConvNet> =
∑

(I,C)∈N

∑

m,j

‖Hm,n,j(Cj)−φm,n,j(I, p)‖
2,

(4)

where Hm,n,j(Cj) =
1

2πσ
e−[(C1

j−m)2+(C2

j−n)2]/2σ is a

Gaussian centred at Cj with σ fixed. Then, ECoarse,

EGeometric = EMRF + γEManifold and ECoarse2Fine

denote the objective function for each of our three Con-

vNets. EManifold denotes the objective function for the

auto-encoder ConvNet which creates the low dimensional

pose manifold, while γ is a constant used to provide a trade-

off between the relative importance of the two sub-tasks.

4.2. Joint Inference And Training

Given an input image, the joint inference is done as fol-

lows. First we do forward propagation through the coarse

heat-map model and our geometric model and infer all joint

(x, y) locations by finding the maximal value in each joint’s

heat-map. This coarse (x, y) location is then used to sam-

ple and crop the first two convolutional layer feature maps

at each of the joint locations. We do this for all the resolu-

tion banks, keeping the contextual size of the window con-

stant by scaling the cropped area at each higher resolution

level. After that, the resulting features are further propa-

gated through a fine heat-map model to give a (∆x, ∆y)

offset within the cropped sub-window. Finally, by adding

the position refinement to the coarse location we end up

with the final (x, y) location prediction for each joint.

Regarding the joint training, our proposed constrained

convolutional MRF-part based spatial network is combined

with the coarse heat-map regression model described in sec-

tion 3.1 into a single unified coarse heat-map regression

model. This is done by firstly training the coarse heat-

map regression model separately by minimizing ECoarse

and storing the heat-map outputs. The outputs are then used

to train firstly our pose manifold generator by minimizing

EManifold, and secondly, our geometric model by minimiz-

ing EGeometric (we used γ = 0.4). After that, the trained

coarse and geometric model are combined and fine-tuned

using back-propagation through the unified coarse heat-

Table 1. Window sizes that were used for the different body joints

at the higher resolution input image.
Cropping Window Size (in pixels) Per Joint

Head Shoulder Elbow Hip Knee Wrist Ankle

27 27 36 36 45 54 63

map regression model by minimizing EUnified Coarse =
ECoarse + EGeometric and storing the heat-map outputs.

Subsequently, the outputs are used to train the coarse-to-fine

heat-map regression model by minimizing ECoarse2Fine.

After that, the trained unified coarse and coarse-to-fine

models are combined and jointly fine-tuned using back-

propagation through the unified coarse heat-map regres-

sion model by minimizing EUnified = EUnified Coarse +
λECoarse2Fine, where λ is a constant used to provide a

trade-off between the relative importance of the two sub-

tasks. λ is another network hyper-parameter and is chosen

to optimize performance over the validation set (we used λ

= 0.25). This unified fine-tuning further improves perfor-

mance, because the geometric model is able to effectively

reduce the output dimension of possible heat-map activa-

tions and therefore the coarse model can use the available

learning capacity to better localize the precise target activa-

tion.

In practice, many of the failure cases were caused by

either an occluded or a mis-attributed limb and refinement

of the position within a local window would not result in

improvements. In both cases the prediction error was large

and therefore the small fixed window used in [25], would

not include the correct target location and the refinement

model could not therefore lead to an improved estimation.

For this reason, in [25] the contribution of this part of the

network architecture is small (λ = 0.1). In this work, we do

not use windows of fixed length to ensure that in the vast

majority of cases (more than 95% in the training set), the

true target location is within the used window. This way,

we overcome the problems that [25] faces in the case of

occlusions and in the case that the coarse model provides

estimates that are far from the true target location, and rely

more (λ = 0.25) on the refinement model when training the

proposed architecture in an end-to-end fashion. In Table

1, we report the window sizes that were used for different

body joints at the higher resolution input image.

In order to better exploit the fine heat-map model by

keeping at the same time the cropping regions small we

used the training procedure described below. In the be-

ginning of the training procedure, only the images with

small prediction error were used. Once the joint estima-

tion accuracy on the training data was significantly im-

proved by the ConvNet, the rest of the images were grad-

ually included, based on the corresponding prediction er-

rors. This is also important since in the beginning we used

quite a large learning rate, while when the most difficult
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images were processed the learning rate was significantly

decreased. During each training/validation iteration, each

input image is randomly rotated (with r ∈ [−30o,+30o]),
scaled (with s ∈ [0.8, 1.2]), sheared (with shear factor in

pixels ∈ [−3, 3]), stretched (with stretching factor equal to

1.2−1) and flipped horizontally (with probability equal to

0.5) - those transformations are introduced in order to im-

prove the generalization performance on the validation set.

In addition, for images whose prediction error was signifi-

cantly higher than the mean data prediction error, we apply

more than one random image transformation (two in our

experiments). Finally, we use more than one random image

transformation per image in the validation procedure too -

we used four in our experiments.

5. Evaluation

5.1. Datasets / Training Details

In this work we used the FashionPose [8], the MPII [1]

and the LSP [16] databases. FashionPose dataset consists

of 7,543 accurately annotated images downloaded from a

variety of fashion blogs and it is annotated by 13 joints.

MPII Human Pose dataset is the most diverse set of hu-

man pose-labeled images, it is a full-body dataset and it is

a video dataset. This dataset is very challenging and it in-

cludes a wide variety of full-body pose annotations within

the 28,821 training and 11,701 test examples. LSP dataset

consists of 11,000 images for training and 1,000 images for

testing and is annotated by 14 joints.

We implemented our network using the Lasagne library

within the Theano [2] framework and optimized the param-

eters using Adagrad [9]. The training of the coarse heat-

map regression model takes approximately 4 days, the part-

based spatial model 3 days and the coarse to fine heat-map

regression model takes 4 days on a 12GB Nvidia Tesla K80

GPU. The forward-propagation for a single image through

all networks takes around 125ms. For MPII, it is standard to

utilize the scale and center annotations provided with all im-

ages. All images were cropped after centering on the person

and then scaled to get a 256×256 input for the network such

that a standing-up human has height 200 pixels. In case of

severely occluded joints we used a ground truth heat-map

of all zeros for supervision.

5.2. Experimental Results

In order to qualitatively show the complexity of the used

datasets and illustrate the performance of our method, in

Figure 5 we depict some examples where our system esti-

mates the human pose well. For generating final test predic-

tions we run both the original input and a flipped version of

the image through the network and average the heat-maps

together [29]. The chosen examples have PCK-0.5 error

less than 0.15, that is, the average error for all joints is less

than 0.15 of the half body height.

In order to show the influence of our contributions and

compare our results with [25] and [26], we report the PCK

(Probability of Correct Keypoints [8]). In Table 2 we sum-

marize the results at accuracy of PCK = 0.15. In order to

show the influence of the individual contributions, we re-

port results for the MPII database for a) the coarse model

(CM), b) the coarse plus the coarse to fine models (CM

+ C2FM), c) the full model comprising of the coarse plus

the MRF plus the coarse to fine models (CM+MRF+C2FM)

(full model) with only one iteration of our MRF model, d)

the full model when one filter is used to model the joint pair-

wise potentials (K=1), e) the full model when K=4, f) the

coarse model and g) the full model of [25]. It is clear that

in both datasets our coarse model outperforms the coarse

model of [25], illustrating the influence of the proposed ar-

chitectural changes in the size of depth and filter size of

the coarse ConvNet. The results also show the influence of

the proposed contributions after the coarse model since both

the iterative MRF process as well as the constrained MRF

model significantly improve the performance of the system.

Our full model improves our coarse model 2.46% more than

the full model of [25] over its coarse model. Note that, as

described in Section 3.2, even when K=1 our MRF model

is roughly equivalent to [25]. To limit the framework’s com-

plexity we did not perform experiments for K >4. Consid-

ering that (a) the coarse to fine model is a siamese ConvNet,

and (b) in the iterative process of our geometric model we

use weight sharing, the total number of our training param-

eters is similar to other state-of-the-art techniques.

Table 2. Comparison with prior-art. PCK @ 0.15 for MPII and

FashionPose Database compared to the state-of-the-art methods
MPII Database

Methods Full Body

Tompson et al., CVPR 2015 - CM ConvNet 36.25

Tompson et al., CVPR 2015 - Full Model 44.08

Andriluka et al., CVPR 2009 14.94

Toshev et al., CVPR 2014 24.80

Our System - CM ConvNet 38.71

Our System - (CM+C2FM) ConvNet 45.71

Our System - (CM+C2FM+MRF) ConvNet 47.49

Our System - Full Model (one MRF loop) 48.40

Our System - Full Model when K=1 48.60

Our System - Full Model when K=4 49.62

Our System - Full Model with data

augmentation of Tompson et al., CVPR 2015
48.98

FashionPose Database

Methods Full Body

Dantone et al., PAMI 2014 63.92

Our System - CM ConvNet 84.55

Our System - (CM+C2FM) ConvNet 86.95

Our System - Full Model 90.21

The proposed architecture introduces the ConvNet with

geometric constraints before the refinement ConvNet. This

is in contrast to other methods in the literature, e.g. [25]

that introduce such constraints at the final layers of their
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(a) (b)

Figure 5. Human pose estimation (PCK-0.5 error<0.15) on sample images from (a) FashionPose and (b) MPII testing datasets.

Table 3. Comparison with prior-art. Error per joint for the MPII dataset compared to the state-of-the-art methods.
PCKh @ 0.15 PCKh @ 0.5

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Full Body Head Shoulder Elbow Wrist Hip Knee Ankle Full Body

Wei et al., CVPR 2016 64.6 62.1 55.8 50.5 55.0 49.7 46.5 55.4 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.9

Pishchulin et al., CVPR 2016 61.2 57.4 50.6 43.9 49.3 42.9 35.3 49.4 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Carreira et al., CVPR 2016 62.3 58.8 48.4 39.6 49.9 40.2 33.5 48.3 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Bulat et al., ECCV 2016 64.7 61.8 56.9 52.3 56.0 52.3 49.1 55.4 97.8 95.1 89.9 85.3 89.4 85.7 81.9 89.6

Newell et al., ECCV 2016 65.2 62.9 58.4 53.8 56.9 53.8 50.6 57.3 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Tompson et al., NIPS 2014 63.1 57.5 47.2 41.7 44.8 36.5 30.1 46.8 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6

Tompson et al., CVPR 2015 63.3 58.4 51.1 45.1 47.3 38.9 31.3 48.9 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Our System - Full Model 65.8 63.7 58.9 54.7 57.9 54.4 51.9 58.21 99.1 97.2 93.3 88.9 91.9 88.4 86.1 92.1

Table 4. Comparison with prior-art. Error per joint for the LSP dataset compared to the state-of-the-art methods.
PCK@0.2

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Full Body

Wei et al., CVPR 2016 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Pishchulin et al., CVPR 2016 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Carreira et al., CVPR 2016 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1

Bulat et al., ECCV 2016 96.3 92.2 88.2 85.2 92.2 91.5 88.6 90.7

Tompson et al., NIPS 2014 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3

Our System - Full Model 97.9 93.6 90.1 87.1 94.2 93.2 90.5 92.4

networks. The motivation for doing so is that in our ar-

chitecture the main purpose of that ConvNet is to provide

a better initial estimate such that the refinement network

can provide an accurate estimate within a window that con-

tains high resolution image information. In order to validate

our choice, we provide results in Table 2 when a ConvNet

that introduces geometric constraints is placed after the re-

finement ConvNet (CM+C2FM+MRF). Our choice is justi-

fied by the fact that the performance of the overall system

drops considerably from 49.62% to 47.49% when the geo-

metric constraints are introduced at the final layers of our

networks. In order to validate that our data augmentation

procedure enhances the performance of our model, in Ta-

ble 2 we provide the performance of our model when the

augmentation procedure of [25] is used. In this case, the

performance of the overall system drops from 49.62% to

48.98%

In Tables 3 and 4 we report the error per joint for the

MPII and LSP datasets - as reported in other works in the

literature, wrists and angles that exhibit larger variations in

their motion are the ones that are harder to localize. Based

on the experimental results, it is clear that the proposed uni-

fied learning framework outperforms existing state-of-the-

art techniques on both of these challenging datasets. Fur-

thermore, the performance of our system is considerably

better in the case of the harder joints (i.e. arms, wrists and

ankles) even at high levels of accuracy.

6. Conclusions

In this paper, we presented a cascaded architecture for

human body pose estimation that combines coarse, part-

based spatial models and fine scale ConvNets. This work in-

troduces a MRF-based spatial ConvNet between the coarse

and the refinement model that introduces geometric con-

straints. We propose an MRF architecture in which a) the

filters that implement the message passing in the MRF in-

ference are factored so as to be constrained by a low dimen-

sional pose manifold the projection to which is estimated

by a separate branch of the proposed ConvNet, and b) the

strength of the pairwise joint constraints are modeled by

weights that are jointly estimated with the other parame-

ters of the network. These three ConvNets were trained into

a unified learning framework achieving state-of-the-art re-

sults on challenging datasets for human pose estimation.
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